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Abstract

Nonlinear kernel regression models are often used in statistics and machine learning because they 

are more accurate than linear models. Variable selection for kernel regression models is a 

challenge partly because, unlike the linear regression setting, there is no clear concept of an effect 

size for regression coefficients. In this paper, we propose a novel framework that provides an effect 

size analog for each explanatory variable in Bayesian kernel regression models when the kernel is 

shift-invariant — for example, the Gaussian kernel. We use function analytic properties of shift-

invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) 

captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. This 

projection onto the original explanatory variables serves as an analog of effect sizes. The specific 

function analytic property we use is that shift-invariant kernel functions can be approximated via 

random Fourier bases. Based on the random Fourier expansion, we propose a computationally 

efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear 

regression and binary classification for which one can compute an analog of effect sizes. We 

illustrate the utility of BAKR by examining two important problems in statistical genetics: 

genomic selection (i.e. phenotypic prediction) and association mapping (i.e. inference of 

significant variants or loci). State-of-the-art methods for genomic selection and association 
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mapping are based on kernel regression and linear models, respectively. BAKR is the first method 

that is competitive in both settings.

1 Introduction

In this paper, we formulate a nonlinear regression framework which simultaneously achieves 

the predictive accuracy of the most powerful nonlinear regression methods in machine 

learning and statistics, as well as provides an analog of effect sizes and probability of 

association for regression coefficients — which are standard quantities in linear regression 

models.

Methodology and theory for variable selection is far more developed for linear regression 

models than nonlinear regression models. In linear models, regression coefficients (i.e. the 

effect size of a covariate) provide useful information for variable selection. The magnitude 

and correlation structure of these effect sizes are used by various probabilistic models and 

algorithms to select relevant covariates associated with the response. Classic variable 

selection methods, such as forward and stepwise selection (Roman and Speed, 2002), use 

effect sizes to search for main interaction effects. Sparse regression models, both Bayesian 

(Park and Casella, 2008) and frequentist (Tibshirani, 1996; Efron et al., 2004), shrink small 

effect sizes to zero. Factor models use the covariance structure of the observed data to shrink 

effect sizes for variable selection (West, 2003; Hahn et al., 2013). Lastly, stochastic search 

variable selection (SSVS) uses Markov chain Monte Carlo (MCMC) procedures to search 

the space of all possible subsets of variables (George and McCulloch, 1993). All of these 

methods, except SSVS, use the magnitude and correlation structure of the regression 

coefficients explicitly in variable selection — SSVS uses this information implicitly.

The main contribution of this paper is a (Bayesian) nonlinear regression methodology that is 

computationally efficient, predicts accurately, and allows for variable selection. The main 

technical challenge in formulating this novel method is defining and efficiently computing 

an analog of effect sizes for kernel regression models, a popular class of nonlinear regression 

models. Kernel regression models have a long history in statistics and applied mathematics 

(Wahba, 1990), and more recently in machine learning (Schölkopf and Smola, 2002; 

Rasmussen and Williams, 2006). There is also a large (partially overlapping) literature in 

Bayesian inference (Pillai et al., 2007; Zhang et al., 2011; Chakraborty et al., 2012).

The key idea we develop in this paper is that for shift-invariant kernels in the p ≫ n regime 

(i.e. the number of variables p is much larger than the number of observations n) there exists 

an accurate linear (in the covariates) approximation to the nonlinear kernel model that allows 

for the efficient computation of effect sizes. We specify a linear projection from the 

reproducing kernel Hilbert space (RKHS) to the space of the original covariates to 

implement the linear approximation. This linear transformation is based on the fact that 

shift-invariant kernels can be approximated by a linear expansion of random Fourier bases. 

The idea of random Fourier expansions was initially exploited to obtain kernel regression 

models with superior runtime properties in both training and testing (Rahimi and Recht, 

2007; Băzăvan et al., 2012). In this paper, we utilize the random Fourier bases to efficiently 

compute the analog of effect sizes for nonlinear kernel models.
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The variable selection framework we develop is implemented as a Bayesian empirical factor 

model that scales to large datasets. Previous efforts to carry out variable selection in fully 

Bayesian kernel models have faced challenges when applied to large datasets due to either 

solving non-convex optimization problems (Chapelle et al., 2002; Rakotomamonjy, 2003; 

Rosasco et al., 2013) or due to sampling from Markov chains that typically mix poorly 

(Chakraborty et al., 2007; Chakraborty, 2009). Indeed, there have been recent works that 

attempt to overcome this problem with various approaches (Snoek et al., 2015; Gray-Davies 

et al., 2016; Sharp et al., 2016). The main utility of our approach is that variable selection for 

nonlinear functions reduces to a factor model coupled with a linear projection.

In section 2, we introduce properties of RKHS models and detail some of the basic 

functional analysis tools that allow for mapping from the RKHS of nonlinear functions to 

functions linear in the covariates. In section 3, we specify the Bayesian approximate kernel 

regression (BAKR) model for nonlinear regression with variable selection. Here, we also 

define the posterior probability of association analog (PPAA) which provides marginal 

evidence for the relevance of each variable. In section 4, we show the utility of our 

methodology on real and simulated data. Specifically, we focus on how our model addresses 

two important problems in statistical genetics: genomic selection and association mapping. 

Finally, we close with a discussion in section 5.

2 Theoretical Overview

In this paper, we focus on nonlinear regression functions that belong to an infinite 

dimensional function space called a reproducing kernel Hilbert space (RKHS). The theory 

we develop in this section will help to formalize the following two observations in the p ≫ n 
setting: (i) the redictive accuracy of smooth nonlinear functions is typically greater than both 

linear functions and sharply varying nonlinear functions; (ii) in the high-dimensional setting, 

a smooth nonlinear function can be reasonably approximated by a linear function. In the 

remainder of this section, we develop a framework that we will use in section 3 to define a 

linear projection from a RKHS onto the original covariates. This projection will serve as an 

analog for effect sizes in linear models. Thorough reviews of the utility and theory of RKHS 

can be found in other selected works (e.g. Pillai et al., 2007; Bach, 2017).

2.1 Reproducing Kernel Hilbert Spaces

One can define an RKHS based on a positive definite kernel function, k : X × X → ℝ, or 

based on the eigenfunctions ψ i i = 1
∞  and eigenvalues λi i = 1

∞  of the integral operator 

defined by the kernel function, λiψ i(u) = ∫𝒳
k(u, v)ψ i(v)dv. For a Mercer kernel (Mercer, 

1909) the following expansion holds k(u, v) = ∑i = 1
∞ λiψ i(u)ψ i(v), and the RKHS can be 

alternatively defined as the closure of linear combinations of basis functions ψ i i = 1
∞ ,

ℋ = f | f (x) = ψ(x)Tc, ∀x ∈ 𝒳 and ∥ f ∥K < ∞ with ∥ f ∥K
2 = ∑

i = 1

∞ ci
2

λi
2 .
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Here, ||f||K is the RKHS norm, ψ(x) = λiψ i(x)
i = 1
∞  is a vector space spanned by the bases, 

and c = ci i = 1
∞  are the corresponding coefficients. The above specification of an RKHS 

looks very much like a linear regression model, except the bases are ψ(x) (rather than the 

unit basis), and the space can be infinite-dimensional.

Kernel regression models in machine learning are often defined by the following penalized 

loss function (Hastie et al., 2001, Section 5.8)

f = arg min
f ∈ ℋ

1
n ∑

i = 1

n
L( f (xi), yi) + λ ∥ f ∥K

2 , (1)

where (xi, yi) i = 1
n  represents n observations of covariates xi ∈ 𝒳 ⊆ ℝp and responses 

yi ∈ 𝒴 ⊆ ℝ, L is a loss function, and λ > 0 is a tuning parameter chosen to balance the trade-

off between fitting errors and the smoothness of the function. The popularity of kernel 

models is that the minimizer of (1) is a linear combination of kernel functions k(u, v) 

centered at the observed data (Scholkopf et al., 2001)

f (x) = ∑
i = 1

n
αik(x, xi), (2)

where α = αi i = 1
n  are the corresponding kernel coefficients. The key point here is that the 

form of (2) turns an ∞-dimensional optimization problem into an optimization problem over 

n parameters. We denote the subspace of the RKHS realized by the representer theorem as

ℋx = f | f (x) = ∑
i = 1

∞
αik(x, xi), α ∈ ℝn and ∥ f ∥K

2 < ∞ .

We can also define the subspace ℋx in terms of the operator ΨX = [𝜓(x1),..., 𝜓(xn)] with

ℋx = f | f (x) = ΨX
Tc and ∥ f ∥K

2 < ∞ . (3)

To extract an analog of effect sizes from our Bayesian kernel model we will use the 

equivalent representations (2) and (3). Indeed, one can verify that c = ΨXα.

2.2 Variable Selection in Kernel Models

Variable selection in kernel models has often been formulated in terms of anisotropic 

functions
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kϑ(u, v) = k (u − v)TDiag(ϑ)(u − v) , ϑ j > 0, j = 1, …, p

where the vector ϑ represents the weights each coordinate and is to be inferred from data. 

Optimization based approaches (Chapelle et al., 2002; Rakotomamonjy, 2003; Rosasco et 

al., 2013) implement variable selection by solving an optimization problem

f , ϑ = arg min
f ∈ ℋϑ, ϑ

1
n ∑

i = 1

n
L( f (xi), yi) + λ ∥ f ∥

Kϑ
2 ,

where ℋϑ is the RKHS induced by the kernel kϑ, and the magnitude of ϑ is evidence of the 

relevance of each variable. The joint optimization over (ℋϑ,ϑ) is a nonconvex problem and 

does not scale well with respect to the number of variables or the number of observations. In 

the case of Bayesian algorithms, the idea is to sample or stochastically search over the 

posterior distribution

p(ϑ, α | yi, xi i = 1
n ) ∝ exp − ∑

i = 1

n
L( f (xi), yi) π(ϑ, α),

where π(ϑ, α) is the prior distribution over the parameters and exp − ∑i = 1
n L( f (xi), yi)  is 

the likelihood. Sampling over ϑ ∈ ℝ+
p  is challenging due to the complicated landscape, and 

Markov chains typically do not mix well in this setting (Chakraborty et al., 2007; 

Chakraborty, 2009). We will propose a very different approach to variable selection by 

projecting the RKHS onto linear functions with little loss of information. This projection 

operator will be based on random Fourier features.

2.3 Random Fourier Features

In this subsection, we specify an approximate kernel function that allows us to construct a 

projection operator between the RKHS and the original predictor space. This projection will 

allow us to define an analog to effect sizes. The key idea behind specifying the approximate 

kernel is the utilization of a previously developed randomized feature map (Rahimi and 

Recht, 2007; Băzăvan et al., 2012). The approach we detail holds for kernel functions that 

are shift-invariant k(u, v) = k(u - v) and integrate to one ʃ k(z) dz =1 with z = u - v. 

Bochner’s theorem (Bochner, 1934) states that this class of shift-invariant kernel functions 

satisfies the following Fourier expansion

k(xi − x j) = ∫
ℝp f (ω) exp ι ωT (xi − x j) dω = 𝔼ω [ηω (xi) ηω (x j) * ], (4)

where ηω (xi) = exp (ι ωTxi), and the Fourier transform of the kernel function f (ω) is a 

probability density
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f (ω) = ∫
𝒳

k(x)e−ι2πωTx dx . (5)

More specifically, the eigenfunctions for these kernels can be thought of as Fourier bases.

Previous works have compared the performance of standard kernel regression models with 

an alternative Monte Carlo estimate representation using random bases (Rahimi and Recht, 

2007; Bӑazӑvan et al., 2012)

f (x) = ∑
i = 1

n
αik(x, xi), f (x) = ψ(x)Tc,

with ψ(x) = ψ1(x), …, ψd(x) T being a d-dimensional vector of Fourier bases with frequencies 

drawn from the corresponding density function in (5). The specific Monte Carlo 

approximation is formulated as follows

ω𝓁 ∼iid f (ω), b𝓁 ∼iid U[0, 2π], 𝓁 = 1, …, d

Ω = [ω1, …, ωd] ∈ ℝp × d, b = [b1, …, bd] ∈ ℝd,

ψ(xi)
T = 2

d cos(xiΩ + b),

(6)

where cos(υ) denotes an element-wise cosine transformation, and (in the case of the 

Gaussian kernel) f (ω) is a p-dimensional multivariate normal. Note that the adaptation of 

(6) to accommodate other shift-invariant kernel functions is straightforward and only 

requires sampling from a different f (ω). We may now consider a Monte Carlo estimate of 

the kernel function where

k (xi − x j) = ψ(xi)
Tψ(x j) ≈ ψ(xi)

Tψ(x j) = k(xi − x j) . (7)

We can also specify a matrix Ψ = [ψ(x1), …, ψ(xn)] with a corresponding approximate kernel 

matrix K = ΨTΨ. It has been previously shown, using the strong law of large numbers, that 

this approximation converges to the exact kernel almost surely as the random sampling size 

d goes to infinity (Rahimi and Recht, 2007). In this paper, we set d = p for two reasons. 

First, since our focus is in the p ≫ n setting, the number of terms in the Fourier expansion 

will be large and the resulting difference between the actual smooth nonlinear kernel 

function and its Monte Carlo approximation will be small (Bach, 2017). Second, setting d = 

p allows us to define a linear map from the n-dimensional space of kernel functions to a p-

dimensional projection onto the original explanatory variables.
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Note that in the construction we have proposed, the approximate kernel function is 

conditional on the random quantities ω𝓁, b𝓁 𝓁 = 1
d . This can be made explicit by the notation 

kω, b ≡ k(u, v) | ω𝓁, b𝓁 𝓁 = 1
d . Thus, (6) can be thought of as a prior specification over 

ω𝓁, b𝓁 𝓁 = 1
d . In a fully Bayesian model, we can also infer posterior summaries on these 

random kernel parameters. In this paper, we will fix the Fourier bases and avoid sampling 

the random parameters to minimize computational burden as estimating the joint posterior 

distribution of ω𝓁, b𝓁 𝓁 = 1
d  will significantly increase computational cost. In addition, we 

know that the Monte Carlo error between the actual kernel and approximate kernel is very 

small (Rahimi and Recht, 2007; Băzăvan et al., 2012; Bach, 2017). Therefore, the effect of 

posterior estimates for ω𝓁, b𝓁 𝓁 = 1
d  on predictive accuracy and inference will be minimal. 

For the rest of the paper, we consider the following approximation when we specify the 

approximate kernel: k(u, v) ≡ kω, b(u, v). We will also assume that for two runs of the model 

the difference between approximate kernels will be negligible. We provide empirical 

evidence of this assertion via a simulation study in section 4.

3 Bayesian Approximate Kernel Regression

We now state the general framework for Bayesian approximate kernel regression (BAKR) 

using random Fourier features. Extensions for binary classification and mixed effect 

modeling can be found in Supporting Information. We will also specify prior distributions 

that induce accurate and interpretable estimation of effect sizes in the original covariate 

space.

3.1 Generalized Approximate Kernel Models

The loss function in the penalized estimator in equation (1) corresponds to a negative 

conditional log-likelihood for many penalized estimators (e.g. Mallick et al., 2005). For a 

standard linear model the following holds

y ∼ p(y | μ) with μ = Xβ . (8)

Similarly, we can specify a generalized kernel model (GKM) (Zhang et al., 2011) based on 

the random kernel expansion in (6). Technically this is a conditional model as both K and Ψ
are conditional on ω𝓁, b𝓁 𝓁 = 1

d . In addition, we also only consider one realization of 

ω𝓁, b𝓁 𝓁 = 1
d , as noted in the previous section. Again we assume that, for two runs of the 

model, the difference between approximate kernel matrices will be negligible. The GKM 

framework takes on the following form

y ∼ p(y | μ) with g−1(μ) = Ψc, (9)
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where g is a link function. The above can also be written in terms of the approximate kernel 

matrix

y ∼ p(y | μ) with g−1(μ) = Kα, (10)

where α = K−1ΨTc. We will refer to the model specified in (10) as a generalized 
approximate kernel model. The generalized models provide a unifying framework for 

kernel-based regression and classification (e.g. Mallick et al., 2005; Chakraborty et al., 

2007; Chakraborty, 2009; Chakraborty et al., 2012). Depending on the application of 

interest, one may specify an appropriate likelihood and link function. For instance, in the 

regression case, the likelihood is specified as a normal distribution and the link function is 

the identity. In this paper, we will use this framework for regression and classification 

applications.

Approximate Kernel Factor Models.—Since the kernel matrix K is symmetric and 

positive (semi) definite, one can apply a variety of factor model methodologies (e.g. West, 

2003; de los Campos et al., 2010). The approximate kernel matrix K is also symmetric and 

positive (semi) definite, and thus satisfies the following spectral decomposition K = UΛUT, 

where U is an n × n orthogonal matrix of eigenvectors and Λ = Diag(λ1, …, λn) is a diagonal 

matrix of eigenvalues sorted in decreasing order. For numerical stability and reduction of 

computational complexity, eigenvectors corresponding to small eigenvalues can be 

truncated. Therefore, without loss of generality we can consider U as a n × q matrix of 

eigenvectors and Λ as a q × q diagonal matrix of the top q eigenvalues. With this factor 

model representation, we rewrite (10) as

y ∼ p(y | μ) with g−1(μ) = Uθ, (11)

where θ = ΛUTα is a q-dimensional vector of latent regression parameters or coefficients. 

The reduced orthogonal factor matrix is an orthonormal representation of the nonlinear 

relationship between samples and allows for further dimension reduction from n to q 
parameters. This representation can greatly speed up estimation of model parameters, 

especially when n is large in the Bayesian paradigm. In this work, we will choose q to 

correspond to the eigenvalues that explain a majority of the cumulative variance in K — 

noting that more variance explained typically equates to better model performance. Later, we 

explore an empirical sensitivity analysis for this choice of q via a simulation study. Other 

practical suggestions for how to choose q can be found in previous works (West, 2003; de 

los Campos et al., 2010).

3.2 Projection onto Explanatory Variables and Effect Size Analog

We now define the analog to effect sizes for nonlinear kernel models. We first briefly outline 

effect sizes for linear models. In linear models, a natural interpretation of the effect size of a 

coefficient is the magnitude of the projection of the design matrix X onto the expectation of 
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the response vector 𝔼[y]: β = Proj(X, 𝔼[y]). In practice, one does not have access to 𝔼[y]; 
hence, the projection will be specified as Proj(X,y), with the choice of loss function/noise 

model as well as priors or regularizations specifying the exact form of the projection. The 

standard projection operation is Proj(X, y) = X†y, where X† is the Moore-Penrose 

generalized inverse which, in the case of a full rank design matrix, is X† = (XTX)−1XT and 

leads to the standard least-squares regression coefficient estimates. For Bayesian procedures, 

priors over the parameters β induce a distribution on the projection procedure Proj(X, y).

Our definition for the effect size analog is based on the same idea of projecting a nonlinear 

function onto the design matrix. Specifically, consider a nonlinear function evaluated on the 

observations 𝔼[y] = f = [f(x1) ⋯ f(xn)]T. We define the effect size analog as determined by 

the coefficients that result from projecting the design matrix X onto the nonlinear response 

vector f,

β = Proj(X, f) . (12)

The main purpose of the random Fourier bases and the approximate kernel factor model is to 

specify a projection operation that is well defined, efficient, and results in robust estimates. 

The remainder of this subsection consists of defining this projection operation and its 

practical calculation of which requires three sets of coefficients: (1) the coefficients c of the 

random Fourier bases; (2) the coefficients θ from the empirical factor representation of the 

probabilistic model; and (3) the coefficients that determine the effect size analog β. Recall 

that α = K−1ΨTc and θ = ΛUTα. We use the transformations defined in equations (9)-(11) to 

specify the relationship between θ and c as the following: c = (ΛUTK−1ΨT)−1
θ. Following 

the formulation of the effect size analog in equation (12), we specify the projection of 

f = ΨTc onto the design matrix as the linear map

β = X†ΨTc, (13)

where the above follows directly from equations (9) and (12). The argument for why β is an 

effect size analog for the kernel regression model is that, on the n observations, Kα ≈ Xβ. It 

should be clear that a variety projection procedures can be specified corresponding to 

various priors and loss functions, and a systematic study elucidating which projections are 

efficient and robust is of great interest. We provide strong evidence in this paper that the 

projection procedure specified by equation (13) results in efficient and robust inference.

Throughout the rest of the paper, all of our prior specifications and modeling efforts will be 

placed on the empirical factor kernel coefficients θ. Ideally, we would like a one-to-one map 

between the q-dimensional factor regression coefficients and the p-dimensional effect size 

analogs. In Supporting Information, we formally show that the map from c to β is injective 

modulo the null space of the design matrix X. This result is unsurprising since, in the 

classical linear regression case, two different coefficient vectors will result in the same 

response vector if the difference between the vectors is in the null space of X.
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3.3 Bayesian Hierarchical Model Specification

We first restate the approximate kernel model for regression,

y = Kα + ε, ε ∼ MVN(0, τ2I) . (14)

We will implicitly specify priors over the coefficients α. In general, we would like these 

priors to adaptively shrink based on sample size. A natural way to induce sample size 

dependent shrinkage and account for covariance structure is using a g-prior. We adopt a 

standard approach in kernel based Bayesian models that uses this class of priors to shrink the 

parameters proportional to the variance of the different principal component directions on 

the original covariate design space (e.g. de los Campos et al., 2010). We now give a 

hierarchical specification for the nonlinear regression model in (14) in terms of its empirical 

factor representation, as derived in (11). Namely,

y = Uθ + ε, ε ∼ MVN(0, τ2I),
θ ∼ MVN(0, σ2Λ),

σ2, τ2 ∼ Scale−inv−χ2(ν, ϕ) .

(15)

For the residual variance parameter τ2 we specify a scaled-inverse chi-square distribution 

with degrees of freedom ν and scale ø as hyper-parameters. The regression parameters are 

assigned a multivariate normal prior. The idea of specifying prior distributions in the 

orthogonal space on θ, instead of α, is referred to as the Silverman g-prior (Zhang et al., 

2011). The parameter σ2 is a shrinkage parameter and is also assumed to come from a 

scaled-inverse chi square distribution. The joint specification for σ2 and θ has the advantage 

of being invariant under scale transformations and induces a heavier tailed prior distribution 

for θ when marginalizing over σ2. In particular, σ2 allows for varying the amount of 

shrinkage in each of the orthogonal factors of K. This mitigates the concern in principal 

component regression where the dominant factors may not be most relevant to the modeling 

problem.

Posterior Inference and Sampling.—Given the model specification in (15), we use a 

Gibbs sampler to draw from the joint posterior p(θ,σ2,τ2 | y). In many applications, the 

kernel function is indexed by a bandwidth or smoothing parameter h, with kh(u, v) (e.g. 

Zhang et al., 2011; Chakraborty et al., 2012). For example, the Gaussian kernel can be 

specified as kh(xi, xj) = exp{-h||xi — xj ||2}. This bandwidth parameter can be inferred; 

however, posterior inference over h is slow, complicated, and mixes poorly. We work with a 

fixed bandwidth, and hence a fixed approximate kernel function, allowing us to avoid this 

computational cost (Rahimi and Recht, 2007; Băzăvan et al., 2012). The Gibbs sampler we 

propose consists of the following closed form conditional densities:

(1) θ | σ2,τ2,y ~ MVN(m*,V*) with V* = τ2σ2(τ2Λ−1 + σ2Iq)−1
 and 

m* = τ−2V*UTy;
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(2) β = X†ΨT(ΛUTK−1ΨT)−1
θ;

(3) σ2 |θ, τ2, y ∼ Scale−inv – χ2(νσ*, ϕσ*) where νσ* = ν + q and 

ϕσ* = νσ
* − 1(νϕ + θTΛ−1θ);

(4) τ2 |θ, σ2, y ∼ Scale−inv – χ2(ντ*, ϕτ*) where ντ* = ν + n and ϕτ* = ντ
* − 1(νϕ + eTe), 

with e = y − Uθ.

Note that the second step is deterministic and maps back to the effect size analogs. Iterating 

the above procedure T times results in the following set of posterior draws: 

θ(t), σ2(t), τ2(t), β(t)
t = 1
T

.

In many applications, it is of key interest to select a sparse set of variables based on the 

posterior samples of the model effect sizes. Since BAKR utilizes an induced prior on β that 

is non-sparse, we cannot directly use standard quantities such as the posterior inclusion 

probability (PIP) or the posterior probability of association (PPA) (Stephens and Balding, 

2009) to select variables with non-zero effects. Instead, we advertise the use of hard 

thresholding and define a quantity termed the “posterior probability of association analog” 

(PPAA) to perform variable selection. The PPAA is effectively an analog to the PPA and the 

PIP. More specifically, it uses hard thresholding which is both computationally and 

statistically efficient in high dimensional settings, and correctly controls false discovery rates 

for reasonably sized datasets (see Supporting Information for details). Briefly, for a given 

threshold zj*, the PPAA may be represented as

γ j =
1 if |β j | ≥ z j *
0 if Otherwise

for j = 1, …, p (16)

where γ j effectively represents an indicator that predictor variable j is associated with the 

response. In statistical genetics applications, we can define candidate causal variables as 

those covariates that satisfy γ : Pr[γ = 1|y] > r . In practice, r may be chosen subjectively 

(e.g. Hoti and Sillanpaa, 2006), or taken to be r = 0.5 in order to obtain an equivalence of a 

Bayesian “median probability model”. Another option is to define r through k-fold 

permutation to find an effective predictor-wide threshold. For any set of significant 

variables, further analyses may be carried out involving the relative costs of false positives 

and false negatives to make an explicitly reasoned decision about which predictors to pursue 

(Stephens and Balding, 2009). In Supporting Information, we show how PPAAs can offer 

theoretical guarantees of a sparse solution under certain regularity conditions. We also 

provide empirical evidence that validates our approach.

Prediction.—Prediction using BAKR is very similar to prediction in other Bayesian 

parametric models. When an n* × p dimensional out of sample test set X* is observed, a 

quantity of interest is the posterior predictive distribution of the vector y*. Given the 

posterior draws of the model’s parameters, samples are drawn from the posterior predictive 
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distribution as y *(t) = X * β(t)
t = 1
T

. With sampled parameters at each iterate, we can 

generate posterior predictive quantities and Monte Carlo approximations of marginal 

predictive means across a range of new sample values.

Note that there are a few differences between the posterior predictive intervals computed in 

standard Bayesian nonparametric models (e.g. Gaussian process regression), and the 

intervals computed by BAKR. In the case of standard Bayesian nonparametric models, the 

predictive distribution is a normal distribution that depends on a kernel matrix that is 

evaluated at all n + n* observations in a combined design matrix (i.e. X U X*). Thus, 

whenever new samples are observed, the model is respecified and the posterior must to be 

recomputed (e.g. Mallick et al., 2005). However, in BAKR, the implied posterior distribution 

on β depends only on the kernel matrix evaluated at the training data. This serves as an 

advantage since, when new samples are observed, we can obtain the posterior predictive 

distribution using the estimates of the effect size analogs.

3.4 Capturing Interaction Effects

A main motivation for BAKR is variable selection for nonlinear functions. In genetics 

applications, understanding how nonlinear interactions between genes influence the genetic 

architecture of traits and variation in phenotypes is of great interest (Mackay, 2014). These 

nonlinear or non-additive interactions are commonly referred to as “epistasis”. One approach 

to modeling epistatic effects is to explicitly include interactions between all combinations of 

covariates in the model, and then obtain posterior samples (or point estimates) of the 

interactions. However, a priori, it is almost impossible to know how many higher order 

interaction terms are needed to fully capture the variation in an observed response. A more 

serious practical issue is that combinatorial growth in the number of interactions results in a 

parametric linear model that is computationally infeasible to run. Moreover, variance in the 

estimates of the regression parameters explodes as the model space grows.

It has been shown that the Taylor series expansion of the Gaussian kernel function 

enumerates all higher order interaction terms between covariates (Jiang and Reif, 2015), thus 

alleviating potential combinatorial and computational concerns. The approximate Gaussian 

kernel shares this same property. Note that we can write the Gaussian kernel as a product of 

three terms

k(u, v) = exp − h ∥ u − v ∥2 = exp − h ∥ u ∥2 exp − h ∥ v ∥2 exp − h u, v .

The Taylor series expansion of the third term makes it clear why the Gaussian kernel can be 

thought of as a collection of mth higher order interaction terms between variables

exp − h u, v = ∑
m = 0

∞ hm

m! (uTv)m where (uTv)m = ∑
j ∈ [p]m

∏
i = 1

m
u ji

∏
i = 1

m
v ji

.

Here, [p]m is the set of m coordinate subsets of the p coordinates (Cotter et al., 2011).
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4 Results

We illustrate the utility of BAKR on both simulated and real data. The motivation for both 

sets of examples is to understand the performance of BAKR on two important problems in 

statistical genetics: genomic selection and association mapping. First, we use simulations to 

assess the Monte Carlo error between the actual kernel matrix and the approximate kernel 

matrix. Specifically, we investigate how much of the performance variation between runs of 

BAKR is due to posterior estimation via the Gibbs sampler, versus how much is due to the 

sampling of the approximate kernel function. Next, we assess the modeling performance of 

BAKR by using two simulation scenarios corresponding to two different types of genetic 

architectures. Here, the goal is to show that BAKR performs association mapping as well as 

the most commonly used Bayesian variable selection methods, and predicts phenotypes as 

accurately as the best nonparametric models. Finally, we will assess BAKR’s prediction and 

association mapping abilities in two real datasets. The first is a stock mouse dataset from the 

Wellcome Trust Centre for Human Genetics, and the second is a large human dataset from 

the Wellcome Trust Case Control Consortium (WTCCC).

4.1 Simulations: Approximation Error Assessment

In this subsection, we use simulations to assess the Monte Carlo error between the actual 

kernel matrix and the approximate kernel matrix. Specifically, we use a simulated matrix X 
with p = 2000 covariates to create continuous outcomes using the following generating 

polynomial model: y = X3b + ε where ε ~ MVN(0,I) and X3 = X ο X ο X is the elementwise 

third power of X. We assume that the first 100 covariates are relevant to the response with 

b1:100 ~ MVN(0,I), while the remainder are assumed to have zero effect. Here, we consider 

sample sizes n = {500, 750,l000}, where we analyzed 100 different datasets in each case. 

Within each individual dataset, we run BAKR using an approximate Gaussian kernel matrix 

100 different times in order to get a clear illustration of the variation in performance between 

runs of the model. We also implement BAKR using an exact Gaussian kernel 100 different 

times as a direct comparison. The idea here is that we want to investigate how much of the 

variation between runs of BAKR is due to posterior estimation via the Gibbs sampler, versus 

how much is due to the sampling of the approximate kernel function. In order to do this, 

within each iterative run, we compute a predicted value ŷ for both models and then 

calculate their respective R2. We will treat the variance of the computed R2 across runs as a 

quantity to measure error. In Table S1, we decompose the variance of R2 into the proportion 

due to MCMC and the proportion due to the approximate kernel (see Supporting 

Information). For each sample size considered, we see that the average variance between 

runs of BAKR is negligible (i.e. 7.02 × 10−6, 2.26 × 10−6, and 1.04 × 10−6 for sample sizes n 

= 500, 750, and 1000, respectively). We also see that the proportion of this variance due to 

sampling the approximate kernel function is also small.

4.2 Simulations: Model Assessment

To assess the power of BAKR, we consider simulation designs similar to those proposed by 

previous genetic analysis studies (e.g. Wan et al., 2010). First, we assume that genetic effects 

explain 60% of the total variance in the response — this is analogous to assuming that the 

broad-sense heritability of a trait is known (i.e. H2 = 0.6) (Zhou et al., 2013). Next, we use a 
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simulated genotype matrix X with n = 500 samples and p = 2000 single-nucleotide 

polymorphisms (SNPs) to create continuous phenotypes that mirror genetic architectures 

affected by a combination of linear (additive) and interaction (epistatic) effects. Specifically, 

we randomly choose 50 causal SNPs that we classify into two distinct groups: (i) a set of 25 

additive SNPs, and (ii) a set of 25 interaction SNPs.

The additive effect sizes of the group 1 causal SNPs come from a standard normal 

distribution or b ~ MVN(0,I). Next, we create a separate matrix W which holds all pairwise 

interactions between the group 2 causal SNPs. The corresponding interaction effect sizes are 

also drawn as a ~ MVN(0,I). We scale both the additive and interaction genetic effects so 

that collectively they explain a fixed proportion of broad-sense heritability. Namely, the 

additive effects make up ρ%, while the pairwise interactions make up the remaining (1 — ρ)

%. Once we obtain the final effect sizes for all causal SNPs, we draw normally distributed 

random errors as ε ~ MVN(0,I) to achieve the target H2. Finally, phenotypes are then created 

by summing over all effects using the simulation model: y = Xb + Wa + ε.

We consider two simulation scenarios that depend on the parameter ρ, which measures the 

proportion of H2 that is contributed by the effects of the first and second groups of causal 

SNPs. Specifically, the phenotypic variance explained (PVE) by the additive genetic effects 

is said to be V(Xb) = ρH2, while the PVE of the pairwise interaction genetic effects is given 

as V(Wa) = (1 — ρ)H2. Here, we choose the set ρ = {0.2, 0.8} corresponding to scenarios I 

and II, respectively. In the particular case where ρ = 0.2, the epistatic effects are assumed to 

dominate the broad-sense heritability of the simulated phenotypes. The alternative case in 

which ρ = 0.8 is a scenario where the PVE of the simulated responses are dominated by 

additive effects. We analyze 100 different simulated datasets for each value of ρ.

Variable Selection.—Here, we are interested in examining the power of BAKR to 

effectively identify the additive and interacting causal SNPs under different genetic 

architectures. We compare our proposed method to four other standard Bayesian variable 

selection models, which we implement using the R package BGLR (Perez and de los 

Campos, 2014). More specifically, these methods includ: (a) Bayesian Ridge Regression 

(Hoerl and Kennard, 2000) with a fixed prior variance for each variable; (b) Bayesian Lasso 

(Park and Casella, 2008); (c) Bayesian linear mixed model (LMM) with the random effects 

specified as a multivariate normal distribution with mean vector 0 and covariance matrix K = 

XXT/p, where K here is referred to as a linear or additive kernel matrix (Jiang and Reif, 

2015); (d) a common spike and slab prior model, also commonly known as the Bayes Cπ 
model or Bayesian variable selection model (Habier et al., 2011), which is specified as a 

mixture of a point mass at zero and a diffuse normal centered around zero.

In order to illustrate the robustness of BAKR, we apply our method while approximating 

Gaussian kernels with bandwidth parameter values h = {5, 2,1,0.5, 0.01}, where each value 

of h represents a varying degree of kernel density smoothness. The goal is to show that the 

power of BAKR is robust under reasonable choices for h. In each case, we assume that 

BAKR utilizes its empirical kernel factor formulation while including all eigenvectors 

explaining 95% of the cumulative variance in the top q eigenvalues, and set the model hyper-
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parameters to ν = 5 and ϕ = 2/5. In Supporting Information, we conduct an empirical 

analysis where we assess the sensitivity of BAKR to the choice of q (see Figure S1).

For each Bayesian model, we run a Gibbs sampler for 50,000 MCMC iterations with a burn-

in of 25,000 posterior draws. Longer MCMC chains had little effect with respect to 

inference for any of these models. Figure 1 compares the power of all methods and their 

ability to detect the group 1 and 2 causal variants in both simulation scenarios. Specifically, 

the plots depict the true and false positive rates as the portion of causal variables discovered 

after prioritizing them in order according to their effect size magnitude.

As expected, the power of the linear models to detect causal SNPs is dependent on two 

factors: (i) the contribution of the corresponding additive or interaction effects to the broad-

sense heritability, and (ii) the underlying statistical assumptions of the methods. For 

example, the ability of the these methods to detect the group 1 causal additive SNPs is fairly 

consistent in both scenarios — although they exhibit greater power when additive effects 

dominate the broad-sense heritability (e.g. ρ = 0.8 in scenario II). The linear models also 

exhibit relatively high power to detect the group 2 causal interaction SNPs when the broad-

sense heritability is dominated by epistatic effects and the corresponding sizes of these 

effects are relatively large (e.g. ρ = 0.2 in scenario I). However, this power decreases when 

the contribution of the group 2 causal interaction SNPs is assumed to be small.

Overall, BAKR’s ability to detect causal SNPs and flexibly handle different genetic 

architectures is dependent on the assumed smoothness of the kernel function that it 

approximates. Note that our proposed method exhibits the best mapping power, in both 

simulation scenarios, for smoothed and “oversmoothed” inducing kernel bandwidths h = 5, 

2, 1, and 0.5. This power decays when BAKR approximates an “undersmoothed” kernel 

function containing too many spurious data artifacts (e.g. h = 0.01). Note that this same issue 

can be seen in the performance of other RKHS based models (Jones et al., 1996). From an 

implementation perspective, there is an additional advantage in using BAKR as it utilizes a 

low-approximation formulation and works in q-dimensions with q < p. Hence, it is 

potentially less computationally expensive than it counterparts. The other sampling-based 

methods we consider are forced to conduct inference in at least the original p-dimensional 

covariate space. The trade-off between computational cost and modeling performance can be 

seen as a function of sample size and number of covariates in Supporting Information (see 

Table S2).

Out-of-Sample Prediction.—BAKR can also be used for out-of-sample prediction. 

Compared with standard RKHS regression models, our proposed approach provides effect 

size estimates of the original covariates to facilitate prediction. Using the same two 

previously described simulation scenarios, we evaluate the predictive accuracy of BAKR by 

again comparing it with Bayes Lasso, Bayes Ridge, and Bayes LMM. Additionally, we also 

consider the predictive performance of a commonly used supervised RKHS learning 

algorithm: a support vector machine (SVM) with a Gaussian radial basis function (Wahba, 

1997). We implement this model using the R package kernlab under the “rbfdot” model 

setting (Karatzoglou et al., 2004). The SVM estimates its parameters deterministically and 

does not require MCMC.
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For this simulation study, we used mean square prediction error (MSPE) to compare out-of-

sample predictive accuracy. Overall numerical results are presented in Table 1, and then 

further illustrated as boxplots in Figure 2 to show how methods perform while taking into 

account variability. Again, in Supporting Information, we conduct an empirical analysis 

where we assess the sensitivity of BAKR to the choice of q (see Figure S2 and Table S3).

Overall, BAKR outperforms each of the models, including the SVM, in both simulation 

scenarios. This shows that the use of the approximate kernel matrix does not hinder BAKR’s 

predictive accuracy in any way, even when approximating an undersmoothed kernel function 

(e.g. h = 0.01). While we cannot say with complete certainty why BAKR outperforms the 

SVM which uses an exact computation of the Gaussian kernel matrix, it has been shown that 

randomization can serve a dual role in improving both computational and statistical 

performance by implicitly regularizing the estimate of the kernel matrix (e.g. Darnell et al., 

2015; Rudi et al., 2015). It is also worth noting that, unlike our method, the SVM is similar 

to other supervised kernel techniques and cannot readily be used to infer the relevance of 

individual variables. Again, we want to stress that the advantage of BAKR is that it classifies 

as well as the best predictive methods, but also can be used to infer the relevance of 

variables.

4.3 Genomic Selection in Stock Mice

We further assess BAKR’s predictive ability by analyzing 129 quantitative traits in a 

heterogenous stock mouse dataset (Valdar et al., 2006) from the Wellcome Trust Centre for 

Human Genetics (http://mus.well.ox.ac.uk/mouse/HS/). The dataset contains n ≈ 2, 000 

individuals and p ≈ 10, 000 SNPs — with exact numbers vary slightly depending on the 

phenotype. The 129 quantitative traits are classified into 6 broad categories including: 

behavior, diabetes, asthma, immunology, haematology, and biochemistry (see Table S4 in 

Supporting Information). We consider this particular dataset not only because it contains a 

wide variety of quantitative traits, but also because the data contains related samples. 

Relatedness has been shown to manifest different orders of interaction effects (Hemani et al., 

2013), and thus this dataset presents a realistic mix between our simulation scenarios. More 

specifically, each phenotypic measure represents a different disease characteristic with 

different levels of broad-sense heritability. Here, we compare the predictive performance of 

Bayes Ridge, Bayes Lasso, Bayes LMM, SVM, and BAKR approximating a Gaussian 

kernel with bandwidth parameter h =1.

For comparison in predictive ability, we follow previous works (Zhou et al., 2013; Speed and 

Balding, 2014) by dividing the observations into roughly equal sized training and out- of-

sample test sets. We apply all five models using the genotypes only, and disregarding any 

other covariates. We then obtain posterior means, or point estimates, for the model effect 

sizes in the training data, and assess prediction performance using these estimates in the out-

of-sample test set by MSPE. We perform fifty of these training and test set splits for each 

phenotype to obtain a robust measure of predictive performance for each method. Note that 

each of the 129 quantitative traits were fit and analyzed separately.

Figure 3 summarizes the prediction accuracy, measured by MSPE, for each of the five 

competing methods across the 129 quantitative mice phenotypes. We find that the parametric 
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models consistently exhibit the worst predictive performance. More specifically, Bayes 

Lasso, Bayes Ridge, and Bayes LMM had average MSPEs of 1.172, 1.170, and 1.136, 

respectively. Consistent with our simulation study, SVM and BAKR clearly perform the best 

with average MSPEs of 0.911 and 0.880, respectively. In fact, SVM and BAKR were the 

optimal methods for all phenotypes. Also note that overall, BAKR proved to be the best 

model. It was the optimal method for 93% of the phenotypes (see Table 2).

In order to better explain why BAKR (and to a lesser extent, SVM) outperformed the 

parametric models in each of the 129 phenotypes, we use a variance component analysis to 

evaluate the overall contribution of nonlinearities to the phenotypic variance explained, or 

PVE (see Supporting Information for details). The basic idea behind the decomposition of 

the PVE is through the use of a linear mixed model with multiple variance components to 

partition the phenotypic variance into four different categories of genetic effects: (i) an 

additive effects component, (ii) a pairwise interaction component, (iii) a third order 

interaction component, and (iv) a common environmental component which represents the 

effects caused by mice sharing the same cage. Disregarding any random noise, we quantify 

the contribution of the four genetic effects by examining the proportion of PVE (pPVE) 

explained by the corresponding variance component.

Figure S3 displays the PVE decomposition (see Supporting Information). In this mouse 

dataset, the common environmental component makes up a huge proportion of the PVE for 

phenotypes where cage assignment and social interaction across mice matter. In other words, 

the relatedness between the samples often greatly influences the variation in each trait. For 

example, many of the phenotypes under the “diabetes” and “immunology” categories 

include weight and protein measurements — all of which depend heavily on the distribution 

of food and water, as well as the number of mice in each cage. Another significant finding is 

that additive effects are very rarely the greatest contributor in explaining variation. In 

particular, the pairwise and third order interaction components also contribute a large 

proportion to phenotypic variance. For instance, the third order interaction component 

explains a larger proportion of phenotypic variance than either the linear component or the 

pairwise component for 24 out of 129 quantitative mouse traits.

This variance component analysis highlights the importance of accounting for population 

structure and modeling interaction effects greater than second order effects. The prediction 

results presented here are unsurprising, given that the mice are related and nonlinear effects 

(i.e. effects beyond simple additivity) dominate the heritability for many of the 129 

quantitative mouse phenotypes. We again stress that the advantage of BAKR lies in the 

explicit modeling of nonlinear relationships between covariates and the desired response, as 

well as in accounting for relatedness between samples.

4.4 Association Mapping in WTCCC Data

We apply BAKR to an association mapping analysis of all seven diseases from the 

Wellcome Trust Case Control Consortium (WTCCC) 1 study (The Wellcome Trust Case 

Control Consortium, 2007). The WTCCC dataset has been previously used for evaluating 

the mapping power of other statistical methods (e.g. Speed and Balding, 2014). These data 

include about 14,000 cases from seven common diseases and about 3,000 shared controls, 
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typed at a total of about 450,000 single-nucleotide polymorphisms (SNPs). The seven 

common diseases are bipolar disorder (BD), coronary artery disease (CAD), Crohn’s disease 

(CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 

diabetes (T2D).

For each disease, we provide a summary table which lists all significant SNPs that were 

detected by BAKR (see Table S5 in Supporting Information). We used the PPAA metric to 

assess significance of association for a particular SNP or locus (see Supporting Information 

for details). A twenty-fold permutation procedure was used to set a genome-wide 

significance threshold by permuting the labels of the cases twenty times and choosing a trait-

specific PPAA threshold that corresponds to a 5% family-wise error rate (FWER) (see page 

2 of Table S5). In Table 3, we compare BAKR’s findings to the loci and variants listed as 

“strongly associated” in the original WTCCC study. Table S6 displays all BAKR-discovered 

loci for each trait. Here, we cross-reference BAKR’s results with discoveries made by other 

statistical methods that were implemented on the same dataset. Figure S4 displays 

manhattan plots of our genome-wide scan for all seven diseases (again see Supporting 

Information).

Overall, BAKR identified 29 significantly associated genomic regions — 14 of which were 

highlighted in the original WTCCC study as having strong associations, and 3 others that 

were highlighted in other studies which analyzed the same dataset. BAKR missed 6 genomic 

regions that were identified as strongly associated in the original WTCCC study, but was 

able to discover 12 new loci in five of the seven diseases: CD, HT, RA, T1D, and T2D. 

Many of these findings also have potentially functional relevance in the context of the given 

diseases. For example, in CD, variants spanning from 70.20Mb-70.29Mb on chromosome 10 

were detected by BAKR as being associated with Crohn’s disease. The leading significant 

SNP in this region with the highest PPAA is rs2579176. This variant, in particular, has been 

reported as being upstream of DLG5, a gene which has been found to be associated with 

perianal Crohn’s disease (de Ridder et al., 2007). This gene was also validated as being a 

member of a pairwise genetic interaction that is very influential in the cause of the trait and 

hard to detect (Zhang, 2012). Complete details of all potentially novel loci discovered by 

BAKR can be found in the Supporting Information.

5 Discussion

In the present study, we used an approximate Gaussian kernel function in the BAKR model. 

The Gaussian kernel includes all all higher-order interaction components, where the 

contribution of the terms decays polynomially with the order of interaction. BAKR can be 

applied to any shift-invariant kernel. Hence, in the context of genetics, it is of particular 

interest to match the shift-invariant kernel function with the magnitude of the higher-order 

interaction(s) that best capitulate the underlying genetic architecture for a given trait or 

phenotype. For spatial applications, kernel functions such as the Matern covariance function 

would be of interest. BAKR can also be extended to model multiple responses, and an 

interesting future direction would be to take advantage of correlations in the multiple 

response variables to increase power and identify pleiotropic interaction effects.
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The greatest limitation of BAKR is that while it provides an analog of effect size for 

nonlinear functions, it cannot be used to directly identify the component that drives 

individual variable associations. In particular, after identifying an associated variable, it is 

often unclear which component (i.e. linear vs. nonlinear) drives the association. Thus, 

despite being able to identify predictors that are associated to a response in a nonlinear 

fashion, BAKR is unable to directly identify the detailed interaction effects. There are two 

possible approaches available within the BAKR framework to address this concern. One 

approach is to use the posterior samples of the effect size analogs to infer covariance and 

partial correlation structure. This partial correlation structure can then be used to posit 

putative interactions. Another approach is to use BAKR as a screen to select candidate 

variables and then test for pairwise interactions between the variables that are most 

marginally significant. There are also computational constraints and while BAKR can easily 

deal with tens of thousands of samples and millions of variables, scaling BAKR to hundreds 

of thousands or millions of samples will require algorithmic innovations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Power analysis comparing Bayes Ridge (BRR), Bayes Lasso (BL), Bayes LMM (BLMM), 

Bayes Cπ, and BAKR approximating Gaussian kernels with bandwidth parameter values h. 

BAKR models are illustrated as a solid lines, while the competing models are shown as 

dotted lines. Group 1 SNPs are those that exhibit additive effects, while the SNPs in group 2 

are those involved in interactions. Results are based on 100 different simulated datasets in 

each scenario.
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Figure 2: 
Comparison of the mean square prediction error (MSPEs) for Bayes Ridge (BRR), Bayes 

Lasso (BL), Bayes LMM (BLMM), Support Vector Machine (SVM), and BAKR 

approximating Gaussian kernels with bandwidth parameter values h = {5, 2,1, 0.5, 0.01}. In 

Scenario I, pairwise interactions make up 80% of the broad-sense heritability (i.e. ρ = 0.2). 

In Scenario II, additive effects dominate 80% of the broad-sense heritability (i.e. ρ = 0.8). 

These results are based on 100 different simulated datasets in both scenarios.
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Figure 3: 
Comparison of mean square prediction error (MSPE) for Bayes Ridge (BRR), Bayes Lasso 

(BL), Bayes LMM (BLMM), Support Vector Machine (SVM), and BAKR approximating a 

Gaussian kernel with bandwidth parameter value h =1. These results are based on fifty fold 

cross-validation, with the most accurate method for each phenotype is marked by a solid 

circle.
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Table 2:

Comparison of overall mean square prediction errors (MSPEs) for each of the five considered models across of 

all 129 quantitative stock mice phenotypes. The proportion of phenotypes for which a method exhibits the 

lowest MSPE is denoted as Optimal%. Values in bold represent the approach with the best (and most robust) 

performance. Standard errors for each model are given the parentheses.

BRR BL BLMM SVM BAKR (h = 1)

MSPE (SD) 1.172 (0.18) 1.170 (0.19) 1.136 (0.18) 0.911 (0.13) 0.880 (0.10)

Optimal% 0 0 0 0.07 0.93
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Table 3:

A summary table comparing the SNPs and loci discovered by BAKR with the findings reported as showing 

evidence of association in the original WTCCC study. Significance of SNPs was determined using the PPAA 

metric and a 5% FWER threshold.

Disease # Sig. SNPs # Sig. Regions # Add. Regions # Missed Regions

BD 0 0 0 1

CAD 15 1 0 0

CD 80 8 1 2

HT 20 1 0 0

RA 177 4 1 0

T1D 440 12 7 1

T2D 23 3 2 2
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