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Abstract

Tuft cells were first discovered in epithelial barriers decades ago, but their function remained 

unclear until recently. In the last two years, a series of studies has provided important advances 

that link tuft cells to infectious diseases and the host immune responses. Broadly, a model has 

emerged in which tuft cells use chemosensing to monitor their surroundings and translate 

environmental signals into effector functions that regulate immune responses in the underlying 

tissue. Here we review the current understanding of tuft cell immune function in the intestines, 

airways, and thymus. In particular, we discuss the role of tuft cells in type 2 immunity, norovirus 

infection, and thymocyte development. Despite recent advances, many fundamental questions 

about the function of tuft cells in immunity remain to be answered.

INTRODUCTION

Epithelial cells (and indeed many other non-hematopoietic cells) are perhaps 

underappreciated by immunologists who focus on cells of the hematopoietic system, yet 

they make crucial contributions to immunity. Most notably, epithelia form the body’s barrier 

between self and non-self, and are therefore often the site of first encounter between the host 

and a foreign microbe or irritant. Although not as diverse as the hematopoietic compartment, 

epithelial barriers are comprised of multiple cell lineages with both overlapping and distinct 

functions. Goblet cells, for example, are professional mucus-producing cells, while Paneth 

cells secrete high levels of antimicrobial peptides, and enteroendocrine cells secrete 

hormones and communicate with the nervous system. The role of tuft cells, on the other 

hand, remained enigmatic for more than 60 years until a series of recent discoveries 

definitively linked tuft cells to immunity. In this review, we will focus on the immune 

function of tuft cells after a brief discussion of their development and markers.

CHARACTERISTICS & DISTRIBUTION

Tuft cells were first discovered in rat trachea (1) and mouse glandular stomach (2) in 1956, 

and in human trachea in 1959 (3). The advent of electron microscopy had allowed for 

visualization of cellular morphology in unprecedented detail, and several investigators 
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quickly noted the presence of a rare but distinctive lineage of epithelial cells, which they 

termed tuft, brush, caveolated, multivesicular, or fibrillovesicular cells(1, 4). As these cells 

appear to be very closely related across tissues, we will refer to them collectively as tuft 

cells. Morphologically, tuft cells are characterized by 1) a “tuft” of long, blunt apical 

microvilli; 2) prominent actin, villin, and fimbrin rootlets that extend basally from the tips of 

the microvilli; and 3) abundant apical vesicles that form a tubulovesicular system. They are 

radiation-resistant epithelial cells (5) with a turnover rate equivalent to their surrounding 

epithelial cells, which is 3–5 days in the intestine (6–8) and 168–267 days in the trachea (9–

11). With the exception of nascent tuft cells in intestinal crypts (12), tuft cells do not express 

the proliferation marker Ki67, indicating post-mitotic status in both the steady state (7, 12, 

13) and during helminth infection (14).

In rodents, tuft cells have been identified in the digestive system [salivary glands (15), 

stomach (2), gall bladder and bile duct (16, 17), pancreatic duct (18), small intestine (19), 

cecum (20), and colon (21)]; the respiratory system [nasal cavity (22), auditory tube (23), 

and trachea (1)]; the urethra (24); and even in the thymus (25), a primary lymphoid organ. In 

rats, cells with tuft-like morphology have also been observed in alveolar epithelium (26), but 

in mice they have not been seen below the bronchial branch point. In humans, cell with tuft-

like morphology were reported in the trachea (3), small intestine (27, 28), stomach (29, 30), 

gallbladder (31), and in the alveoli of a 4-month-old patient with pneumonitis (32). As a 

rule, tuft cells are found in hollow organs or tubes lined by a non-squamous epithelium, but 

the thymus is a notable exception and there are non-squamous mucosal barriers where tuft 

cells have as yet not been described, such as the female reproductive tract.

LINEAGE SPECIFICATION

Although tuft cells are found in many tissues, their development and lineage specification 

has only been studied in detail in the small intestine, likely because the stem cells of the 

intestinal epithelium are among the best characterized and most prolific in the body (33). In 

homeostasis, these cells reside at the base of intestinal crypts, express the marker LGR52, 

and produce enough progeny to replace the entire intestinal epithelium in just 3–5 days (6). 

Lineage tracing has demonstrated that intestinal tuft cells are indeed derived from LGR5+ 

stem cells (7), but unlike all other epithelial cells, differentiated intestinal tuft cells continue 

to express Lgr5 (34, 35).

Immediately above the LGR5+ stem cell compartment is the transit amplifying zone, where 

uncommitted epithelial progenitors replicate and adopt their terminal fate. The first lineage 

branch point is regulated by a classical lateral inhibition model in which cells receiving a 

Notch signal upregulate Hairy and enhancer of split-1 (Hes1) and become enterocytes (36), 

while those providing a Notch ligand (i.e. Delta-like-ligand 1 (DLL1)-expressing 

progenitors) retain potential to become all non-enterocyte lineages (goblet, enteroendocrine, 

Paneth, and tuft). Loss of Notch signaling induces the transcription factor Atoh13, which 

goblet, enteroendocrine, and Paneth cells all constitutively express. Accordingly, these cells 

2Lgr5: Leucine-rich repeat-containing G-protein coupled receptor 5
3Atoh1: Atonal bHLH Transcription Factor 1
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are absent when Atoh1 is deleted from epithelial stem cells (7, 12, 37). Mature tuft cells, on 

the other hand, do not express Atoh1, and studies that deleted Atoh1 from all intestinal 

epithelial cells reported conflicting results about the requirement of Atoh1 in intestinal tuft 

cell development. While tuft cells were absent in the small intestine of Villin-CreErt2 X 

Atoh1f/f mice (7), their numbers were normal or even increased in Rosa26-CreErt2 X 

Atoh1f/f (12), Lgr5-CreErt2 x Atoh1f/f (38), and Lrig-CreErt2 X Atoh1f/f (37) mice. 

Interestingly, colonic tuft cells, which were only studied in Lrig-CreErt2 X Atoh1f/f mice, did 

require Atoh1, suggesting distinct mechanisms of lineage specification in the small intestine 

and colon. Although some uncertainty remains, on balance these studies suggest that a 

binary HES1/ATOH1 model does not fully explain the differentiation of intestinal 

epithelium.

Intestinal tuft cell development is not affected in the absence of the transcription factors 

neurogenin 3 (NEUROG3), SAM pointed domain containing ETS transcription factor 

(SPDEF), and Sex-determining region Y-box 9 (SOX9), which are the lineage transcription 

factors that define enteroendocrine cells, goblet cells and Paneth cells (7, 12). Instead, 

POU2F34 and GFI1B5 have been suggested as tuft cell-specific master regulators. All tuft 

cells express both markers constitutively (12, 39, 40), and tuft cells are entirely absent in 

Pou2f3−/− mice, while all other epithelial lineages appear normal, at least in the intestine 

(39). The status of tuft cells in the absence of Gfi1b has not been reported and it is unknown 

if either POU2F3 or GFI1B is sufficient to drive tuft cell differentiation. In the airway, tuft 

cells were shown to be derived from basal cells with rapid kinetics in lineage tracing 

experiments, but the precise signals that specify the tuft cell lineage remain uncertain here as 

well(41).

The timing of tuft cell emergence during development also remains unclear. One study 

found that tuft cells appeared by mouse embryonic day 18.5(E18.5) in developing intestine 

and stomach antrum (30); in other studies, tuft cells did not appear until after birth (42, 43). 

These studies all demonstrated that both gastric and intestinal tuft cell frequency remained 

very low before reaching adult-equivalent density after weaning (30, 42, 43), with similar 

frequency between small intestine and colon in unmanipulated mice (35). In contrast, 

tracheal tuft cells are present at adult frequency by at least day 5 post-birth (11). Overall 

there is much more to be learned about tuft cell lineage specification across diverse tissues, 

particularly how it can be regulated by immune signals in homeostasis and diseases. IL-13 in 

small intestinal stem cells, for example, can induce tuft cell hyperplasia (14, 44 and 

discussed in detail below), but it is unclear if this occurs in any other tissues.

TUFT CELL HETEROGENEITY

Although morphologically very similar, the developmental and functional equivalence of tuft 

cells in different tissues and even in different regions of the same tissue remains unclear. A 

list of tuft cell markers is included in Table 1 and we recently used bulk RNA-sequencing of 

Epithelial cell adhesion molecule (EPCAM)+ IL-25+ tuft cells from five different tissues to 

4Pou2f3: POU class 2 homeobox 3
5Gfi1B: Growth factor independent 1B
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identify a core transcriptional signature that is shared by all tuft cells (45). In addition to 

Il25, this signature includes many of the markers listed in Table 1, such as Dclk16, Trpm57, 

Prostaglandin endoperoxide synthase-1 (Ptgs1), Pou2f3, Gfi1b, and Sialic acid binding Ig-
like lectin F (Siglecf). Despite these shared features, RNA sequencing as well as 

immunostaining have also revealed significant inter- and intra-tissue diversity of tuft cells. 

For example, a recent study used multiplex immunofluorescence to demonstrate that 

individual DCLK1+ tuft cells in the intestine express differential levels of markers such as 

acetylated tubulin (acTUB), SOX9, PTGS1 (COX1) and PTGS2 (COX2) (35). Tuft cell 

heterogeneity was also identified using single-cell sequencing, which led to the classification 

of Tuft-1 and Tuft-2 subsets in both the airway and intestine (46, 47). In both tissues, 

expression of eicosanoid biosynthesis genes and Ptprc (a.k.a. Cd45) is enriched in Tuft-2 

cells. Intestinal Tuft-1 cells express a neuronal signature, while the tracheal Tuft-1 subset is 

associated with a taste transduction signature. In terms of cytokines, Il25 is constitutively 

expressed in all tuft cells, while Tslp is detectable in both Tuft-1 and Tuft-2 cells of the 

trachea but only in Tuft-2 cells of the small intestine. In the trachea there is also subset-

specific skewing of transcription factors, with Tuft-1 cells enriched for Pou2f3 and Tuft-2 

cells for Gfi1b, but both genes remain detectable in all tuft cells. By bulk RNA sequencing 

(45), one key distinction between tuft cells from distinct tissues was the differential 

expression of surface receptors, suggesting that tuft cells have evolved to sense different 

ligands depending on their microenvironment. Whether the effector functions of tuft cells 

are also tissue-specific requires further investigation.

IMMUNE FUNCTION OF TUFT CELLS IN THE INTESTINE

Tuft-ILC2 Immune Circuit

The initiation of type 1 immune responses, from innate immune sensing to priming of 

adaptive cells, is relatively well understood. By contrast, much less is known about how 

helminths, protists, and allergens trigger a type 2 response. Group 2 innate lymphoid cells 

(ILC2s) are the dominant early source of IL-5, IL-9, and IL-13 in numerous models of type 

2 inflammation (48–52), and understanding how ILC2s are activated has therefore been of 

great interest. ILC2s lack an antigen receptor and there is little evidence that they sense type 

2 agonists directly. Instead, ILC2s integrate numerous host-derived activating signals, 

including cytokines (e.g., IL-33, IL-25) (48, 53, 54), lipids (e.g., leukotrienes) (55–57), and 

neuronal peptides (e.g., Vasoactive intestinal peptide (VIP), Neuromedin U (NMU)) (49, 58–

61). Current models propose that ILC2s use these signals to monitor the status of their 

surrounding tissue and become activated by disruptions in homeostasis (62).

In the intestine, the link between IL-25 and helminth-induced type 2 responses is well-

established: IL-25 (63, 64, 54) and its downstream adaptor Act1 mediate type 2 immunity to 

promote worm expulsion (65). Furthermore, IL-25 is sufficient to activate ILC2s and 

promote worm expulsion independently of adaptive Th2 function (48, 64). But the 

physiologic cellular source of IL-25 remained elusive until recently. Using Il25-RFP reporter 

mice and immunohistochemistry, recent studies identified tuft cells as the dominant source 

6Dclk1: Doublecortin-like kinase 1
7Trpm5: Transient receptor potential cation channel subfamily M member 5c
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of IL-25 in the small intestine both at homeostasis and during helminth infection (14, 39). 

Tuft cell-derived IL-25 helps to drive a feed-forward tuft-ILC2 signaling circuit in which 

ILC2s are activated to produce IL-5, −9, and −13, thereby promoting type 2 inflammation. 

IL-13 also signals in undifferentiated epithelial cells, skewing their lineage commitment 

towards tuft and goblet cells (14, 39, 44). Due to the rapid turnover of the intestinal 

epithelium, activation of the tuft-ILC2 circuit quickly results in pronounced tuft and goblet 

cell hyperplasia. The frequency of tuft cells, in particular, can increase more than 10-fold 

during helminth infection. This circuit can be activated exogenously by stimulating ILC2s 

with recombinant IL-25 or IL-33, or by giving recombinant IL-13 to drive tuft cell 

hyperplasia directly in the intestinal epithelium. Removing components of the tuft-ILC2 

circuit (e.g Pou2f3−/−, Il25−/−, and Il4Rα−/−) disrupts the intestinal type 2 response and 

leads to delayed clearance of the roundworm Nippostrongylus brasiliensis (14, 39, 66). 

Conversely, deleting the innate immune signaling inhibitor TNF alpha induced protein 3 

(Tnfaip3, encoding A20) from ILC2s leads to chronic activation of the small intestinal tuft-

ILC2 circuit driven by the constitutive expression of IL-25 in tuft cells (43)

Tuft cells are also found constitutively in the gall bladder, pancreatic ducts, cecum, and 

colon, where they express many of the same markers (e.g. DCLK1, CHAT8, TRPM5) as in 

the small intestine. An immune function has not, however, been reported for any of these 

cells. In fact, all evidence so far suggests that the tuft-ILC2 circuit does not operate in these 

tissues. For example, deleting A20 from ILC2s spontaneously activates the tuft-ILC2 circuit 

in the small intestine, but there is no evidence of type 2 inflammation in any other intestinal 

tissues (43). Further, systemic delivery of recombinant IL-4 drives tuft cell hyperplasia only 

in the small intestine (von Moltke & Locksley, unpublished). It may be that tuft cells and 

ILC2s still communicate outside the small intestine, but that IL-4/13 signaling in epithelial 

stem cells at these sites does not induce tuft cell hyperplasia. Small and transient changes in 

tuft cell frequency have been noted in the colon when germ-free mice are colonized with 

bacteria (35), but the mechanism for these fluctuations remains unknown.

In young, unmanipulated mice, ILC2s are the dominant IL-25 receptor-expressing and 

IL-13-producing tissue-resident cells, and are therefore critical for rapid (7–10 days) 

clearance of the rodent roundworm N. brasiliensis. In chronic infection settings (e.g. with 

the helminth Heligmosomoides polygyrus) or once immune memory is established, other 

sources of IL-13 are activated and can likely substitute for ILC2s in the circuit. In fact, the 

connections between tuft cells and adaptive immunity remain completely unexplored. In 

addition, several details of the innate tuft-ILC2 circuit require further examination. In 

particular, how is the circuit regulated if IL-25 expression is constitutive, and what do tuft 

cells do besides secrete IL-25? Besides cytokines, tuft cells also express enzymes for 

eicosanoid biosynthesis, such as Cox-1, Cox-2, 5-lipoxygenase (Alox5), and hematopoietic 

prostaglandin-D synthase (Hpgd) (67, 7, 68, 69, 14, 46). How eicosanoid biosynthesis is 

regulated in tuft cells and the physiologic function of tuft cell-derived eicosanoids remain 

unknown.

8CHAT: choline acetyltransferase
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Tuft Cell Chemosensing

Soon after the link between tuft cells and helminth infection was established, another 

landmark study revealed that the tuft-ILC2 circuit is also activated by intestinal colonization 

with Tritrichomonas, a genus of protists found in the commensal flora of many mouse 

vivariums (44). This study also provided the first functional evidence of a link between 

chemosensing by tuft cells and type 2 immunity.

Immune cells and intestinal epithelial cells are known to sense microbially-derived 

molecular patterns with pattern recognition receptor (PRRs) such as Toll-like receptors to 

initiate type 1 immunity, but the molecular stimuli and the cell type(s) that drive type 2 

responses are still elusive. A sensing function has long been hypothesized for tuft cells, and 

immunostaining provided the first clues that a chemosensing pathway previously 

characterized in taste transduction might also be active in tuft cells (70–72, 68). In taste 

receptor cells, signaling through canonical G protein-coupled taste receptors activates a 

specialized G alpha subunit known as alpha-gustducin (GNAT3), which in turn initiates 

intracellular calcium flux via phospholipase C beta 2 (PLCB2) (73). The rise in Ca2+ opens 

the cell surface cation channel TRPM5, leading to depolarization of taste cells. When the 

first complete transcriptome analysis of intestinal tuft cells was completed in 2008, it 

confirmed that all components of the pathway, except canonical taste receptors, are indeed 

highly and selectively expressed in tuft cells (67).

Tuft cells are ideally positioned to act as immune sentinels by monitoring the intestinal 

lumen and transmitting signals to immune cells in the underlying tissue. Howitt et al. 

provided the first direct evidence for such a function, by demonstrating that Trpm5−/− and 

Gnat3−/− mice fail to induce tuft cell hyperplasia when colonized with Tritrichomonas (44). 

Immune responses to the helminths N. brasiliensis and H. polygyrus are also impaired in 

Trpm5−/− mice(44), but tuft cell hyperplasia occurs normally in Gnat3−/− mice colonized 

with N. brasiliensis, suggesting distinct sensing mechanisms for helminths and protists (45).

The lack of canonical taste receptor expression in intestinal tuft cells suggested the 

hypothesis that other G-protein coupled receptor(s) (GPCR) may be specifically enriched on 

tuft cells to ‘sense’ protists and helminths. Indeed, the extracellular succinate receptor 1 

(SUCNR1) was recently identified to be selectively expressed in both TRPM5+ and IL-25+ 

small intestinal tuft cells (45, 67, 74). Remarkably, providing succinate in the drinking water 

of mice is sufficient to drive tuft cell hyperplasia in a Sucnr1-, Il25- and Trpm5-dependent 

manner (45, 74). Succinate treatment also induces other hallmarks of type 2 responses, such 

as goblet cell hyperplasia, eosinophilia, and IL-13 production by ILC2s (43, 45). Further, the 

activation of ILC2s by succinate is Il25-, Trpm5-, and Pou2f3-dependent (43, 45, 74). 

Succinate is therefore the first ligand identified for intestinal tuft cells and one of the only 

known innate immune ligands that is sufficient to activate type 2 inflammation.

Succinate is an intermediate of the citric acid cycle and is normally sequestered inside host 

cells. Many microbial pathogens and commensals, on the other hand, have evolved diverse 

fermentative metabolic pathways to thrive in the nutrient-rich but oxygen-poor intestinal 

lumen, and these pathways frequently result in production and secretion of succinate (75). 

Succinate is detectable in the supernatants of in vitro cultured N. brasiliensis and 
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Tritrichomonas and in the cecum of mice monocolonized with Tritrichomonas. Accordingly, 

the detection of Tritrichomonas by tuft cells is entirely SUCNR1-dependent (43, 45). By 

contrast, the immune response to N. brasiliensis is intact in Sucnr1−/− mice (45, 74), 

demonstrating that SUCNR1 signaling is absent or redundant during helminth infection and 

underscoring the differences between sensing of protists and helminths that was suggested 

by experiments using Gnat3−/− mice. There is also evidence that bacterial dysbiosis leads to 

SUCNR1-dependent tuft cell hyperplasia, although it is not clear whether this occurs 

physiologically (74). Together, these studies identify a specific metabolite that selectively 

activates the tuft-ILC2 circuit and define a paradigm in which the intestinal type 2 immune 

system monitors microbial metabolism. Tuft cells also express another potential metabolite 

sensor –the short chain fatty acid receptor Ffar3 (45, 46)— but a function for this receptor 

has remained elusive.

The seemingly intact immune response to N. brasiliensis in Gnat3−/− and Sucnr1−/− mice 

suggests that there is at least one other sensor upstream of TRPM5 that detects helminth 

infection. There are also questions remaining about the mechanisms of chemosensing by tuft 

cells in other tissues. The detection of succinate also warrants further investigation. In 

particular, the benefits of sensing Tritrichomonas-derived succinate are not clear, since these 

protists are not eliminated or even reduced in number by the type 2 immune response(45). 

Given that most protists and helminths have evolved to establish chronic colonization, their 

sensing by the immune system may therefore be linked principally to host adaptation and 

tolerance. In support of this idea, activation of the tuft-ILC2 circuit was recently shown to 

drive small intestinal lengthening (43). Since tuft and goblet cell hyperplasia lead to a 

decreased frequency of absorptive enterocytes, this intestinal lengthening may help to 

maintain the absorptive capacity of the intestine. Indeed, there is no overt loss of fitness or 

decrease in caloric uptake associated with chronic activation of the tuft-ILC2 circuit (43).

Tuft Cells and Norovirus

Human norovirus is the leading cause of gastroenteritis outbreaks worldwide and the acute 

phase of disease can be followed by weeks or months of viral shedding in the stool (76), 

suggesting a site of viral persistence in the host. Murine norovirus (MNoV) is even more 

persistent, with some strains establishing chronic infection, but the cellular tropism in vivo 
remained unclear until recently. In 2017, immunostaining of non-structural norovirus 

proteins demonstrated that a rare population of EPCAM+ cells in the small intestine and 

colon serve as the exclusive viral reservoir in mice infected with MNoVCR6 (77). These cells 

were soon identified to be tuft cells, which express high levels of the MNoV receptor 

CD300LF (5). Accordingly, mice were resistant to infection with MNoVCR6 when tuft cells 

were absent or decreased, while viral titers were enhanced in any context where tuft cell 

numbers were increased, such as helminth infection or treatment with recombinant IL-25. In 

contrast, the non-persistent strain MNoVCW3 was unable to infect intestinal epithelial cells 

(5, 77). Whether human norovirus and/or other enteric viruses also infect tuft cells remains 

to be determined. It also remains unclear why norovirus would target tuft cells for infections. 

Perhaps the unique cell biology of tuft cells is important for viral replication, or tuft cells 

represent an immune-privileged site.
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IMMUNE FUNCTION BEYOND THE INTESTINE

Airway Tuft Cells

Although often referred to as brush cells, a population of airway epithelial cells has been 

identified in the murine and human trachea that share the unique morphology and 

transcriptional signature of intestinal tuft cells(10, 41, 45, 78). Another very closely related 

cellular lineage termed solitary chemosensory cells (SCC) has also been identified in the 

nasal epithelium of mice and humans(22, 72, 79, 80), but its precise relationship to tuft cells 

has not yet been established. Unlike intestinal tuft cells, both tuft cells and SCCs of the 

airways express type II taste receptors (T2Rs, also known as bitter taste receptors) in humans 

(79) and mice (22, 81), and bitter taste receptor polymorphisms correlate with gram-negative 

bacterial infection in humans (82). T2Rs have been linked to regulation of both tissue 

physiology and immune responses. For example, denatonium—a potent bitter taste receptor 

ligand—can act on tuft cells to regulate respiration rate (83), nasal neurogenic inflammation 

(84), and allergic asthma induced by ovalbumin (OVA) and house dust mite (HDM) in mice 

(85). The bitter receptors on SCCs are reported to detect acyl-homoserine lactones (AHLs), 

which are produced by gram-negative bacteria (e.g. Pseudomonas aeruginosa) (86) to 

indicate population density (80, 87). Moreover, bitter taste receptors activate calcium flux in 

nasal SCCs to stimulate anti-microbial peptide secretion from surrounding epithelial cells 

and promote killing of P. aeruginosa, methicillin-resistant S. aureus (MRSA), K. pneumonia, 

and S. epidermis in human sinonasal tissue (80, 88). SCCs also express canonical sweet taste 

receptors (T1R2/3), but their activation suppresses calcium flux and bitter taste receptor-

induced antimicrobial responses(88). T1R2/3 mediate sensing of glucose and bacterial D-

amino acids in SCCs, leading to reduced antimicrobial peptide secretion (β-defensin) (88, 

89). Clinically, there are elevated glucose and amino acid concentrations in chronic 

rhinosinositis patients and colonized fibrosis patients, respectively (88, 90). Together, these 

important studies suggest that SCCs, and perhaps airway tuft cells, utilize chemosensory 

machinery to ‘taste’ the upper respiratory tract environment and regulate innate immunity.

Whether airway tuft cells and SCCs are also integrated into tuft-ILC2 circuits and how this 

might alter type 2 immune responses remains unknown. Manipulation of IL-25 by intranasal 

administration, systemic blockade, or genetic deficiency all regulates lung type 2 airway 

inflammation (91, 64, 92, 93), but the expression of IL-17RB (a subunit of the IL-25 

receptor) is much lower on lung ILC2s than in the intestine, even with IL-25 injection (94). 

Furthermore, the restriction of tuft cells to the upper airways in mice is confounding when 

considering inflammatory responses in the distal lung (10). In humans, SCCs are the major 

source of IL-25 in patients with chronic rhinosinusitis (95, 96), and ILC2 numbers were 

elevated in nasal polyps from chronic rhinosinusitis patients (96). These results support the 

existence of a tuft-ILC2 circuit in the human nasal cavity. There were also human case 

reports suggesting that brush (tuft) cell numbers are altered in immotile cilia syndrome (97) 

and interstitial pneumonitis (32). Together, future studies may further investigate the 

expression, detection mechanism, and corresponding immune function of taste receptors and 

other novel G-protein receptors on airway tuft cells, especially in the upper versus lower 

respiratory tract.
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Thymic Tuft Cells

In all of the examples discussed so far, tuft cells were found in the non-squamous epithelium 

of hollow tissues. Therefore, it was surprising when cells with tuft-like morphology and 

expression of Gnat3, phospholipase C beta 2 (Plcb2), and Chat were identified in the thymic 

medulla, although unlike tuft cells in upper airways, no contact of these cholinergic 

chemosensory cells with nerve fibers was observed (25). More recently, RNA sequencing 

and careful phenotyping confirmed that these cells are indeed bona fide tuft cells and that 

they comprise 3~10% of medullary thymic epithelial (mTEC) cells in murine thymus and 

~3.5% of mTEC in human thymus (98, 99). Based on single cell sequencing, tuft cells 

comprise mTEC group IV, which is molecularly distinct from other mTECs but closely 

related to intestinal tuft cells, with Dclk1, Sox9, Trpm5, Il25 and Pou2f3 all being expressed 

(99, 100). There are, however, also important differences between thymic tuft cells and those 

of other tissues; most notably, IL-25+ thymic tuft cells express MHC-II, suggesting an 

antigen presenting function (99). Thymic tuft cells also express a diversity of canonical taste 

receptors, which have been described in airway tuft cells but appear to be largely absent in 

intestinal tuft cells (45). As in other tissues, thymic tuft cell development requires Pou2f3 
(99, 100).

Functionally, thymic tuft cells support TCRβint CD1d+ IL-4+ invariant NKT2 thymocytes 

and EOMES+ CD8 thymocytes in an Il25-, Pou2f3-, and Trpm5-dependent manner, although 

why chemosensing would be required for this function is completely unclear (99). The 

frequency of thymic Lin− TCR− CD127+ GATA3+ ILC2s is increased in the absence of tuft 

cells, but the functional significance of this remains unknown (100). Neither Pou2f3 nor 

Trpm5 deficiency impacted CD4−CD8−, CD4+CD8+, CD4 single positive T cells (CD4SP), 

or CD8SP numbers in the thymus (98, 99). In sum, thymic tuft cells are a distinct population 

of mTECs that regulate the frequency of certain thymocyte subsets. Their ‘sensing’ 

mechanism by taste receptors, their ontogeny, their relationship to antigen presentation, and 

their function in immune tolerance remain enigmatic.

TUFT CELLS AND NEURONS?

In addition to the outstanding questions already highlighted throughout this review, there is 

significant interest in the possibility that tuft cells might communicate with neurons, a 

finding which could provide mechanistic insight for numerous recent studies that have 

broadly linked the nervous and immune systems and specifically implicated neuronal 

signaling in type 2 inflammation (58, 101). In this context, it is notable that tuft cells in all 

tissues express CHAT (83, 68, 84, 45), the enzyme required for synthesis of the 

neurotransmitter acetylcholine. To date, a link between tuft cells and neurons has been best 

characterized in the airway. Although tuft cells and neurons do not form synaptic 

connections, they have been imaged in close proximity in the airway (102, 83, 84), and some 

of those neurons express acetylcholine receptors (84, 103). Accordingly, the airway 

inflammation induced by stimulating SCCs requires Trpm5 and acetylcholine (84). For the 

most part, however, tuft-neuron interactions have not been linked directly to immunity. For 

example, changes in respiratory rate induced by bitter substances are absent in Trpm5−/− 

mice and in mice where the airway epithelium has been abraded, suggesting that 
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chemosensing by tuft cells regulates smooth muscle activity (80, 83), presumably via 

neuronal signaling. Similarly, bitter substances induce acetylcholine release from urethral 

tuft cells and cause contraction of the bladder detrusor muscle when delivered in vivo (104). 

Whether these tuft-neuron interactions in the airway and urethra represent mechanisms of 

avoidance and/or flushing that provide immune protection has not been tested.

The link between tuft cells and neurons in the intestine remains much less clear given 

different findings regarding tuft-neuron proximity (68, 71, 105). Intriguingly, intestinal tuft 

cells are positive for both CHAT and the neuropeptide β-endorphin (7, 68), and co-culture of 

neurons and intestinal organoids supports the differentiation of tuft cells (38). Interactions 

between tuft cells and the enteric nervous system, if verified, might serve to expand the 

sensing capacity of the nervous system while also broadly distributing signals initiated in 

tuft cells.

CONCLUSIONS

After decades of pioneering work provided the first hints of a chemosensing pathway in tuft 

cells and suggested a role for tuft cells in response to bacterial colonization in the airways, 

the last two years brought a series of breakthroughs that definitively implicated tuft cells in 

immune sensing and regulation. It is now clear that tuft cells are a critical component of the 

type 2 immune response, provide a reservoir for chronic norovirus infection, and contribute 

to thymic function. While it has been exciting to find an immune role for the previously 

enigmatic tuft cell lineage, we speculate that this does not represent their most evolutionarily 

ancient function. Undoubtedly, tuft cells have been critically shaped by co-evolution with 

helminths, protists, norovirus, and perhaps other microbes, but just as goblet cells produce 

mucus at homeostasis to support epithelial function and can be hyper-activated to promote 

helminth expulsion, we propose that tuft cells first evolved epithelial effector functions that 

were later useful for immunity and/or pathogenic exploitation. In this context, it is intriguing 

that tuft cells have been implicated in airway contraction, epithelial regeneration, DNA 

damage repair (18, 69, 106), and tumorigenesis (38, 107–109). If correct, our hypothesis 

suggests that understanding the unique cell biology of tuft cells and their role in the absence 

of infection will also advance our understanding of tuft cells in immunity.
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Figure 1: Chemosensing by intestinal tuft cells regulates the tuft-ILC2 circuit
(A) Intestinal Tuft-ILC2 circuit. Tuft cells constitutively express Il25, which acts on group 

2 innate lymphoid cells (ILC2s) in the lamina propria to induce production of canonical type 

2 cytokines IL-5, −9, and −13, which collectively drive all aspects of innate type 2 

inflammation, including eosinophilia and intestinal remodeling. IL-13 in particular signals in 

undifferentiated epithelial cells to bias their lineage commitment towards tuft and goblet 

cells, leading to hyperplasia of both cell types and driving the feed-forward tuft-ILC2 

circuit. The circuit is amplified but yet unknown mechanisms when helminths or protists are 

sensed by tuft cells. Deletion of the signaling repressor A20 from ILC2s also amplifies the 

circuit and leads to chronic type 2 inflammation in the small intestine.

(B) Chemosensing. Tuft cells sense succinate secreted from Tritrichomonas protists and 

perhaps also bacteria and helminths. Signaling through the G protein coupled succinate 

receptor SUCNR1 induces an intracellular Ca2+ flux that opens the cation channel TRPM5, 

leading to influx of Na+ and depolarization of the cells. How cellular depolarization 

regulates tuft cell effector functions remains unknown, but may include release of 

neurotransmitter (e.g. acetylcholine (ACh)) that acts on nearby neurons. Tuft cells also 
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express the murine nororvirus receptor CD300LF and are the host reservoir for chronic 

infection by the CR6 strain of norovirus. It is not clear if and how tuft cells sense this 

infection.
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Table 1:

Tuft cell biomarkers. Markers were grouped by their functional role in tuft cells (ex: structural, 

chemosensing..etc)

Structural Markers

Marker Description Comment

DCLK1 Doublecortin like kinase 1 is a
microtubule-associated kinase first
described in neurons that regulates
polarization (103).

The most widely used tuft cell marker. Tuft
cells in all tissues express DCLK1 and >95%
of DCLK1+ epithelial cells in the murine
intestine are tuft cells

VIL1 Villin1 is an actin-binding protein that is
abundant in microvilli and therefore
concentrated at apical tip of tuft cells
(104) (105, 106).

Apical concentration of VIL1 is unique to tuft
cells, but all intestinal epithelial cells express
Vil1. Since Vil1-Cre is widely used to target
the intestinal epithelium, it is worth noting
that tuft cells in respiratory tract also express
Vil1 (25).

acTUB Acetylated-alpha-tubulin is required to
form microtubule bundles, which are
abundant in tuft cells (6, 29).

Highly specific marker for tuft cells but not
widely used.

CK18 Cytokeratin 18 colocalizes with villin in
tuft cells (25, 107).

Some evidence of non-tuft CK18lo epithelial
cells (11, 107).

UEA-1 Ulex europaeus agglutinin type 1 is an
abundant lectin on the apical surface of
intestinal tuft cells (11, 108).

Although relatively selective for tuft cells in
the proximal small intestine, in the distal
intestine UEA-1 is widespread on all
epithelial cells.

Chemosensing Markers

Marker Description Comment

TRPM5 Transient receptor potential cation
channel subfamily M member 5 is a
calcium-gated cation channel thought
to regulate depolarization upon
chemosensory stimuli (109)

Based on TRPM5-GFP reporter, all tuft cells
in intestine (64, 69) and nasal cavity (76, 81)
express TRPM5.

GNAT3 Alpha-gustducin is a specialized G
protein that couples to canonical taste
receptors and perhaps other 7 pass
transmembrane receptors as well.

GNAT3 has been detected in non-tuft
epithelial cells in the airway (110, 111), and
genetic experiments have demonstrated that
unlike TRPM5, not all tuft cell sensing is
GNAT3-dependent(42)

PLCB2 Phospholipase C beta 2 is activated
downstream of GNAT3.

PLCB2 has been detected in non-tuft
epithelial cells in the airway (110, 111).

CHAT Choline acetyltransferase catalyzes the
formation of the neurotransmitter
acetylcholine

Based on Chat-GFP reporter and antibody
staining, tuft cells in airways(77), gastro-
intestinal tract(64, 65, 98), urethral tract(23,
97), and thymus(24) express Chat, but some
Chat negative tuft cells have also been
observed(65).

Transcription Factors

Marker Description Comment

POU2F3 POU class 2 homeobox 3 was first
identified as being required for
differentiation of taste receptor cells
(112), but Pou2f3−/− mice are also
completely tuft cell-deficient

POU2F3 constitutively expressed in all tuft
cells, including early tuft cells in intestinal
crypts (38, 39).

GFI1B Growth factor independent 1B is a
transcriptional repressor.

GFI1B is constitutively expressed in all tuft
cells, including early tuft cells in intestinal
crypts (11, 13, 38). It may also expressed in
M cells(113). Its function in tuft cells is
unknown.
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Structural Markers

Marker Description Comment

Other

Marker Description Comment

IL-25 Interleukin 25 is associated with type 2
inflammation and is required for
intestinal clearance of helminths.

Tuft cells in all tissues analyzed
constitutively express IL-25 and all DCLK1+
cells in the intestinal epithelium are also IL-
25+ (13)

PTGS1 Prostaglandin-endoperoxide synthase
1 (a.k.a. COX-1) is required for
synthesis of cyclooxygenases

All tuft cells appear to express PTGS1 and
tuft cells are the only epithelial cells in the
intestine that express this enzyme (11, 13,
38, 64)

SIGLECF Sialic acid binding Ig-like lectin F
encodes immunoreceptor tyrosine-
based inhibnitory motifs and is
normally associated with hematopoietic
lineages (e.g. eosinophils).

Cell surface marker that can be used in flow
cytometry(63). Its function in tuft cells is
unknown

p-EGFR EGFR phosphorylated on tyrosine
1068 (34).

Only tested in intestine
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