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Abstract

Hantaviruses can cause hantavirus pulmonary syndrome (HPS) in the Americas and hem-

orrhagic fever with renal syndrome (HFRS) in Eurasia. In recent decades, repeated out-

breaks of hantavirus disease have led to public concern and have created a global public

health burden. Hantavirus spillover from natural hosts into human populations could be con-

sidered an ecological process, in which environmental forces, behavioral determinants of

exposure, and dynamics at the human–animal interface affect human susceptibility and the

epidemiology of the disease. In this review, we summarize the progress made in under-

standing hantavirus epidemiology and rodent reservoir population biology. We mainly focus

on three species of rodent hosts with longitudinal studies of sufficient scale: the striped field

mouse (Apodemus agrarius, the main reservoir host for Hantaan virus [HTNV], which

causes HFRS) in Asia, the deer mouse (Peromyscus maniculatus, the main reservoir host

for Sin Nombre virus [SNV], which causes HPS) in North America, and the bank vole

(Myodes glareolus, the main reservoir host for Puumala virus [PUUV], which causes HFRS)

in Europe. Moreover, we discuss the influence of ecological factors on human hantavirus

disease outbreaks and provide an overview of research perspectives.

Introduction

Hantaviruses are enveloped RNA viruses belonging to the family Hantaviridae, genus Ortho-
hantavirus [1]. They can cause serious diseases in humans, with some outbreaks resulting in

case fatality rates of 12% (for hemorrhagic fever with renal syndrome [HFRS] in Europe and

Asia) and up to 40% (for hantavirus pulmonary syndrome [HPS] in the Americas), depending

on the hantavirus type and the resulting clinical syndrome [2,3]. Hantavirus disease came to

global attention when two major outbreaks were reported during the last century. The first, an

HFRS outbreak, occurred during the Korean War (1950 to 1953), when more than 3,000

United Nations troops fell ill [4]. The second was an outbreak of HPS that occurred in the
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Four Corners region of the southwestern United States in 1993 [5]. Hantaviruses remain a

global threat to public health; they have been estimated to affect approximately 200,000

humans annually worldwide in recent years [6]. Moreover, the number of countries reporting

human cases of hantavirus infection is still on the rise [7].

Human infections with hantaviruses result from contact with infected rodents or exposure

to virus-contaminated aerosols; Andes virus (ANDV) is the only hantavirus in which person-

to-person transmission has been documented so far [8–11]. Outbreaks of hantavirus disease

are therefore considered to be associated with the primary rodent host and pathogen dynamics

[12,13]. However, the mechanism of zoonotic pathogen dynamics is complex, and the relation-

ships between or among environmental change, host–pathogen dynamics, and human spill-

over is far from clear [14,15]. For example, variations in incidence rates are not simply, as

expected, a result of changes in rodent demography or virus prevalence [16–18]. Furthermore,

although numerous research efforts have been undertaken, no WHO-licensed vaccine against

hantavirus infection is available [19] (except Hantavax, which is only licensed for human use

in the Republic of Korea). Current efforts to curb hantavirus transmission focus on avoiding

contact between humans and host rodents [20,21]. Due to the complexity of these systems,

hantaviruses deserve the attention of research scientists in the contexts of both public health

and wildlife conservation.

Here, we present a review of the ecology of hantavirus diseases in an attempt to improve

our understanding of the mechanisms underlying disease outbreaks. We mainly focus on

three species of rodent hosts, on which there have been a wealth of longitudinal studies of pop-

ulation and prevalence dynamics: the striped field mouse (Apodemus agrarius, the main reser-

voir host for Hantaan virus [HTNV] [22–25]) in Asia, the deer mouse (Peromyscus
maniculatus, the main reservoir host for Sin Nombre virus [SNV] [12,18,26–28]) in North

America, and the bank vole (Myodes glareolus, the main reservoir host for Puumala virus

[PUUV] [29–32]) in Europe. A deeper understanding of the natural ecological dynamics of

host–pathogen interactions would be of great value in developing future strategies for disease

prevention and control.

Methods

Search strategy and selection criteria

We searched the MEDLINE (via PubMed) online database and Google Scholar for articles

with the key words “hantavirus,” “ecology,” or “modelling” in the title, with no date limit,

published before 31 July 2017, with restriction to mainly English papers. Key words used in

Medical Subject Headings were “hantavirus,” “hemorrhagic fever with renal syndrome,” “han-

tavirus pulmonary syndrome,” and “rodent reservoir.” Inclusion criteria were predefined as

research providing information on viral infections (including human incidence, prevalence of

hantavirus infections in rodent hosts, and/or host–pathogen interactions), environmental

change and rodent reservoir population dynamics, and information on environmental factors

that may trigger hantavirus disease outbreaks. Study data extracted included study year, loca-

tion, hantavirus type, main rodent reservoir, study design, and environmental factors.

Results

Geographic distribution

Hantaviruses that cause illness in humans have been identified across the globe [3,7,33] (Fig

1). The major hantavirus disease burden in the Old World is HFRS, and in the New World it is

HPS. HTNV in Asia, PUUV and Dobrava virus in Europe, and Seoul virus (SEOV) worldwide
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are the causative agents of HFRS. SNV, ANDV, and related viruses have been identified as

causative agents of HPS in the Americas [3,12]. Recent studies indicate that the medical prob-

lem caused by hantavirus infections may be underestimated in Africa, India, Southeast Asia

(where Thailand virus [THAIV] has been isolated), and even Europe [25,31,34–37] and North

America [38,39]. It is estimated that hantavirus diseases are heavily underdiagnosed in Europe;

only 20% of PUUV infections have been diagnosed, and no human infections data exist in sev-

eral countries [31].

Environment variation and hantavirus reservoir population dynamics

A bottom-up trophic cascade hypothesis has been proposed to explain the chain reactions

resulting from climatic conditions, primary productivity, and host demography [27,40,41]. A

bottom-up trophic cascade suggests that a change in nutrient supply could lead to similar

changes in equilibrium abundances at all trophic levels [42,43]. In rodent host-hantavirus sys-

tems, climatic conditions are one of the many factors that can affect rodent population dynam-

ics and, consequently, the prevalence of virus infection in rodent reservoirs and risk of virus

exposure in humans [44] (see example shown in Fig 2). A review of the available longitudinal

studies of rodent communities supports the hypothesis that hantavirus reservoir populations

in both the Old World and New World are significantly influenced by climate, either directly

(via winter survival) or indirectly (through food limitation).

In Central China, an environmentally induced cascading effect on the population dynamics

of the striped field mouse (A. agrarius, the main reservoir host for HTNV) was found by com-

bining 30 years of field surveillance and satellite images. The normalized difference vegetation

index (NDVI) value for farmland, and precipitation two months previously, were important in

determining striped field mouse survival and recruitment rates, respectively [45]. An extreme

Fig 1. Map of Old World and New World hantavirus genotypes reported to be pathogenic for humans.

Hantaviruses that have been shown to cause HFRS are shown in red, and those that cause HPS are shown in green.

PUUV, which causes a milder form of HFRS (NE), is found in Europe. The described African hantavirus, Sangassou

virus, was found in Guinea in 2016. In recent studies, THAIV is considered to act as an additional causative agent of

HFRS. It should be noted that SEOV is harbored by Rattus norvegicus (brown rat) worldwide, but only those locations

where reports of human infections with SEOV are shown. The map was created specifically for this manuscript and

was generated by ArcGIS 9.2 (ESRI, Redlands, CA, USA) based on World Countries (http://www.arcgis.com/home/

item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d). HFRS, hemorrhagic fever with renal syndrome; HPS, hantavirus

pulmonary syndrome; NE, nephropathia epidemica; PUUV, Puumala virus; SEOV, Seoul virus; THAIV, Thailand

virus.

https://doi.org/10.1371/journal.pntd.0006901.g001
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drought-induced food shortage is thought to increase mortality in striped field mouse popula-

tions, as they are a species that relies on farm crops [45]. Furthermore, winter temperature was

found to exert complex effects on overwinter survival, thereby affecting the population growth

rate in the following year [46]. In South China, the population density of the main reservoir

host for SEOV, the brown rat (Rattus norvegicus), is correlated with temperature, precipitation,

and the NDVI value for farmland [47]. In northeastern China, in Huludao City, an endemic

area for HFRS due to SEOV, climate is considered to affect HFRS epidemics mainly through

its effect on the population density of the brown rat (the most abundant rodent species present,

accounting for more than 80% of the total rodent population) [48]. In Europe, food-related

factors (seed production, climate affecting vegetation biomass) have been linked to rodent

populations in deciduous forests [30,49]. Outbreaks of nephropathia epidemica (NE; a mild

form of HFRS caused by PUUV infection) are hypothesized to have an ecological causal con-

nection with the staple food source for the main carrier of PUUV, the bank vole, in mast years

[32,50,51]. Population densities of bank voles were found to be associated with summer tem-

perature and autumn temperature, both of which favor seed development [52,53]. A higher

average winter temperature is believed to reduce winter survival of bank voles in Scandinavia

because of a shorter period of protective snow cover against predators. On the contrary, in-

creasing winter temperatures are found to provide a survival benefit to increasing populations

Fig 2. An overview of the ecological dynamics of HFRS caused by HTNV infection. Arrows represent connections

affected by environment: the green line represents rainfall, and the orange line represents temperature. The solid line

indicates available data, used in models linking the ENSO (Nino3.4 index) with local climate (rainfall and

temperature), rodent population density (capture rate), and human HTNV infections. The rectangles delimit the

seasonal, interannual, and zoonotic cycles of HTNV. Source: Adapted from [46]. ENSO, El Niño Southern Oscillation;

HFRS, hemmorrhagic fever with renal syndrome; HTNV, Hantaan virus.

https://doi.org/10.1371/journal.pntd.0006901.g002
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of striped field mouse in the spring in Central China; subsequently, a large population of

rodents might be accompanied by intraspecific competition due to food or space limitation,

resulting in a negative-feedback effect of population density [46]. In North America, the HPS

outbreak in 1993 in the Four Corners region of the southwestern US was considered to be

driven by increased precipitation induced by an El Niño-Southern Oscillation (ENSO) event.

The HPS outbreaks in 1997 in the same region were also preceded by an ENSO event, which

brought increased precipitation, favoring deer mouse host populations [26,27]. NDVI is also

used to identify locations that can be monitored for the abundance of deer mouse and pres-

ence of SNV by examining the seasonal dynamics of vegetative patterns [54]. In central Mon-

tana, US, the survival and recruitment rates of the deer mouse were found to be associated

with precipitation and temperature, implying a complex relationship between climate and

population dynamics [55].

Rodent population dynamics and risk to humans

Long-term observations on the prevalence of hantavirus infection in rodent hosts are critical

to understanding the dynamics of hantavirus diseases in humans. Similarly, analysis of host–

pathogen interactions is important to successfully implement disease control strategies [56].

Hantaviruses are known to be directly transmitted from infected to susceptible hosts (horizon-

tal transmission). Therefore, changes in rodent population densities are expected to increase

or decrease the transmission and prevalence of hantavirus infection in rodent reservoir popu-

lations, resulting in greater or lower levels of spillover to humans [28]. The dynamics of rodent

population density and hantavirus infection prevalence are linked by contact rates; the virus

may become extinct below a certain host density, corresponding to the minimum number of

hosts required for virus maintenance in a population [57]. A critical population density thresh-

old of striped field mice has been observed in Central China, below which HTNV cannot

invade and persist in the population [45]. A similar population density threshold has been

observed in the SNV reservoir, the deer mouse, in North America [58,59]. Rodent community

composition has also been found to affect the risk of human hantavirus infection among differ-

ent landscapes [60].

Studies have demonstrated positive correlations between relative population density of

bank voles and prevalence of PUUV infection among rodent populations [61]. Bank vole den-

sity indices were also positively correlated with risk of HFRS in humans in northern Sweden,

Finland, and Norway [62–64]. However, the relationship between rodent demography and dis-

ease dynamics in China and North America is more complicated. In Central China, fluctua-

tion in HFRS incidence is highly correlated with striped field mouse population density and

the prevalence of HFRS infection in Shaanxi Province, an endemic area for HFRS due to

HTNV [13]. In northeastern China, HFRS cases are associated with a virus-carrying index, an

indicator to describe the combined effects of rodent population density and prevalence of

virus infection, with a one-month lag, in the SEOV endemic area of HFRS [48]. However, in

South China, the number of HFRS cases is not associated with rodent population density in

Chenzhou and Changsha (the main species captured are R. norvegicus, R. flavipectus, and Mus
musculus), which are mixed HTNV and SEOV endemic areas [65,66]. In North America, dif-

ferent relationships have been found between deer mouse population density and SNV infec-

tion prevalence in the deer mouse population—positive correlations [17,27,67], no linear

correlation [59,68,69], and even negative correlations [18,70,71]. (It should also be noted that

the different correlational relationship may be due to temporal issues; e.g., some studies take

account of time lags when analyzing the data while others do not.) Because hantaviruses are

horizontally transmitted, these inconsistent results may be due to two conflicting effects of
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population dynamics on prevalence [28]. During breeding seasons, rapid population growth of

juveniles not yet infected may increase the proportion of uninfected rodents and potentially

decrease hantavirus prevalence [72,73], whereas the resulting higher population size may even-

tually increase contact between individuals and prevalence. Taken together, these studies point

to several issues that could be of importance to understanding the relationship between reservoir

population dynamics and pathogen transmission [57]. Future demographic studies should aim

to establish causal mechanisms linking behavior, demography, and virus prevalence dynamics.

Environmental factors that trigger hantavirus disease outbreaks

Environmental factors are major triggers that affect reservoir ecology and virus ecology and

thus are likely to affect hantavirus transmission from rodent reservoir to humans (or risk of

virus exposure in humans). However, although outbreaks appear to be a result of these factors,

it is difficult to predict the exact outcome, chiefly due to the complex and multifactorial mecha-

nisms that drive hantavirus disease outbreaks. Studies have highlighted the importance of the

interplay between extrinsic and intrinsic factors in determining hantavirus disease dynamics

[45,46,74], e.g., when the size of outbreaks is small due to low population susceptibility levels as

the result of vaccination or the rodent reservoir population density is below the threshold level

required to maintain the virus due to environmental limitations. In this section, studies address-

ing environmental variability and human hantavirus infections were included (Table 1), and we

mainly review three factors that play an important role in altering hantavirus disease dynamics

and have been documented sufficiently—precipitation, temperature, and landscape alteration.

Table 1. Synthesis of the environmental factors, during the same year or before, that may trigger hantavirus disease outbreak.

Trigger factor Detail Disease Area Rodent host

Temperature Summer (Y-2) and autumn

temperature (Y-1)+
NE Belgium [50,52], Central Europe M. glareolus

Winter and spring temperature (Y

0)+
NE Southwestern Germany [53], Central Europe M. glareolus

Winter temperature− HPS Southern Argentina [91], South America Oligoryzomys longicaudatus
Annual mean temperature+ HPS Atlantic forest, Brazil [128], South America Family Cricetidae

Maximum temperature (Y 0)+ HFRS Heilongjiang Province, North China [129], East Asia Unknown

Mean temperature (Y 0)+ HFRS Inner Mongolia, North China [89]; South Korea [130]; East

Asia

Unknown

Mean temperature (Y 0)+ HFRS Huludao City, North China [48]; Changsha City, South

China [20,66]; East Asia

R. norvegicus

Average temperature (Y 0)− HFRS Shandong Province, North China [90], East Asia Unknown

Summer temperature (Y 0)− HFRS Weihe Plain, Central China [46], East Asia Apodemus agrarius
Rainfall Summer rainfall (Y-3)+ NE Belgium [50], Central Europe M. glareolus

Rainfall (Y-1)+ HPS the Four Corners region of New Mexico and Arizona, US

[27], North America

P. maniculatus

Winter rainfall+ HPS Southern Brazil [131], South America Unknown

Annual rainfall+ HPS Southern Argentina [91], South America O. longicaudatus
Monthly rainfall (Y 0)+ HPS Chile [132], South America Unknown

Summer and autumn rainfall (Y

0)+; annual rainfall (Y-1)+
HFRS Xi’an City, Central China [46,100], East Asia A. agrarius

Monthly rainfall (Y 0)+ HFRS Huludao City, North China [48], East Asia R. norvegicus
Monthly rainfall (Y 0)+ HFRS Changsha City, South China [78]; Inner Mongolia, North

China [89]; South Korea [130], East Asia

Unknown

Monthly rainfall (Y 0)− HFRS Jiaonan County, North China [133]; Shandong Province,

North China [90]; Anhui Province, South China [85], East

Asia

Unknown

(Continued)
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It is becoming increasingly more apparent that climatic variations have profound impacts

on infectious disease dynamics [75,76], especially for climate-sensitive infectious diseases; e.g.,

human hantavirus diseases are considered climate-sensitive infectious diseases [77].

Table 1. (Continued)

Trigger factor Detail Disease Area Rodent host

Humidity Absolute humidity (Y 0)+ HFRS Changsha City, South China [78] Unknown

Relatvie humidity (Y 0)− HFRS Jiaonan County, North China [133]; Shandong Province,

North China [90], East Asia

Unknown

Relative humidity (Y 0)+ HFRS Inner Mongolia, North China [89]; Liaoning Province,

North China [134]; South Korea [130], East Asia

Unknown

Relative humidity (Y 0)+ HFRS Huludao City, North China [48], East Asia R. norvegicus
Temperature vegetationdryness

index+
HFRS Changsha City, Zhuzhou City, Xiangtan city, Hengyang

City, South China [127], East Asia

R. norvegicus, M. musculus, A.

agrarius, R. flavipectus
Proportion of thin particles

(<10 μm) (Y 0)+
NE Northern Belgium [81], Central Europe M. glareolus

Air pressure Mean air pressure (Y 0)− HFRS Huludao City, North China [48], East Asia R. norvegicus
Air pollution PM10 (Y 0)+ HFRS South Korea [130], East Asia Unknown

Flood Water-level difference of Huai

River (Y 0)−
HFRS Anhui Province, South China [86], East Asia Unknown

ENSO Southern oscillation index (Y 0)− HFRS Heilongjiang Province, North China [129]; Anhui Province,

South China [84,135], East Asia

Unknown

Multivariate ENSO index (Y 0)+ HFRS Changsha City, South China [66,78]; Inner Mongolia, North

China [89], East Asia

Unknown

Multivariate ENSO index (Y-1)+ HPS Four Corners region of New Mexico and Arizona, US [136],

North America

P. maniculatus

Land cover change Forestation+ HFRS Liaoning Province, North China [134], East Asia Unknown

Developed land−; Rice paddy+;

Orchard+
HFRS Beijing, North China [119,137], East Asia Unknown

Area of deciduous forest+ NE Northern Belgium [81,108], Central Europe M. glareolus
Cover of beech forest, cover of seed

plant+
NE Southwestern Germany [53], Central Europe; Temperate

Europe [138]

M. glareolus

Proportion of land cultivated for

sugarcane+
HPS São Paulo [128], South America Family Cricetidae

Proportion of forest cover+ HPS Atlantic forest, Brazil [128], South America Family Cricetidae

Food availability for

rodent host

Seed production (Y-1)+ NE Western and central European countries [52,53,139–141] M. glareolus
NDVI for trapping site (Y-1) NE Northern Belgium [108], Central Europe M. glareolus
High photosynthetic mass+ HPS Southern Brazil [131], South America Unknown

NDVI (Y 0)+ NE the Franche-Comté region, France [82], Central Europe Unknown

NDVI for farmland (Y 0)+ HFRS Inner Mongolia [142], North China, East Asia Unknown

NDVI for rice paddy (Y 0)+ HFRS Changsha City, South China [66], East Asia M. musculus, R. flavipectus,
R. norvegicus

net photosynthesis (Y 0)+ HFRS Weihe Plain, North China [41], East Asia A. agrarius
Socioeconomic factors Gross domestic product and the

urbanization rate (Y 0)−
HFRS Chenzhou City, South China [20], East Asia R. norvegicus, R. flavipectus

Human development index− HPS São Paulo [128], South America Family Cricetidae

Selenium deficiency Selenium content in feed− HFRS China [143], East Asia Unknown

+Positive correlation with hantavirus infections
−Negative correlation with hantavirus infections

Abbreviations: ENSO, El Niño Southern Oscillation; HFRS, hemorrhagic fever with renal syndrome; HPS, hantavrius pulmonary syndrome; NDVI, normalized

difference vegetation index; NE, nephropathia epidemica; (Y 0), during the same year; Y-n, n years before

https://doi.org/10.1371/journal.pntd.0006901.t001
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Understanding the influence of climatic drivers on hantavirus disease ecology can help in fore-

casting and prevention, which is even more urgently needed in this era of climate change.

Recently, Tian and colleagues [46] investigated the role extrinsic factors (climatic conditions)

play in determining hantavirus disease dynamics in Central China. A unique data set from

Central China covering half a century showed the existence of a climate-driven transmission

mechanism for HTNV from the striped field mouse to humans [21]. HFRS outbreaks were

highly correlated with specific environmental conditions—low summer temperature and

abundant summer precipitation. Conversely, very few disease outbreaks occurred under con-

ditions of high summer temperatures and drought (Fig 3A) [46]. In South China, HFRS inci-

dence was also found to be positively correlated with annual precipitation and absolute

humidity during 1991 to 2010 [78]. HPS outbreaks in the Four Corners region of the US are

considered to be driven by ENSO-associated precipitation events as well [26,79].

However, precipitation can also negatively affect or have no effect on the incidence of han-

tavirus disease, depending on magnitude and region [80]. In Europe, no clear relationship of

rainfall with human hantavirus infections was shown [77], except that one study illustrated

rainfall in the summer three years before hantavirus disease incidence increased [50]. Other

studies also demonstrated no significant association between rainfall and hantavirus disease

[52,81,82]. In Cascade and Polson, Montana, US, increases in primary productivity, deer

mouse population densities, and human disease risk are less sensitive to changes in the amount

of rainfall [83]. In low-lying regions of China, such as Anhui Province, HFRS incidence and

rodent population density (dominated by the striped field mouse) are all negatively correlated

with the total precipitation [84–86]. Heavy precipitation there may kill rodents by flooding

their burrows and nests, thereby reducing host population density and the risk of human expo-

sure to pathogens. Floods could also cause movement of rodent populations (even commu-

nity-level changes [87]) to new habitats and eventually disease emergence in new sites.

Temperature could influence disease dynamics through its impact on the rodent reservoir

population dynamics and pathogen survival in the external environment, subsequently influ-

encing human–animal contact patterns. However, compared to precipitation, the effects of

temperature have been less investigated, and contradictory findings make it difficult to draw

Fig 3. Environmental factors associated with hantavirus disease outbreaks. (A) Relationship between summer

temperature, summer rainfall, and HFRS cases in Weihe Plain, North China, 1960 to 2013. Circle size is proportionate

to the number of HFRS cases [46]. (B) Contribution of the environmental variables to the explained variance of

hantavirus-antibody–positive in rodents using a multivariate principal component analysis in Hunan Province, South

China, 2007 to 2010. Dimensions 1 and 2 are the spaces where variables are expressed. The length (angle) of the arrows

represents the magnitude (direction) of the correlation coefficient between the variable and the principal components.

The contributions of the variables to the hantavirus-antibody–positive in rodents are ranked with colors ranging from

green to red, respectively (reproduced from Xiao 2016 with permission of the publisher [127]). Dim, dimension;

HFRS, hemorrhagic fever with renal syndrome; NDVI, normalized difference vegetation index.

https://doi.org/10.1371/journal.pntd.0006901.g003
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firm conclusions. For example, in Central China, higher summer temperatures were followed

by a lower incidence of HFRS in autumn (Fig 3A) [46]—this was presumably due to a reduced

frequency of contacts between rodents and between rodents and humans, coupled with an

unfavorable environment for virus survival [88]—whereas in Belgium, a higher summer tem-

perature two years before led to higher NE incidence [50,52]. A potential explanation is that

the higher temperature two years before might have stimulated bud formation that contributed

to heavy masting one year before. Likewise, opposite associations between mean temperature

and hantavirus infection incidence were found across China [20,66,89,90]. In South America,

HPS caused by ANDV was also negatively associated with winter temperature [91]. Con-

versely, in North America, a positive relationship between hantavirus disease incidence and

temperature was reported [80]. There is a need for more studies to investigate the mechanisms

behind these relationships.

Human–animal interface

Human–animal interface constitutes the boundary/barrier for cross species transmission of

disease and the environment (including ecological and anthropological factors) within which

these species exist [92,93]. In the preceding sections, we have summarized the ecological fac-

tors and processes that affect hantavirus diseases dynamics; hereafter, anthropological factors

will be reviewed, including agricultural activity, human-driven land-use change, and vaccina-

tion. In HPS endemic regions of America, agriculture-associated activities were also most

commonly reported as potential risk factors [94–97], and seropositive rodents were found

with high frequency in agricultural landscapes [98,99]. In the HTNV-type endemic area of

central China, seasonal pattern of HFRS dynamics is found to coincide with the increase in

potential contact between rodents and humans in the dry season due to seasonal agricultural

activities [45,100]. Besides, the breeding season of striped field mouse, the local rodent host, is

closely associated with agricultural activity. Moreover, it could be concluded that agricultural

activity may influence the activity and life cycles of local striped field mouse and in turn shape

disease dynamics.

Human-driven landscape change could influence rodent host behavior and the composi-

tion of reservoir communities in such a way as to impact pathogen transmission [101,102].

The major consequences of landscape alteration are habitat loss and changes in species compo-

sition due to the loss of specialist species and the increase in generalist species [74], and these

consequences either increase or decrease the risk of disease transmission at the human–animal

interface. For example, HFRS epidemics in China peaked in autumn and winter in the area

where the dominant hantavirus is the Apodemus-borne HTNV, whereas the area with Rattus-
borne SEOV saw epidemic peaks in spring [103]. These two distinct rodent species have differ-

ent breeding sites with special landscape attributes [104], which changes the epidemiological

characteristics of hantavirus disease. Human disturbance also affects survival probabilities and

reproduction of rodent hosts [105]. Another consequence of landscape alteration is loss of bio-

diversity, which is considered to affect the transfer of pathogens among species and influence

the risk of infection to humans. Biodiversity loss may result in increased hantavirus infection

prevalence in host populations [106], affecting the dynamics of SNV in the US, Choclo hanta-

virus in Panama, and PUUV in Europe [68,107–111]. For some directly transmitted and vec-

tor-borne zoonotic diseases, it has been hypothesized that increased species diversity would

result in a lower pathogen prevalence in competent hosts and therefore lower risk of infection

to humans by a mechanism called the “dilution effect” [112], although there is still a debate

about the (positive or negative) relationship between biodiversity and zoonotic disease trans-

mission, e.g., SNV and deer mice system in America [113]. To our knowledge, few attempts
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have been made to evaluate this effect with regards to HTNV/striped field mouse system in

China. Further testing of this theory is therefore still required. Another human-driven land-

scape change is induced by urbanization (i.e., urban expansion). However, the relationship

between the diffusion of zoonotic pathogens and urbanization is complex because of the con-

trasting effects (Fig 4): cities with faster economic growth may attract more immigrants and

reach their endemic turning points later (endemic turning point defined as point at which

incidence changes from increasing to decreasing), whereas economic growth that contributes

towards improvements in the living conditions may decrease contact between rats and

humans [114].

Vaccination programs against HFRS have been in practice for more than 20 years in China,

where the incidence of HFRS has decreased with occasional small fluctuations. It has been

reported that the age distribution of HFRS infections has clearly changed in recent years, ever

since the Expanded Program of Immunization for regions with high HFRS incidence was

implemented in 2008 [115]. Simulations conducted on data from a county in Central China

have shown that vaccination will alter the dynamics of HFRS outbreaks [45]. The vaccination-

induced reduction in susceptible human population gradually led to the reduction of human

hantavirus infections and successfully averted further epidemics. The findings in China there-

fore highlight the necessity for a vaccination strategy and provide important insights for other

countries.

Discussion

The dynamics of hantavirus epidemics involve multiple phases, including environmental driv-

ers that influence infectious diseases, transmission in the animal reservoir, and spillover trans-

mission to humans. The complexity of disease dynamics has been highlighted in recent

decades by contradicting trends; the incidence of HFRS has decreased in China [22,116] and

increased in Europe [31]. Although pioneering research efforts to study both New World and

Old World strains of hantaviruses in rodents have been undertaken, as well as related preven-

tion strategies, it is evident that much work remains to be done. By further studying the trans-

mission dynamics of hantaviruses, better prediction and prevention measures can be

implemented to protect human health, and critical insight can be obtained into the ecology of

hantaviruses and their rodent hosts.

The geographic distributions of hantaviruses reflect the distributions of their reservoir

hosts [3], and our knowledge of the host associations of hantaviruses is expanding. For

Fig 4. Urbanization, immigration, and hantavirus disease epidemics in an endemic area of south China. (A)

Urbanization and HFRS incidence in Hunan Province. A biphasic inverted U-shaped relationship was found between

hantavirus disease epidemics and urbanization. (B) The number of immigrants and HFRS incidence. This result

indicates that the effect of urbanization on HFRS epidemics changed, whereas the effect of immigration remained

constant. Source: Adapted from [114]. HFRS, hemorrhagic fever with renal syndrome.

https://doi.org/10.1371/journal.pntd.0006901.g004
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example, the hantavirus isolated in Africa, Sangassou virus, was recently found in the African

wood mouse (Hylomyscus simus) [117]. Although, in general, each hantavirus has been consid-

ered to be associated with a specific reservoir host, there have been cases that suggest rodent

host expansion (e.g., pathogens that can infect multiple host species) for both HTNV and

SEOV in China [22,118–120]. This challenges the strict rodent–virus coevolution theory and

demonstrates that at least some hantaviruses can infect other susceptible rodents in addition to

primary hosts, expanding the number of potential animal hosts [121]. These cases raise the

question as to what role undetected or potential hosts play in hantavirus ecology and further

influence the risk of human infections—a question largely ignored in the past and an area of

further research. Further research is also needed to clarify the relationships between diversity

and prevalence across types of ecosystems and host species, in particular, as the dilution effect

on prevalence dynamics has broad potential applicability in predicting virus prevalence

among rodent hosts.

To the best of our knowledge, this is the first systematic review to compare hantavirus dis-

ease dynamics, from environmental variability to rodent reservoir and to public health, among

the main endemic areas across the globe. This review is timely because of the increasing public

awareness of hantavirus diseases in Europe, in particular, over the last years. Limitations of

this systematic review were that individual studies had differences—surveillance strategies for

hantavirus infections, rodent sampling methods, rodent community compositions, socioeco-

nomic factors, and environmental conditions. Therefore, studies were not all directly compa-

rable, especially among China, European countries, and the US. Additionally, it should be

noted that unusual human exposure (like war-induced exposure) to otherwise “normal” envi-

ronment is an often forgotten risk factor for limited outbreaks [122]. Besides, there are more

recent studies on ANDV-like viruses in South America that explore the environment condi-

tions relevant to the occurrence of the host and the circulation of the virus, scrutinize the evi-

dence for climate sensitivity of related disease risk, and recognize those areas of high risk for

humans [91,123–126]. However, in this review, more attention was paid to longitudinal studies

of sufficient scale. Finally, our focus on China in the review reflects the fact that for this coun-

try highly comprehensive data exist.

Establishing a mechanistically determined predictive framework for rodent-borne hantavi-

rus disease prediction and prevention is urgently required to proactively protect the public

from the increasing threat of hantaviruses. Such a framework would also provide insight into

climate change, landscape alteration, rodent community composition, and pathogen spillover.

Key Learning Points

With this review we have demonstrated the following:

1. The complex seasonality and interannual cycles of hantavirus disease dynamics

are a direct result of the (nonlinear) interaction between the population dynamics

of the rodent host, environmental forcing, and human–wildlife contact patterns.

2. Specific environmental conditions can trigger hantavirus disease outbreaks, but

the outcomes may differ among strains or areas mediated by the underlying mech-

anisms of hantavirus transmission. For example, in Weihe Plain of Central China,

higher summer temperatures were followed by a lower incidence of HFRS in

autumn; conversely, in North America, a positive relationship between hantavirus

disease incidence and temperature was reported, indicating the complexity across

different systems.
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