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Abstract

A new dynamic mode decomposition (DMD) method is introduced for simultaneous system

identification and denoising in conjunction with the adoption of an extended Kalman filter

algorithm. The present paper explains the extended-Kalman-filter-based DMD (EKFDMD)

algorithm which is an online algorithm for dataset for a small number of degree of freedom

(DoF). It also illustrates that EKFDMD requires significant numerical resources for many-

degree-of-freedom (many-DoF) problems and that the combination with truncated proper

orthogonal decomposition (trPOD) helps us to apply the EKFDMD algorithm to many-DoF

problems, though it prevents the algorithm from being fully online. The numerical experi-

ments of a noisy dataset with a small number of DoFs illustrate that EKFDMD can estimate

eigenvalues better than or as well as the existing algorithms, whereas EKFDMD can also

denoise the original dataset online. In particular, EKFDMD performs better than existing

algorithms for the case in which system noise is present. The EKFDMD with trPOD, which

unfortunately is not fully online, can be successfully applied to many-DoF problems, includ-

ing a fluid-problem example, and the results reveal the superior performance of system

identification and denoising.

1 Introduction

Recently, modal decomposition [1] for fluid dynamics has attracted attention from the view-

points of data reduction, data analysis, and reduced-order modeling of complex dataset. This

is one method for data-driven science in fluid dynamics. The most conventional method of

modal decomposition is a proper orthogonal decomposition (POD), [2, 3] which is also called

principal component analysis (PCA) and Karhunen-Loéve expansion. The standard POD can

be computed by singular value decomposition (SVD), and this fact explains that the obtained

modes are orthogonal with respect to each other. Proper orthogonal decomposition modes

can be computed by snapshots of fluid data and can be used for both numerical and experi-

mental approaches. Based on POD modes, a reduced-order model can be constructed with the
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Galerkin projection method for instance, although only a numerical approach can be used for

reduced-order modeling in this way.

Another conventional method is global linear stability analysis (GLSA), [4–6] which shows

that the eigenmodes of the system of linearized governing equations (i.e., the Navier-Stokes

equations for most of the fluid problems) around the steady state of nonlinear dynamics. Here,

GLSA shows the most unstable eigenmodes and judges whether the steady-state solution is sta-

ble. The modes obtained by GLSA are a solution of the original linearized equations, although

this method always requires numerically complex approaches and cannot be applied to experi-

mental data. Unlike POD modes, the modes obtained by GLSA are not orthogonal unless oth-

erwise the system is written with an Hermite operator.

In recent decades, a new method, dynamic mode decomposition (DMD), [7] has been pro-

posed and developed as a data-driven science method and has been applied to numerous fluid

problems. [8–11] Here, DMD has characteristics of both POD and GLSA, whereas DMD can

be computed only by a time-series of snapshots of numerical and experimental data. This

method processes snapshots of sequential unsteady nonlinear flow fields and yields eigenvalues

and corresponding eigenmodes for the case in which the dataset is assumed to be explained by

a linear system xk+1 = Axk, where xk is the kth snapshot of sequential data and A is a system

matrix. These dynamic modes are generally nonorthogonal, and each mode possesses a single-

frequency response with amplification or damping as a natural characteristic of a linear system

expression, which leads to a more intrinsic understanding of the role of each mode. Thus far,

there are several methods by which to compute the dynamic modes: standard DMD [7], exact

DMD, noise-cancelling DMD (ncDMD), [12] forward-backward DMD, (fbDMD), [12] total

least-squares DMD (tlsDMD), [12, 13] online DMD, [14] and Kalman-filter-based DMD

(KFDMD), [15] where ncDMD, fbDMD, tlsDMD and KFDMD focus on the noisy dataset.

The standard DMD and the exact DMD adopt SVD and a Moore-Penrose pseudo-inverse

matrix for low-rank approximation of the matrix A, respectively. This implies that these algo-

rithms compute dynamic modes as a kind of least-squares problem. A robust method for a

noisy dataset, tlsDMD, adopts a truncated POD for pair data and successfully increases the

accuracy of obtained dynamic modes. A recent KFDMD is written in the form of system iden-

tification using the Kalman filter algorithm [16] and can be optimized based on the prior

knowledge of the noise superimposed on the data. This is different from the usage of the Kal-

man filter in Reference [17, 18] in which the Kalman filter is used for data reconstruction and

prediction.

However, the application of DMD to noisy data and the denoising process are still limited.

For example, tlsDMD has been developed for accurately estimating the dynamic modes and

corresponding eigenvalues, but a method by which to reconstruct the data has rarely been

shown except for the data reconstruction using first snapshot, [19] which is conventionally

adopted. If we adopt the conventional simple estimation of initial amplitudes to reconstruct

the data, then the data is greatly affected by the noise on the initial data, as expected. One of a

few advanced data reconstruction methods is use of Kalman filter for linear system that is cor-

responding to the Koopman operator after the linear system is estimated. [17, 18]

Optimized DMD (optDMD), [20] and the combination of tlsDMD [12, 21] and the spar-

sity-promoting DMD (spDMD) [22] could be used for the denoising of noisy data. Here,

optDMD gives us the dynamic modes and eigenvalues and corresponding initial values that

best fit the noisy time series data under the assumption of no system noise. On the other hand,

spDMD [22] selects finite-number modes for the reconstruction of flow fields considering the

L0 or L1 norm of regularization terms, as is often used in sparse modeling and compressed

sensing. These methods are very useful for reconstructing flow fields, but the reconstructed

data are governed by the initial value of the strength of each mode and possibly cannot handle
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the change in phase of dynamic modes in long-time data due to the system noise including

modeling error, nonlinear processes, or unexpected events in the experiments. Furthermore,

the optDMD requires fitting of all of the data, and the combination procedure of tlsDMD and

spDMD requires two-step computation. At present, an online method for simultaneous sys-

tem identification and denoising using the DMD framework has not yet been proposed.

In the present paper, a new method for simultaneous system identification and denoising

using the DMD framework is proposed using the extended Kalman filter. In addition to the

system identification of the previously proposed KFDMD, [15] the observed data are simulta-

neously filtered online for dataset with a small number of degree of freedom (DoF). The pres-

ent paper first explains the algorithm of the proposed extended-Kalman-filter-based DMD

(EKFDMD). The drawback of the computational costs of EKFDMD is addressed, and combi-

nation with a truncated POD (trPOD) is proposed for reduction of the computational cost,

though it prevents the algorithm from being fully online. Finally, the proposed method is

applied to various problems and its performance is illustrated.

2 Previous methods compared in the present study

2.1 Problem settings

Here, the previous algorithms compared in the present study are briefly explained. For the

extension in the next subsection, the linear system model is assumed for the time series dataset

as follows:

xkþ1 ¼ Axk þ vk; ð1Þ

yk ¼ xk þ wk: ð2Þ

Here, A, x, y, v, w and a subscript k are the system matrix, the state variable vector, the observa-

tion vector, the system noise, the observation noise, and the time step respectively. Here, the

dimension of the state and observed variables is set to be n. Moreover, xk is assumed to be the

true value. Usually, we can only access y in the present paper, though x has been used as the

observation vector in the previous DMD studies. Therefore, the reader should take care when

considering the notation used herein. First, three methods, DMD, tlsDMD, and KFDMD are

briefly explained in Subsections 2.2, 2.3, and 2.4, respectively, and a conventional data recon-

struction method for these algorithms is introduced in Subsection 2.5. Finally, optDMD,

which is a state-of-art offline algorithm for both estimating the dynamic modes and recon-

structing data, is explained in Subsection 2.6.

2.2 DMD

The m-sample observation data matrix including observation noise is defined as follows:

Y1:m ¼ ðym; ym� 1
; � � � ; y

2
; y

1
Þ; ð3Þ

whereas yk = xk if the observation noise is absent. The original DMD is performed with SVD

for Y1:m−1 as follows:

Y1:m� 1 ¼ U1:m� 1S1:m� 1VT
1:m� 1

: ð4Þ

Here, U, S, and V are a left singular matrix, a diagonal matrix with singular values, and a right

singular matrix, respectively. As described in the original DMD paper, a truncated POD

(SVD) is used to filter the noise. Therefore, the rank r approximation of the observation data
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matrix is obtained as follows:

Y1:m� 1 �
~U 1:m� 1

~S1:m� 1
~V T

1:m� 1
: ð5Þ

In this case, the projected r × r matrix ~A of the matrix A onto the low-dimensional space can

be obtained as follows:

~A ¼ ~UT
1:m� 1

Y2:m
~V 1:m� 1

~S � 1
1:m� 1

: ð6Þ

Then, the eigendecomposition is carried out:

~AWDMD ¼WDMDLDMD: ð7Þ

Here, WDMD are the eigenvectors, and ΛDMD is the diagonal matrix with the eigenvalues.

Using WDMD, the dynamic mode matrix in the original space is recovered:

F ¼ ~U 1:m� 1WDMD: ð8Þ

Here, F contains the dynamic mode vectors as follows:

F ¼ ½�1 �2 . . . �r�: ð9Þ

2.3 tlsDMD

For total least-squares DMD, the pair snapshot is considered. In this case, trPOD data or

raw data can be used. [12, 13] In the present study, raw data are directly used as in the

original code. [23] The procedure for the time series data are as follows. First, define a pair

data matrix:

Z ¼
Y1:m� 1

Y2:m

" #

ð10Þ

and POD is applied to the pair data matrix above:

Z ¼
U1:m� 1

U2:m

" #

SZVT
Z : ð11Þ

Then, we obtain an r-rank truncated pair POD, as follows:

Ẑ �
Û 1:m� 1

Û 2:m

2

4

3

5ŜZV̂ T
Z: ð12Þ

Here, we obtain a snapshot pair of POD projections Ŷ 1:m� 1 and Ŷ 2:m of Y1:m−1 and Y2:m as fol-

lows:

Ŷ 1:m� 1 ¼ Y1:m� 1V̂ Z ð13Þ

Ŷ 2:m ¼ Y2:mV̂ Z: ð14Þ
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Using these matrices, ~A is computed by SVD of Ŷ 1:m� 1:

Ŷ 1:m� 1 ¼ UŶ 1:m� 1
SŶ 1:m� 1

VŶ 1:m� 1
; ð15Þ

~A ¼ UT
Ŷ 1:m� 1

Ŷ 2:mVŶ 1:m� 1
S� 1

Ŷ 1:m� 1
: ð16Þ

The dynamic mode and eigenvalue estimations are estimated exactly in the same way as DMD

in Eqs 7 to 9.

2.4 KFDMD

The components of the matrix A are considered to be state variables of the Kalman filter. The

state variable vector θKF are written as follows:

θKF
¼ vecðATÞ: ð17Þ

Using the state variable vector described above, the system and observation equations can be

written as follows:

θKF
kþ1
¼ θKF

k þ vk; ð18Þ

yk ¼ HKF
k θKF

k þ wk; ð19Þ

where HKF
k is the following observation matrix defined as follows:

HKF
k ¼

yTk� 1
0 � � � � � � 0

0 yTk� 1
0 � � � 0

0 0 . .
.

0 0

0 � � � 0 yTk� 1
0

0 � � � 0 0 yTk� 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

9
>>>>>>>>=

>>>>>>>>;

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
n2 dimensions

n dimensions ð20Þ

Note that we have the following relationship:

HKF
k θKF

k ¼ Akyk� 1
; ð21Þ

where Ak represents the estimation of A in the kth time step. Here, vk and wk are system and

observation noises, respectively. Using the state equation given above, the linear Kalman filter

is constructed with the fast algorithm shown in Reference. [15] After obtaining the matrix A,

the dynamic mode and corresponding eigenvalues are obtained through the eigendecomposi-

tion of the matrix A.

2.5 Data reconstruction using DMD, tlsDMD, and KFDMD

The DMD, tlsDMD, and KFDMD methods only estimate the matrix A and do not estimate

the reconstructed time series data using dynamic modes. In a conventional method [19] of

reconstruction, we assume that the data can be reconstructed as follows:

Xreconst ¼ FB0Vand; ð22Þ

Here, Xreconst is the reconstructed data matrix, B0 is a diagonal matrix of the initial amplitudes
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bi of dynamic modes Fi, where

B0 ¼

b1 0 0 0

0 b2 0 0

0 0 . .
. ..

.

0 0 � � � br

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð23Þ

and Vand is a Vandermonde matrix representing the temporal behaviors of dynamic modes

while assuming the system noise to be absent:

Vand ¼

1 l1 l
2

1
� � � l

m
1

1 l2 l
2

2
� � � l

m
2

..

. ..
. ..

.
� � � ..

.

1 lr l
2

r � � � l
m
r

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð24Þ

The initial value vector b0, which is defined as

b0 ¼ ½b1 b2 . . . br�
T
; ð25Þ

can be obtained using the pseudoinverse of F, as follows:

b0 ¼ Fþy
0
; ð26Þ

where the plus symbol superscript denotes the Moore-Penrose pseudoinverse matrix. As dis-

cussed later herein, y0 includes the observation noise superimposed on the initial snapshot,

and this reconstruction does not work well due to this noise, even if the eigenvalues are well

estimated.

2.6 optDMD

In the optimized DMD, [20] the following problem is solved:

½F B0 L� ¼ argmin
F;B;L

k Y � Xreconst k
2

F ð27Þ

¼ argmin
F;B;L

k Y � FB0Vand k
2

F : ð28Þ

Although there are several ways to solve this nonlinear problem above, the variable projection

method is adopted in the present study. In this case, the best-fit reconstructed data matrix is

obtained under the assumption that system noise is absent. In the case of spDMD, F and Λ are

fixed using another DMD method, and optimum sparse b0 is solved while adding the L1 or L0

regularization term of b0. The original code [24] is employed in the present study.

Extended Kalman filter for DMD
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3 Extended Kalman filter DMD

3.1 Algorithm

As introduced in the section above, we consider the system expressed by Eqs 1 and 2. For sim-

plicity, we introduce Einstein summation convention for Eqs 1 and 2, as follows:

xi;kþ1 ¼ aijxj;k þ vi;k; ð29Þ

yi;k ¼ xi;k þ wi;k; ð30Þ

where A = (aij), x = (xi), y = (yi), v = (vi), and w = (wi).

Then, the Kalman filter algorithm is considered. In this problem, we would like to simulta-

neously conduct the online system identification and denoising of the observed variable when

a number of DoF is small. Therefore, the observed variables and elements of the matrix A are

chosen as state variables of the considered system. The state variable vector θ is defined as fol-

lows:

θk ¼
xk

vecðATÞ

 !

¼

x1;k

x2;k

� � �

xn;k

a11

a12

..

.

a1n

a21

a22

..

.

ann

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

nþ n2 dimensions: ð31Þ

Using these state variables, the system transient can be written as follows:

θkþ1 ¼
xkþ1

vecðATÞ

 !

¼ f ðθkÞ ¼ f ðxk;AÞ þ vk; ð32Þ

yk ¼ Hθk þ wk; ð33Þ

where the vk and wk are the system and observation noise, respectively, and the nonlinear
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function f and the observation matrix are expressed as follows:

f ¼
Axk

vecðATÞ

 !

¼

a1jxj;k

a2jxj;k

� � �

anjxj;k

a11

a12

..

.

a1n

a21

a22

..

.

ann

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; H ¼ ðI 0Þg:
zfflfflfflfflffl}|fflfflfflfflffl{

nþ n2 dimensions

n dimensions ð34Þ

The upper half of the system is written as the multiplication of state variables xj and aij, and, as

such, the system is considered to be nonlinear. The lower half of the system corresponds to the

constant or slowly varying system coefficients to be identified and does not change explicitly.

For the construction of the extended Kalman filter, the linearization is required. The Jacobian

matrix F of a nonlinear function f of the state variables θ is calculated as follows:

Fk ¼
@f
@θk

¼

@Axk

@xk

@Axk

@vecðATÞ

@vecðATÞ

@xk

@vecðATÞ

@vecðATÞ

0

B
B
B
B
@

1

C
C
C
C
A
¼

A

xTk 0

xTk

. .
.

0 xTk
0 I

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

9
>>>>>>>=

>>>>>>>;

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
nþ n2 dimensions

nþ n2 dimensions ð35Þ

Using matrices Fk and H, the extended Kalman filter can be constructed for the nonlinear sys-

tem. Note that Fk is a time-varying matrix.

Following the theory of a Kalman filter, a priori prediction of a state variable vector θk and

a covariance matrix Pk|k−1 can be achieved using the state variable vector θk and covariance

matrix Pk−1|k−1 from the previous time step,

θkjk� 1 ¼ f ðθk� 1jk� 1Þ; ð36Þ

Pkjk� 1 ¼ FkPk� 1jk� 1FT
k þ Qk; ð37Þ

where the system matrix Fk is expressed by Eq 35, and Q is a covariance matrix of the system

noise.
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When a new observation is available, the state variables and the covariance matrix are

updated using the Kalman gain, which is computed as

Kk ¼ Pkjk� 1HTS� 1
k ; ð38Þ

where Sk is a noise covariance matrix and is expressed as follows:

Sk ¼ Rk þHPkjk� 1HT: ð39Þ

Here, Rk is a covariance matrix of observation noise wk.

A modification vector for state variables θ is computed as follows:

dθkjk ¼ Kkðyk � Hθkjk� 1Þ ð40Þ

ð¼ Kkðyk � Akjk� 1xk� 1jk� 1ÞÞ: ð41Þ

Finally, the state variable vector and the covariance matrix after the observation are updated

as follows:

θkjk ¼ θkjk� 1 þ dθkjk; ð42Þ

Pkjk ¼ ðI � KkHÞPkjk� 1: ð43Þ

This extended Kalman filter requires the multiplication of the large matrix of dimension of

(n2 + n) × (n2 + n), as discussed in Section 5. This is a clear drawback of this formulation for

many-degree-of-freedom (many-DoF) problems, and using this algorithm together with

trPOD is recommended, as explained in Section 3.2. This drawback of EKFDMD is the same

as that of KFDMD designed for only the system identification, though the drawback of

KFDMD is somehow relaxed owing to the fast algorithm proposed in the previous study, [15]

in which the large matrix is assumed to be decomposed into several identical block matrices.

Although we attempt to use a concept similar to the previous KFDMD, [15] we could not find

a similar method for EKFDMD in the present state. Therefore, the computational cost for

EKFDMD is severer than that for KFDMD designed for only system identification, and the

use of the present algorithm together with trPOD is strongly recommended for many-DoF

problems.

It should be noted that, in the early implementation of EKFDMD, we employed the several

initial time steps for only the estimation of A without filtering of x, but they are found to just

degrade the results. In the present implementation, the simultaneous estimation is impulsively

started from the first step.

3.2 Combination with a truncated POD

As discussed in the previous section, the computational cost of the present algorithm is high,

and, therefore, a truncated POD (truncated SVD) should be used for the reduction in the

number of DoFs of the dataset of the observed variables. Similar to a previous study on

KFDMD for only system identification, the obtained data are processed as follows:

1. the batch POD is applied,

2. a proposed Kalman filter is then applied to the amplitude of each POD mode, and

3. the mode shape of a fluid system is finally recovered by multiplying the spatial POD modes.
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As the first step (step 1), POD is applied to an observed data matrix and an observed data

matrix is expressed in SVD form as follows:

Y1:m ¼ U1:mS1:mVT
1:m: ð44Þ

Here, U and V are matrices consisting of the spatial and temporal POD modes, respectively.

The r-rank approximation of the observed data matrix is calculated as follows:

Y1:m �
~U 1:m

~S1:m
~V T

1:m; ð45Þ

where quantities with tildes indicate r-rank approximations. Here, the r-dimension matrix of

~S consists of r-largest singular values of S. In addition, the row vectors of ~U and ~V are the

same as the corresponding first r row vectors of U and V. Using these matrices, reduced-order

~Y , which represents mode strength, is constructed as follows:

~Y 1:m ¼
~S1:m

~V T
1:m: ð46Þ

In the second step (step 2), ~Y and ~yk are treated in a manner similar to Y and yk in the pro-

posed EKFDMD procedures, and xk and A are simultaneously estimated once. In addition, for

online implementation,

~yk ¼
~UTy ð47Þ

can be used where the left singular vector is assumed to be fixed using the sample data. After

this process, the eigenvalues and eigenmodes are computed by solving the eigenvalue problem

of A.

Finally, in the third step (step 3), the original dimension of the eigenmode is obtained by

multiplying matrix U after obtaining the right eigenvector of the reduced system by

EKFDMD.

xk ¼
~U 1:m~xk; ð48Þ

Again, note that we can use the same formulation in Eqs 46 through 48 for an online situa-

tion in which the left singular vector (spatial mode) ~U is known in advance. This is similar to

KFDMD [15] proposed previously. In this case, a fully online algorithm can be obtained. How-

ever, if the POD mode is not known in advance and must be estimated, then an online POD

method or other methods are required. If the spatial POD modes change with time as in the

case of online POD, then the projected coefficients are not consistent in time. Furthermore,

the POD modes are sometimes activated or deactivated in the online POD algorithm. Thus, it

appears to be difficult to straightforwardly extend the EKFDMD to a method combined with

the online POD, and this is left for a future study.

In the present paper, Eq 46 is adopted for the truncated POD. This procedure is used

for many-DoF problems (n>30) and is not used unless otherwise mentioned. In the case of

noisy dataset, it should be noted that an accurate estimate of the mode coefficient does not

necessarily mean an accurate representation of the full state because the spatial POD mode

contains noise as shown later. However, despite the imperfect estimation of POD modes,

eigenvalue and reconstructed data by EKFDMD are sufficiently accurate, which is also shown

later.

3.3 Implementation of the EKFDMD algorithm

Here, the EKFDMD algorithm is briefly summarized. After initialization, the prediction (a pri-

ori estimation) and update steps are alternately performed.
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Initialization

1. If the DoF is large, trPOD is applied to the data.

2. Set θ ¼ ½yT
0
ðvecðIÞÞT�T and P0|0 = γI. Here, γ is large. (In the present study, we set γ = 1,

000).

Prediction step

1. xk|k−1 are predicted by Eqs 36 and 34, while aij,k|k−1 are predicted to be the same as aij,k−1|k−1.

2. Pk|k−1 is predicted by Eqs 37 and 35.

Update step

1. The Kalman gain K is computed by Eqs 39 and 38.

2. θk|k is updated by Eqs 40 and 42, and matrix A is obtained using θk|k−1.

3. Pk|k is updated by Eq 43.

4 Numerical Experiments and discussion

The EKFDMD algorithm described in Section 3.1 is adopted in the numerical experiments

below.

4.1 Problem with a small number of DoFs without system noise

First, the performance of EKFDMD is investigated for the standard problem, in comparison

with the standard DMD, KFDMD, tlsDMD, and optDMD. The problem is approximately the

same as that considered in the previous study. [13] This problem is modified slightly to involve

the system noise in discretized form for the next subsection, although only the observation

noise is first considered in this subsection.

The discretized eigenvalues are assumed to be positioned at λ1 = exp[(±2πiΔt)], λ2 = exp

[(±5πiΔt)], and λ3 = exp[(−0.3±11πi)Δt], where Δt = 0.01. The corresponding continuous

eigenvalues are ω1 = (±2πi), ω2 = (±5πi), and ω3 = (−0.3±11πi). The number of DoFs of this

system is d = 6. The original data f were computed in the previous study as

df
dt
¼ Bf ; ð49Þ

B ¼

jReðo1Þj jImðo1Þj 0 0 0 0

� jImðo1Þj jReðo1Þj 0 0 0 0

0 0 jReðo2Þj jImðo2Þj 0 0

0 0 � jImðo2Þj jReðo2Þj 0 0

0 0 0 0 jReðo3Þj jImðo3Þj

0 0 0 0 � jImðo3Þj jReðo3Þj

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

: ð50Þ

However, the above formulation cannot treat system noise. Therefore, the system is integrated

for each time step size, and discretized system noise is added as follows:

f kþ1
¼ eBDtf k þ v0k; ð51Þ
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where v0 is the system noise for the original system. Eq 51 exactly corresponds to the solution

of Eq 49 for the condition in which vk is absent. In this subsection, no system noise is consid-

ered with vk = 0.

The number of DoFs of this system is d = 6, which is expanded to snapshot data of n = 16

DoFs by applying the QQR matrix of QR decomposition of a random matrix. Note that this

problem was originally extended to n = 400 DoF, but the number of DoFs is limited in the

present study because of the computational costs of EKFDMD, as mentioned above. In this

process, a random matrix T of n × d dimensions in which each of the components is a random

number of N ð0; 1Þ is transformed into T = QQR RQR by QR decomposition, and the original

data fk of dimension d are extended to xk of dimension n by multiplication by a matrix QQR, as

follows:

xk ¼ QQR f k: ð52Þ

Then, y data matrices are created by adding white observation noise to the original x data

matrix, where the noise wk is expressed as N ð0; s2Þ.

yk ¼ xk þ wk: ð53Þ

Here, the variance (s2
w) is varied as 0.0001, 0.001, 0.01, and 0.1. A total of 500 snapshots are

given, and the eigenvalues of the matrix A in the final stage are analyzed.

For the initial adjustable parameters of the Kalman filter, the diagonal parts of the variance

matrix are set to be 103. The diagonal elements of Q and R are set to be 0 and s2
w, respectively,

and the nondiagonal elements of Q and R are set to be 0 in this subsection. The assumption of

Q = 0 corresponds to providing the information that the system noise is absent and the system

is temporally constant.

The results for the noisy data while changing the noise level are discussed. Figs 1 and 2

show the eigenvalues estimated in the representative case and in all of the 100 cases we exam-

ined by changing the random number seed, respectively. The results of the estimated eigenval-

ues in Figs 1 and 2 show that DMD and KFDMD do not work well for accurate estimation of

the eigenvalues of the system for the case in which the noise level is high. On the other hand,

tlsDMD works better than DMD and KFDMD. Furthermore, optDMD and EKFDMD appear

to work the best for estimation of the eigenvalues. This might be because optDMD and

EKFDMD denoises the data, and a more accurate eigenvalue of the system can be obtained by

the denoised data. The system identification performance of EKFDMD appears to be better

than that of tlsDMD.

The above characteristics are discussed with the quantitative data. Fig 3 shows the error of

eigenvalues. The errors in the eigenvalues are defined by the norm of the closest computed

eigenvalue to the true eigenvalue specified. Here, outliers were not removed in this process.

The error in the eigenvalues decreases with decreasing noise strength for all methods. This

plot quantitatively shows that the error basically decreases with the order of DMD as well as

KFDMD, tlsDMD, EKFDMD, and optDMD. The system noise is not considered in the present

problem setting, and therefore optDMD can give the best-fit curve for the all of the data points,

owing to its offline procedures. On the other hand, EKFDMD incrementally updates the infor-

mation and cannot use all of the data at once. Therefore, it is reasonable that optDMD works

slightly better than EKFDMD.

Data reconstruction is then considered. In addition, as noted previously, EKFDMD is

expected to be able to denoise the data. Fig 4, which illustrates the time-series of the true data,

the observation (noisy) data and the reconstructed data of DMD, tlsDMD, KFDMD, optDMD,

and EKFDMD. This plot reveals that DMD and KFDMD cannot predict the oscillation
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because they estimate the dumping oscillation due to the noise included in the observation

data. Moreover, tlsDMD can predict the oscillation for the weaker noise level. Although

tlsDMD can predict neutral oscillation for a stronger noise level, as shown in Fig 4, the phase

of oscillation of reconstructed data is very different from the true value. On the other hand,

Fig 1. Eigenvalues for a problem with a small number of DoFs without system noise. The algorithms are almost identical in (a) and (b).

https://doi.org/10.1371/journal.pone.0209836.g001
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Fig 2. Eigenvalues for multiple runs of a problem with a small number of DoFs without system noise, where the seed for the random number is different for

multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g002

Fig 3. Errors in the eigenvalues for multiple runs of a problem with a small number of DoFs without system noise.

https://doi.org/10.1371/journal.pone.0209836.g003
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Fig 4. Time histories of the first node of the reconstructed data for a problem with a small number of DoFs without system

noise.

https://doi.org/10.1371/journal.pone.0209836.g004
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optDMD and EKFDMD can successfully denoise the data, even though the noise level is very

high.

The error level of the reconstructed data is quantitatively discussed in term of Fig 5, which

shows the following normalized error:

Ereconst ¼
k Xreconst;101:m � X101:m k

2
F

k X101:m k
2
F

: ð54Þ

Fig 5 shows that the error decreases with the order of DMD, KFDMD, tlsDMD, EKFDMD,

and optDMD, similar to those in the eigenvalues. This trend also shows that EKFDMD works

reasonably for simultaneous system identification and denoising of the data by running the

algorithm once. The better performance of optDMD, as compared to EKFDMD, originates

from their online or offline characteristics.

Although we are interested in the performance for the case in which system noise is present,

we hereinafter discuss the effects of parameters on this problem without system noise, before

discussing the problem with system noise in Subsection 4.2.

4.1.1 Effect of the number of snapshots m. Here, the parameter effects for the problem

without system noise are considered. First, the effect of the number of snapshots m is investi-

gated. Similar to the previous discussion, the errors in the eigenvalues and reconstructed data

for DMD, tlsDMD, KFDMD, optDMD, and EKFDMD are calculated for various values of m
for data of s2

w ¼ 0:1. These errors are evaluated by 100 runs and are averaged for each algo-

rithm. The error in eigenvalues in Fig 6 shows that the errors of tlsDMD, EKFDMD, and

optDMD basically decrease (except for some bumps), while those of DMD and KFDMD do

not. Interestingly, the error of EKFDMD decreases more rapidly and is larger than that of

tlsDMD for m� 200 but smaller for m� 300. This is because EKFDMD is an one-path algo-

rithm and its accuracy in the early stage is not sufficiently high, but increases rapidly as more

successive data are obtained. Note that both tlsDMD and optDMD algorithms are offline

algorithms.

Then, the errors in reconstructed data shown in Fig 7 are discussed. The errors of DMD,

KFDMD, and tlsDMD do not change. The errors of DMD and KFDMD do not decrease

Fig 5. Errors in the reconstructed data for multiple runs of a problem with a small number of DoFs without

system noise.

https://doi.org/10.1371/journal.pone.0209836.g005
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because they cannot better predict the eigenvalues for the case in which m increases, and the

errors of tlsDMD do not decrease, despite the decrease in the error in the eigenvalues, because

the reconstructed data with tlsDMD have a different phase due to the very strong observation

noise in the initial snapshot, as discussed previously. On the other hand, the errors of

EKFDMD and optDMD decrease because both algorithms find the best-fit data for recon-

struction and the accuracy of this data increases by using the information of an increased

number of snapshots.

4.1.2 Effect of mismatched error level for R. Next, the effect of mismatched R settings is

discussed, while the system error is absent and Q is set to be 0. In the present study, we investi-

gate the mismatched cases of R ¼ 10s2
wI and R ¼ 0:1s2

wI, as well as the matched case of

R ¼ s2
wI, the results of which are presented in the previous sections. The number of snapshots

m is set to be 500. The errors are evaluated by 100 runs and are averaged for each case, similar

to previous cases. The errors of EKFDMD in eigenvalues and reconstructed data for the case

in which R is mismatched are shown in Figs 8 and 9, respectively. These figures show that the

mismatched R does not affect the results, except for the strong-observation-noise case

Fig 6. Effect of m on errors in the eigenvalues for multiple runs of a problem with a small number of DoFs without system noise.

https://doi.org/10.1371/journal.pone.0209836.g006

Fig 7. Effect of m on errors in the reconstructed data for multiple runs of a problem with a small number of DoFs

without system noise.

https://doi.org/10.1371/journal.pone.0209836.g007
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(s2
w ¼ 0:1), because the balance of R and Q changes the behavior of Kalman filter, whereas a

change in R under the condition of Q = 0 does not affect the behavior of Kalman filter.

4.2 Problem with a small number of DoFs with system noise

Next, we consider a problem with system noise. In this problem, v0 is assumed to be

N ð0; ns2
v=6Þ, resulting in v being N ð0; s2

vÞ, and we vary s2
v ¼ s

2
w as 0.0001, 0.001, 0.01, and

0.1. A hyperparameter Q is set to be

Q ¼
Q1;1 Q1;2

Q2;1 Q2;2

" #

¼
s2

vIn�n 0

0 0

" #

ð55Þ

and R is set to be s2
wI. The number of snapshots m is set to be 500, and a total of 100 runs are

conducted for each case.

Figs 10 and 11 show the eigenvalues estimated in the representative case and in all 100 cases

we examined by changing the seed of the random numbers, respectively. Figs 10 and 11 show

Fig 8. Effect of R on errors in the eigenvalues for multiple runs of a problem with a small number of DoFs without system noise.

https://doi.org/10.1371/journal.pone.0209836.g008

Fig 9. Effect of R on errors in reconstructed data for multiple runs of a problem with a small number of DoFs

without system noise.

https://doi.org/10.1371/journal.pone.0209836.g009

Extended Kalman filter for DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209836 February 21, 2019 18 / 46

https://doi.org/10.1371/journal.pone.0209836.g008
https://doi.org/10.1371/journal.pone.0209836.g009
https://doi.org/10.1371/journal.pone.0209836


that DMD and KFDMD do not work well for the accurate estimation of the eigenvalues of the

system for the case in which the noise level is high, although its accuracy is somehow improved

compared with the case without the system noise. On the other hand, tlsDMD, optDMD and

EKFDMD appear to work better than DMD or KFDMD. This might be because denoising

Fig 10. Eigenvalues for a problem with a small number of DoFs with system noise. The algorithms are almost identical in (a) and (b), and tlsDMD,

optDMD, and EKFDMD are almost identical in (c) and (d).

https://doi.org/10.1371/journal.pone.0209836.g010
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algorithms for estimation of eigenvalues of tlsDMD, optDMD, and EKFDMD works well for

these data, and a more accurate eigenvalue of the system can be obtained. The system identifi-

cation performance of EKFDMD appears to be as good as that of tlsDMD and optDMD in

these plots. Finally, the errors of eigenvalue estimation are shown in Fig 12. Fig 12 shows that

tlsDMD, optDMD, and EKFDMD work better than DMD and KFDMD. Among tlsDMD,

optDMD, and EKFDMD, tlsDMD works slightly better for λ1 and λ2, whereas the perfor-

mance of EKFDMD is similar to that of tlsDMD for λ3. This result illustrates that the system

identification performances of tlsDMD, optDMD, and EKFDMD are approximately the same

for the case in which system noise is present.

Then, reconstruction using these algorithms, as shown in Fig 13, is discussed. Similar to the

cases without system noise, data reconstructed by DMD and KFDMD are dumped in the early

stage. This is again because the these algorithms predict dumping modes. The data recon-

structed by tlsDMD have good amplitude of oscillations, but their phases do not match well

with those of the original data. Although the data reconstructed by optDMD have good ampli-

tude and phase, the data around peaks are sometimes not reconstructed. These errors around

Fig 11. Eigenvalues for multiple runs of a problem with a small number of DoFs with system noise, where the seed for the random number is different for

multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g011
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peaks in the reconstruction data obtained using optDMD are caused by system noise in the

data because optDMD cannot handle system noise. Unlike the algorithm described above, the

data reconstructed by EKFDMD shows excellent agreement with the original data. This is

because EKFDMD can handle data with system noise. This characteristic can be used for

simultaneous system identification and denoising of data containing system noise. The error

in the reconstructed data shown in Fig 14 clearly shows this characteristic.

4.2.1 Effects of the balance of system and observation noises. In this subsubsection, the

effects of the balance of system and observation noises in the observation data are discussed.

System noise variance s2
v is set to be 10s2

w and 0.1s2
w. Here, Q and R are correctly given in this

problem. In both cases, test cases with s2
w of 0.0001, 0.001, 0.01, and 0.1 are conducted, and the

results of 100 runs with different seeds for random numbers are averaged for error

characteristics.

First, the case with strong system noise s2
v ¼ 10s2

w is discussed. The errors in the estimated

eigenvalues shown in Fig 15 indicate that the errors of all of the algorithms are almost the

same and the error does not decrease with decreasing noise level. This figure shows that

advanced DMD methods do not significantly improve the estimation of eigenvalues for data

with strong system noise. The error in the reconstructed data is shown in Fig 16. This figure

shows that the error of EKFDMD is much less than the errors of the other algorithms. This

indicates that EKFDMD can be used for noise reduction for the case in which the system noise

is stronger than the observation noise.

Then, the case with the weaker system noise s2
v ¼ 0:1s2

w is discussed. Again, Q and R are

correctly given in this problem. The error plots in Fig 17 show that the errors of tlsDMD,

optDMD, and EKFDMD are approximately the same and are lower than those of DMD and

KFDMD. This figure illustrates that advanced DMD methods improve the estimation ability

of eigenvalues. The error in the reconstructed data is shown in Fig 18. This plot indicates that

the errors decrease in the order of DMD and KFDMD (same as that of DMD), tlsDMD,

optDMD, and EKFDMD. The figure also shows that EKFDMD performs better than optDMD,

even if weaker system noise is present. This fact indicates that EKFDMD can be used for noise

reduction in the range we investigated for the case in which system noise is present, regardless

of its strength.

4.2.2 Effects of mismatched error level for Q and R. In this subsubsection, the effects of

mismatched selection of Q and R are discussed. The system noise variance s2
v is set to be the

same as s2
w. First, the effect of mismatched Q is discussed. Fig 19 shows that mismatched Q

Fig 12. Errors in the eigenvalues for multiple runs of a problem with a small number of DoFs without system noise.

https://doi.org/10.1371/journal.pone.0209836.g012
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Fig 13. Reconstructed data of the first node for a problem with a small number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g013
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does not significantly affect the error in the estimated eigenvalues, although the result with the

appropriate setting (matched Q of Q1;1 ¼ s
2
wI) exhibits the best performance. Fig 20 shows the

errors in reconstructed data with the mismatched Q. In this case, if Q is assumed to be zero,

which corresponds to the assumption of no system noise, then the error becomes noticeably

larger. On the other hand, if Q is set to be 10 times or 0.1 times larger than the appropriate

value, then the results are not significantly degraded. This indicates that the setting of Q does

not significantly affect the results if the system noise is considered and Q is appropriately set to

be within the order of s2
v .

Then, the effect of mismatched R is discussed. The error in estimated eigenvalues shown in

Fig 21 illustrates that the mismatched R does not significantly change the error, although

errors for smaller R or R = 0 become slightly larger. Fig 22 shows the errors in reconstructed

data with mismatched R. In this case, mismatched R does not significantly affects the results.

Fig 14. Errors in the reconstructed data for multiple runs of a problem with a small number of DoFs with system

noise.

https://doi.org/10.1371/journal.pone.0209836.g014

Fig 15. Errors in the eigenvalues for multiple runs of a problem with a small number of DoFs without system noise for the case in which σ2
v ¼ 10σ2

w.

https://doi.org/10.1371/journal.pone.0209836.g015

Extended Kalman filter for DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209836 February 21, 2019 23 / 46

https://doi.org/10.1371/journal.pone.0209836.g014
https://doi.org/10.1371/journal.pone.0209836.g015
https://doi.org/10.1371/journal.pone.0209836


This result shows that the setting of R does not significantly affect the results, similar to the

mismatched Q cases.

Finally, the effects of mismatched Q and R, but with the condition Q1,1 = R, are investigated.

The errors in the estimated eigenvalues and reconstructed data for the cases in which

Q1;1 ¼ R ¼ 10s2
wI ¼ 10s2

vI and Q1;1 ¼ R ¼ 0:1s2
wI ¼ 0:1s2

vI are shown in Figs 23 and 24,

respectively. These figures show that the results do not change for the case in which the ratio of

Q1,1 to R does not change. As noted earlier, the ratio of Q and R should be carefully chosen in

order to achieve accurate estimation.

4.3 Problem with a moderate number of DoFs without system noise

Next, a similar problem, but with the number of DoFs extended to 200 by the same procedure,

is adopted with the same noise levels. In this case, the computational cost is very high, and we

Fig 17. Errors in the eigenvalues for multiple runs of a problem with a small number of DoFs with system noise for the case in which σ2
v ¼ 0:1σ2

w.

https://doi.org/10.1371/journal.pone.0209836.g017

Fig 16. Errors in the reconstructed data for multiple runs of a problem with a small number of DoFs with system

noise for the case in which σ2
v ¼ 10σ2

w.

https://doi.org/10.1371/journal.pone.0209836.g016
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conducted trPOD as a preconditioner. In this problem, first, the number of DoFs is reduced

from 200 to 10 by trPOD, and the reduced data are processed by EKFDMD. On the other

hand, for the purpose of comparison, DMD and tlsDMD are applied directly to the data for

200 DoFs in order to reduce the number of DoFs to 10 because these algorithms can treat a

data matrix of this size within a reasonable computational time by inherently involving trun-

cated SVD (same as trPOD). In this problem, 500 samples were given. Similar to the previous

example, the diagonal elements of the covariance matrix were set to be 103 in the initial condi-

tion. The diagonal elements of Q and R are set to be 0 and s2
w, respectively, and their nondiago-

nal elements are set to be 0.

The results of trPOD are shown in Fig 25, where the first POD spatial mode obtained by

data without noise and that obtained by data with noise are plotted together. Note that the

mode of the node distribution in snapshots is referred to as the POD spatial mode, which is

analogous to fluid analysis. This plot indicates that the noise level is very high and that the

Fig 18. Errors in the reconstructed data for multiple runs of a problem with a small number of DoFs with system

noise for the case in which σ2
v ¼ 0:1σ2

w.

https://doi.org/10.1371/journal.pone.0209836.g018

Fig 19. Effect of mismatched Q on the errors in the eigenvalues for multiple runs of a problem with a small number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g019
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estimation of the POD spatial mode is not accurate. However, the contaminated POD modes

obtained by data with noise are used for EKFDMD.

The eigenvalues and their errors for this problem are shown in Figs 26, 27, and 28. Except

for the condition with strong noise (s2
w ¼ 0:1), trPOD+EKFDMD works better than DMD,

KFDMD, and tlsDMD, while optDMD works best. This characteristic does not change from

the small-degree-of-freedom problem, as shown earlier. The degradation in performance of

the trPOD+EKFDMD for the very noisy condition might occur because the important signal

is filtered out in the POD procedure. This characteristic is relaxed by increasing the number of

POD modes, as shown later herein, but the number of POD modes is in a trade-off relation-

ship with the computational cost. The reconstructed data are then shown in Fig 29. Even if we

apply POD, the reconstructed data of trPOD+EKFDMD and optDMD agree well with the

original data in all the condition, whereas DMD, KFDMD, and tlsDMD fail to capture the

behavior of the original data in the severe noise cases. The error in the reconstructed data is

shown in Fig 30. As shown earlier, the error of trPOD+EKFDMD is smaller than that of

Fig 20. Effect of mismatched Q on the errors in the reconstructed data for multiple runs of a problem with a small

number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g020

Fig 21. Effect of mismatched R on the errors in the eigenvalues for multiple runs of a problem with a small number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g021
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Fig 22. Effect of mismatched R on the errors in the reconstructed data for multiple runs of a problem with a small

number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g022

Fig 23. Effects of mismatched Q and R on the errors in the reconstructed data for multiple runs of a problem with a small number of DoFs

with system noise.

https://doi.org/10.1371/journal.pone.0209836.g023

Fig 24. Effects of mismatched Q and R on the errors in the reconstructed data for multiple runs of a problem with

a small number of DoFs with system noise.

https://doi.org/10.1371/journal.pone.0209836.g024
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tlsDMD and is larger than that of optDMD. Thus, trPOD+EKFDMD works reasonably well in

reconstructing the data even with the imperfect POD modes shown in Fig 25.

4.3.1 Effect of POD truncation. For POD truncation, the rank number should be manu-

ally specified. Therefore, the effect of the rank number chosen by the user is investigated. Here,

r = 6 and r = 20 are investigated, where the previous standard cases were computed with

r = 10, as noted earlier. The errors in the estimated eigenvalues and reconstructed data of the

r = 6 and r = 20 conditions are shown in Figs 31, 32, 33 and 34, respectively. For the case in

which system noise is absent, the errors of the estimation of eigenvalues by trPOD+EKFDMD

does not work well with r = 6 for s2
w � 0:01, and the resulting error in reconstructed data is

slightly worse than that for tlsDMD for all cases with different noise levels. This might be

because trPOD filters out the important signal and trPOD+EKFDMD cannot recover the orig-

inal signal for strong-noise cases. On the other hand, the errors in the estimated eigenvalues of

trPOD+EKFDMD with the r = 20 setting are lower than those of tlsDMD or are approximately

the same as (and sometimes slightly higher than) that of tlsDMD and the error in the recon-

structed data of trPOD+EKFDMD with r = 20 is smaller than that of tlsDMD. Therefore,

using tnPOD+EKFDMD with better performance requires a larger rank. This is clear trade-off

between the estimation accuracy and the computational cost.

4.4 Problem with a moderate number of DoFs with system noise

Next, we consider a similar problem in which system noise is adopted. The system noise vari-

ance s2
v is set to be s2

w, similar to the small-DoF problem shown earlier. With regard to the

EKFDMD procedure, trPOD is used as a preconditioner similar to the previous subsection.

Again, in this problem, the number of DoFs is reduced from 200 to 10 by trPOD, and the

reduced data are processed by EKFDMD. On the other hand, DMD, tlsDMD, and optDMD

are applied directly to the data for 200 DoFs in order to reduce the number of DoFs to 10.

Moreover, in this problem, 500 samples were given. The diagonal elements of the covariance

Fig 25. First POD mode of original and noisy data for a problem with a moderate number of DoFs. Here, the first

POD modes of the most noisy case (s2
w ¼ 0:1) are shown.

https://doi.org/10.1371/journal.pone.0209836.g025
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matrix are set to be 103 in the initial condition. The diagonal elements of R and Q1,1 are set to

be s2
w and s2

v , respectively, and the nondiagonal elements of R and Q1,1 are set to be 0.

The eigenvalues and their errors for this problem are shown in Figs 35, 36 and 37. Interest-

ingly, all the algorithm work similarly each other in this condition. The degradation in

Fig 26. Eigenvalues for a problem with a small number of DoFs without system noise. Here, rank r is set to be 10. The algorithms are almost

identical in (a) and (b), and optDMD, and trPOD+EKFDMD are almost identical in (c) and (d).

https://doi.org/10.1371/journal.pone.0209836.g026
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performance for trPOD+EKFDMD is not found in this case, together with the results later

shown herein. Then, the reconstructed data are shown in Fig 38. Fig 38 illustrates that DMD,

KFDMD, and tlsDMD fail to capture the behavior of original data while optDMD works rea-

sonably but sometimes fails to capture the behavior around peaks. Even if we apply the POD

Fig 27. Eigenvalues for multiple runs of a problem with a moderate number of DoFs without system noise, where the seed for the random

number is different for multiple runs. Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g027
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decomposition, the data reconstructed by trPOD+EKFDMD agree the best with original data.

The error in reconstructed data is shown in Fig 39. As shown earlier, the error of EKFDMD is

the smallest in the algorithm investigated, similar to the small DoFs problem. Thus, trPOD+-

EKFDMD works well to reconstruct the data especially for the case in which system noise is

present, even in the moderate number of DoFs problem.

4.4.1 Effects of POD truncation. Similar to the cases without system noise, the effects of

the rank number chosen by the user are investigated. Here, r = 6 and r = 20 are investigated,

where the previous standard cases are computed with r = 10, as noted earlier. The errors in the

eigenvalues estimated with a truncated PODs of r = 6 and r = 20 and the errors in the recon-

structed data with a truncated POD of r = 6 and r = 20 are shown in Figs 40, 41, 42 and 43.

These plots are similar to those with a truncated POD of r = 10, which indicates that the rank

for the POD truncation does not significantly affect the results for the case in which system

noise is present.

4.5 Application to a fluid problem

The simulation of a two-dimensional flow around a cylinder is conducted. The Mach number

of the freestream velocity is set to be 0.3, and the Reynolds number based on the freestream

velocity and the cylinder diameter is set to be 300. For the analysis, LANS3D, [25] which is an

in-house compressible fluid solver, is adopted. A cylindrical computational mesh is used, with

the numbers of the radial- and azimuthal-direction grid points being 250 and 111, respectively.

A compact difference scheme [26] of the sixth order of accuracy is used for spatial derivatives

and a second-order backward differencing scheme converged by an alternative-directional-

implicit symmetric-Gauss-Seidel method [27, 28] is used for time integration. See Reference

[29] for further details. The origin point is set to be the center of the cylinder, and a resolved

region (where the mesh density is finer) is set to be inside 10d far from the origin point. Here,

d is the diameter of the cylinder. For any DMD analyses, the quasi-steady flow data at x = [0,

10d], y = [−5d, 5d], which is in the wake region, are used. The data are mapped to an equally

distributed 100 × 100 mesh. The DMD analyses processed 500 samples of five flow-through

data with or without adding observation noise of N ð0; s2
wÞ, whereas the variance (s2

w) is set to

be 0.02. In the EFKDMD algorithm, the diagonal parts of the covariance matrix are initially set

to be 103, similar to previous problems. The diagonal elements of Q and R are set to be 0 and

0.02, respectively, while nondiagonal elements of Q and R are set to be 0.

Fig 28. Errors in the eigenvalues for multiple runs of a problem with a moderate number of DoFs without system noise for the case in which σ2
v ¼ 0:1σ2

w.

https://doi.org/10.1371/journal.pone.0209836.g028
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Fig 29. Reconstructed data of the first node for a problem with a moderate number of DoFs without system noise.

https://doi.org/10.1371/journal.pone.0209836.g029
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Fig 30. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs without

system noise. Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g030

Fig 31. Errors in the eigenvalues for multiple runs of a problem with a moderate number of DoFs without system noise, whereas the rank

r is set to be 6. Here the seed for the random numbers is different for multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g031

Fig 32. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs without

system noise, whereas the rank r is set to be 6. Here, the seed for the random numbers is different for multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g032
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First, the results without noise are processed by DMD, tlsDMD and KFDMD, where

KFDMD adopts the truncated POD (Eq 46) as a preconditioner. The eigenvalues computed by

the DMD, tlsDMD and trPOD+KFDMD methods are shown in Fig 44. The eigenvalues com-

puted by KFDMD agree well with those of the standard DMD. The lowest frequencies com-

puted by DMD and KFDMD correspond to the Strouhal number St = fd/u1* 0.2, which is a

well-known characteristic frequency for the Kármán vortex street of a cylinder wake, where f
and u1 are the frequency and the freestream velocity, respectively.

Then, the data with noise are processed. The snapshot data of the instantaneous flow field

are shown in Fig 45. Flow fields filtered using only trPOD are shown in Fig 46. The noise can

be reduced using trPOD. These 30-DoF data are used for KFDMD analyses.

Fig 47, which illustrates the eigenvalues of DMD, tlsDMD, and EKFDMD, shows that

the EKFDMD results are better than the results of the standard DMD and tlsDMD. Here,

Fig 33. Errors in the eigenvalues for multiple runs of a problem with a moderate number of DoFs without system noise, whereas the rank r is set to be 20. Here,

the seed for the random number is different for multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g033

Fig 34. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs without

system noise, whereas the rank r is set to be 20. Here, the seed for the random number is different for multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g034
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Fig 35. Eigenvalues for a problem with a moderate number of DoFs with system noise. The results of all algorithms are almost identical in this plot.

Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g035
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Fig 36. Eigenvalues for multiple runs of a problem with a moderate number of DoFs with system noise. The results of all algorithms are almost

identical in this plot. Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g036
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trPOD+EKFDMD accurately predicts from the steady flow mode (eigenvalue of unity) up to

the fifth oscillation mode, which corresponds to six points on the upper half of the unit circle.

In addition, it should be noted that the strength of EKFDMD is that the data are denoised

once. Fig 48 shows the mode histories of trPOD modes 2, 4, 6, and 8. The histories of modes 2

and 4 are approximately the same for noisy data and EKFDMD combined with the trPOD pre-

conditioner, because these modes are strong enough compared with the noise level. On the

other hand, the histories of modes 6 and 8 are cleaned up well. Finally, the flow fields of

denoised data (in this case, the temporal coefficients of the trPOD modes are filtered) are

shown in Fig 49, and the data are slightly further cleaned up compared to the results obtained

only with trPOD, as shown in Fig 46.

5 Complexity and computational cost

In this section, the complexity and computational cost of EKFDMD are discussed. Here, mul-

tiplication for single elements is assumed to have a complexity of O(1), and the multiplication

of matrices of size of l × m and m × n is estimated to be O(lmn) under the dense matrix compu-

tation. In the EKFDMD procedure, except when using trPOD as a preconditioner, the main

computational cost comes from Eqs 36 and 37 for the prediction step and from Eqs 39, 38, 40

and 43 for the updating step. For each step, the computational complexity is summarized

in Table 1. In total, the most significant complexity is considered to be O(n6) for one step.

Therefore, if we have m samples, then the computational complexity for m-time steps becomes

O(mn6). The complexity and the required memory of EKFDMD are compared with those of

the other algorithms in Table 2, where estimation of the complexities of DMD and online

DMD in the previous study [14] are adopted, and the complexity of KFDMD is estimated in

the present study. In addition, Fig 50 shows the computational time for 500 samples with dif-

ferent DoF problems. The Matlab software is used with Intel Xeon E5620 2.4GHz processor.

The computational time is averaged over 20 runs for the small size of m< 50, while it is not

for the large size but the repeatability is confirmed. Both Table 2 and Fig 50 show that

EKFDMD requires significant computational cost, and applying trPOD as a preconditioner is

strongly recommended for the practical use of EKFDMD. In practical use, matrices F and H
for EKFDMD are sparse and the corresponding computational cost and memory of EKFDMD

can be decreased by using implementations of routines for the sparse matrix in the software

Fig 37. Errors in the in the eigenvalues for multiple runs of a problem with a moderate number of DoFs with system noise, where the seed for random numbers

is different for multiple runs. Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g037
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Fig 38. Reconstructed data of the first node for a problem with a moderate number of DoFs with system noise. Here, rank r is set to

be 10.

https://doi.org/10.1371/journal.pone.0209836.g038
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Fig 39. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs with

system noise. Here, rank r is set to be 10.

https://doi.org/10.1371/journal.pone.0209836.g039

Fig 40. Errors in the eigenvalues for multiple runs of a problem with a moderate number of DoFs with system noise for the case in which

rank r is set to be 6. The algorithms are almost identical.

https://doi.org/10.1371/journal.pone.0209836.g040

Fig 41. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs without

system noise for the case in which rank r is set to be 6, where the seed for random numbers is different for

multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g041
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Fig 42. Errors in the eigenvalues for multiple runs of a problem with a moderate number of DoFs with system noise for the case in which

rank r is set to be 20, where the seed for random numbers is different for multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g042

Fig 43. Errors in the reconstructed data for multiple runs of a problem with a moderate number of DoFs with

system noise for the case in which rank r is set to be 20, where the seed for random numbers is different for

multiple runs.

https://doi.org/10.1371/journal.pone.0209836.g043

Fig 44. Eigenvalues for a flow problem without noise.

https://doi.org/10.1371/journal.pone.0209836.g044
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Fig 45. Noisy flow field data processed by several DMD methods. The x-direction velocity is visualized, where the

freestream velocity is set to be 0.3.

https://doi.org/10.1371/journal.pone.0209836.g045

Fig 46. trPOD 30-mode reconstruction of flow fields. The x-direction velocity is visualized, where the freestream

velocity is set to be 0.3.

https://doi.org/10.1371/journal.pone.0209836.g046

Fig 47. Eigenvalues for a flow problem with noise.

https://doi.org/10.1371/journal.pone.0209836.g047
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utilized as we did. However, the complexity of EKFDMD is still higher with the routines for

the sparse matrix than the other algorithms as shown in Fig 50.

Conclusions

A dynamic mode decomposition method based on the extended Kalman filter (EKFDMD)

was proposed for simultaneous parameter estimation and denoising. The numerical experi-

ments of the present study reveal that the proposed method can estimate the eigenstructure of

Fig 48. Time histories of POD modes 2, 4, 6, and 8 of the data of the flow problem.

https://doi.org/10.1371/journal.pone.0209836.g048
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the matrix A better than or as well as existing algorithms in its online procedure for a problem

with a small number of DoFs, whereas EKFDMD simultaneously denoises the data. In particu-

lar, the EKFDMD works better for data reconstruction in the case in which the system noise is

present than existing algorithms. However, this algorithm has the drawback of computational

cost. This drawback is addressed by preconditioning of truncated POD (trPOD), thouth it pre-

vents the algorithm from being fully online. Then, EKFDMD with trPOD is applied to a prob-

lem with a moderate number of DoFs and a fluid system. The performance of EKFDMD is

slightly degraded by decreasing the rank number of trPOD in the case without system noise

Fig 49. EKFDMD-filtered flow fields. The x-direction velocity is visualized, where the freestream velocity is set to be

0.3.

https://doi.org/10.1371/journal.pone.0209836.g049

Table 1. Computational time for each procedure in KFDMD.

procedure equation complexity

predicting step Eq 36 O(n2)

Eq 37 O((n + n2)3)

updating step Eq 39 2O((n + n2)2 n)

Eq 38 O(n3) + O(n2(n + n2)) + O((n + n2)2 n)

Eq 40 2O(n(n + n2))

Eq 43 2O(n(n + n2)2) + O((n + n2)3)

https://doi.org/10.1371/journal.pone.0209836.t001

Table 2. Comparison of complexity and memory for m-sample computation for the estimation in the final time

step once.

algorithm computational time memory

DMD O(mn2) mn
online DMD O(mn2) 2n2

KFDMD without trPOD (fast algorithm) O(mn2) 2n2

EKFDMD without trPOD O(mn6) (n + n2)(n + n2 + 1)

https://doi.org/10.1371/journal.pone.0209836.t002
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while the performance does not change in the case with system noise with regardless of the

rank number. It should be noted that all the performance of EKFDMD is preferable in the

analysis of noisy data.

Supporting information

S1 Video. Video for original noisy data of cylinder flow. The video corresponding to Fig 45.

(MP4)

S2 Video. Video for trPOD(30) filtered data of cylinder flow. The video corresponding to

Fig 46.

(MP4)

S3 Video. Video for EKFDMD filtered data of cylinder flow. The video corresponding to

Fig 49.

(MP4)

Author Contributions

Conceptualization: Taku Nonomura, Hisaichi Shibata.

Data curation: Taku Nonomura, Hisaichi Shibata.

Formal analysis: Taku Nonomura.

Funding acquisition: Ryoji Takaki.

Supervision: Ryoji Takaki.

Writing – original draft: Taku Nonomura.

Writing – review & editing: Taku Nonomura, Hisaichi Shibata, Ryoji Takaki.

Fig 50. Computational time for DMD, KFDMD, and EKFDMD.

https://doi.org/10.1371/journal.pone.0209836.g050

Extended Kalman filter for DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209836 February 21, 2019 44 / 46

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209836.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209836.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209836.s003
https://doi.org/10.1371/journal.pone.0209836.g050
https://doi.org/10.1371/journal.pone.0209836


References
1. Taira K, Brunton SL, Dawson ST, Rowley CW, Colonius T, McKeon BJ, et al. Modal analysis of fluid

flows: An overview. AIAA Journal. 2017; 55(12):4013–4041. https://doi.org/10.2514/1.J056060

2. Rowley CW, Colonius T, Murray RM. Model reduction for compressible flows using POD and Galerkin

projection. Physica D: Nonlinear Phenomena. 2004; 189(1-2):115–129. https://doi.org/10.1016/j.physd.

2003.03.001

3. Berkooz G, Holmes P, Lumley LJ. The proper orthogonal decomposition in the analysis of turbulent

flows. Annual Review of Fluid Mechanics. 1993; 25(1971):539–575. https://doi.org/10.1146/annurev.fl.

25.010193.002543

4. Theofilis V. Global Linear Instability. Annual Review of Fluid Mechanics. 2011; 43(1):319–352. https://

doi.org/10.1146/annurev-fluid-122109-160705

5. Shibata H, Ohmichi Y, Watanabe Y, Suzuki K. Global stability analysis method to numerically predict

precursor of breakdown voltage. Plasma Sources Science and Technology. 2015; 24(5). https://doi.org/

10.1088/0963-0252/24/5/055014

6. Ohmichi Y, Suzuki K. Assessment of global linear stability analysis using a time-stepping approach for

compressible flows. International Journal for Numerical Methods in Fluids. 2016; 80(10):614–627.

https://doi.org/10.1002/fld.4166

7. Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid

Mechanics. 2010; 656(July 2010):5–28.

8. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. On dynamic mode decomposition: Theory

and applications. Journal of Computational Dynamics. 2014; 1(2):391–421. https://doi.org/10.3934/jcd.

2014.1.391

9. Wang L, Feng LH. Extraction and Reconstruction of Individual Vortex-Shedding Mode from Bistable

Flow. AIAA Journal. 2017; p. 1–13.

10. Priebe S, Tu JH, Rowley CW, Martı́n MP. Low-frequency dynamics in a shock-induced separated flow.

Journal of Fluid Mechanics. 2016; 807:441–477.

11. Ohmichi Y. Preconditioned dynamic mode decomposition and mode selection algorithms for large data-

sets using incremental proper orthogonal decomposition. AIP Advances. 2017; 7(7):075318. https://doi.

org/10.1063/1.4996024

12. Dawson ST, Hemati MS, Williams MO, Rowley CW. Characterizing and correcting for the effect of sen-

sor noise in the dynamic mode decomposition. Experiments in Fluids. 2016; 57(3):42. https://doi.org/

10.1007/s00348-016-2127-7

13. Hemati MS, Rowley CW, Deem EA, Cattafesta LN. De-biasing the dynamic mode decomposition for

applied Koopman spectral analysis of noisy datasets. Theoretical and Computational Fluid Dynamics.

2017; p. 1–20.

14. Zhang H, Rowley CW, Deem EA, Cattafesta LN. Online dynamic mode decomposition for time-varying

systems. arXiv preprint arXiv:170702876. 2017.

15. Nonomura T, Shibata H, Takaki R. Dynamic mode decomposition using a Kalman filter for parameter

estimation. AIP Advances 8, 2018; 8(105106).

16. Kalman RE. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering.

1960; 82(1):35. https://doi.org/10.1115/1.3662552

17. Surana A, Banaszuk A. Linear observer synthesis for nonlinear systems using Koopman operator

framework. IFAC-PapersOnLine. 2016; 49(18):716–723. https://doi.org/10.1016/j.ifacol.2016.10.250

18. Surana A, Williams MO, Morari M, Banaszuk A. Koopman operator framework for constrained state

estimation. In: Decision and Control (CDC), 2017 IEEE 56th Annual Conference on. IEEE; 2017. p.

94–101.

19. Kutz JN, Brunton SL, Brunton BW, Proctor JL. Dynamic mode decomposition: data-driven modeling of

complex systems. vol. 149. SIAM; 2016.

20. Askham T, Kutz JN. Variable projection methods for an optimized dynamic mode decomposition. SIAM

Journal on Applied Dynamical Systems. 2018; 17(1):380–416. https://doi.org/10.1137/M1124176

21. Hemati M, Deem E, Williams M, Rowley CW, Cattafesta LN. Improving separation control with noise-

robust variants of dynamic mode decomposition. In: AIAA-Paper 2016-1103; 2016. p. 1103.

22. JovanovićMR, Schmid PJ, Nichols JW. Sparsity-promoting dynamic mode decomposition. Physics of

Fluids. 2014; 26(2):1–22.

23. Rowley CW. A library of tools for computing variants of Dynamic Mode Decomposition; 2017. https://

github.com/cwrowley/dmdtools/tree/master/.

24. Askham T. duqbo/optdmd: optdmd v1.0.0; 2017. https://doi.org/10.5281/zenodo.439385.

Extended Kalman filter for DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209836 February 21, 2019 45 / 46

https://doi.org/10.2514/1.J056060
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1146/annurev-fluid-122109-160705
https://doi.org/10.1088/0963-0252/24/5/055014
https://doi.org/10.1088/0963-0252/24/5/055014
https://doi.org/10.1002/fld.4166
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1063/1.4996024
https://doi.org/10.1063/1.4996024
https://doi.org/10.1007/s00348-016-2127-7
https://doi.org/10.1007/s00348-016-2127-7
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.ifacol.2016.10.250
https://doi.org/10.1137/M1124176
https://github.com/cwrowley/dmdtools/tree/master/
https://github.com/cwrowley/dmdtools/tree/master/
https://doi.org/10.5281/zenodo.439385
https://doi.org/10.1371/journal.pone.0209836


25. Fujii K, Endo H, Yasuhara M. Activities of Computational Fluid Dynamics in Japan: Compressible Flow

Simulations. High Performance Computing Research and Practice in Japan, Wiley Professional Com-

puting, JOHN WILEY& SONS. 1990; p. 139–161.

26. Lele SK. Compact Finite Difference Schemes with Spectral-like Resolution. Journal of Computational

Physics. 1992; 103(1):16–42. https://doi.org/10.1016/0021-9991(92)90324-R

27. Fujii K. Efficiency Improvement of Unified Implicit Relaxation/Time Integration Algorithms. AIAA Jour-

nal. 1999; 37(1):125–128.

28. Nishida H, Nonomura T. ADI-SGS Scheme on Ideal Magnetohydrodynamics. Journal of Computational

Physics. 2009; 228:3182–3188. https://doi.org/10.1016/j.jcp.2009.01.032

29. Sato M, Nonomura T, Okada K, Asada K, Aono H, Yakeno A, et al. Mechanisms for laminar separated-

flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number. Physics of Flu-

ids. 2015; 27:1–29. https://doi.org/10.1063/1.4935357

Extended Kalman filter for DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0209836 February 21, 2019 46 / 46

https://doi.org/10.1016/0021-9991(92)90324-R
https://doi.org/10.1016/j.jcp.2009.01.032
https://doi.org/10.1063/1.4935357
https://doi.org/10.1371/journal.pone.0209836

