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Abstract

Dementia has become a major health concern for the aging population of the United States. 

Studies indicate that participation in moderate exercise, with training, has been shown to have a 

beneficial impact on cognition. Thus, exercise and its effects on cognitive function has become an 

important area of research. This review summarizes the current literature on the potential 

mechanisms of the benefits of exercise for cognitive function.
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Introduction

Dementia is a major cause of death and disability in the United States(1). Family, friends, 

and caregivers pay a terrible toll in supporting the individual with dementia(1, 2). Even more 

concerning, we have no effective therapies for attenuating dementia progression once 

symptoms commence(1). Thus, the importance of understanding lifestyle factors that can be 

modified to improve cognitive function cannot be overly stressed. Studies have found that 

exercise can improve aspects of brain health related to cognition (3–16); however, there are 

still gaps in knowledge regarding the mechanisms controlling these relationships. This 

review focuses on exercise-induced influences on cognition and addresses some of the 

potential mechanisms behind observed improvements in cognitive function with exercise.
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Exercise and cognitive function

Exercise has been demonstrated to improve cognitive function in healthy older adults(3–7). 

A twelve week randomized control trial demonstrated that older adults who participated in 

the exercise group had improved memory and executive functions when compared to the 

control group(3). Additionally, an 8 year longitudinal study found that older adults who were 

physically active during leisure time had better subsequent cognitive function and a slower 

rate of cognitive decline than those who were not(5). Further, a randomized controlled trial 

in older adults demonstrated changes in brain activity in specific brain regions with exercise 

training(11). Other studies, in animals and young adults, support this finding and indicate 

that exercise can induce changes in the hippocampus(8–10). In mice, running enhanced 

hippocampal neurogenesis and learning(9). In rats, treadmill running reduced activation of 

inflammatory signaling pathways in the hippocampus and resulted in better cognitive 

performance(10). Hippocampal changes are specifically relevant to dementia, as it is 

important in memory processes and has been of specific focus in the study of Alzheimer’s 

disease(17) Studies have also shown preservation of both white and gray matter with 

increased exercise(12–15). A recent study demonstrated that wheel running in mice not only 

improved cognitive function, but also reduced amyloid β plaques and reduced 

neuroinflammation associated with aging(16). These studies have demonstrated that exercise 

is an appropriate modifiable factor for reducing the risk of developing dementia.

Physical activity in youth is also important for cognitive function(8, 15, 18–23). 

Participation in a physical activity program has been shown to improve executive control and 

data shows that physical activity may improve childhood cognition(24). Additionally, 

children participating in an exercise program have improved white matter integrity when 

compared to children involved in a sedentary after-school program(25). These studies and 

others have provided the rationale for the application of exercise programs in children and 

adolescents for cognitive benefits.

Research indicates that different types of exercise can have different effects on the brain. 

Regular moderate aerobic exercise has been shown to promote antioxidant capacity in brain, 

while anaerobic or high-intensity exercise, aerobic-exhausted exercise, or the combination of 

these types of training are believed to reduce antioxidant response(26). Studies have 

indicated beneficial effects of resistance exercise on cognitive function, potentially by 

enhancing hippocampal synaptic plasticity-related molecules(27). Studies have shown brain 

structural changes related to strength training in white matter, gray matter, and putamen 

volume in the healthy adult brain(14, 28–30). Further, long-term mild, rather than intense 

exercise and sustained aerobic exercise, rather than high intensity interval or resistance 

training were found to produce hippocampal neurogenesis(31, 32). Thus, a combination of 

moderate aerobic and resistance exercise would provide an ideal benefit to overall cognitive 

function.

Adverse effects of extreme exercise

Although exercise has beneficial effects on brain health, studies indicate that training is 

important and that acute, extreme, or too vigorous of exercise can be detrimental. Extreme 
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exercise has been shown to lead to an increase in plasma S100B, a proposed marker of 

blood-brain barrier disruption and brain damage(33). Exercise to exhaustion has resulted in 

increased brain IL-6 levels in rats, but long-term training protects from an increase in 

hippocampal IL-6(34). Acute bouts of cardiovascular exercise can momentarily alter 

executive control and increase performance instability in lower fit individuals, while this was 

reduced in higher fit individuals(35). Further, a study found that moderate-intensity exercise 

produced a beneficial effect on cognitive function, but this effect was lost with high-intensity 

exercise(36). Although many prior studies have documented the beneficial effects of 

exercise, most studies have not considered the potential adverse effects of extreme exercise. 

In future studies, researchers should take these adverse effects into consideration. In 

addition, recommendations about exercise should specify that training is important and that 

acute and extreme exercise without training may not be beneficial.

Potential mechanisms of improved cognition with exercise

Brain glycogen, a critical energy source for neurons, is primarily localized to astrocytes(37). 

Prolonged exhaustive exercise with hypoglycemia leads to decreases in brain glycogen(38). 

However, one study indicates that the brain, like skeletal muscle, overcompensates for the 

loss of astrocyte glycogen(38). Another study supports the theory that glycogen depletion in 

astrocytes limits the ability of the brain to accelerate its metabolism during activation(39). 

This would indicate that regular exercise would increase astrocyte glycogen stores, giving 

the brain increased protection from future bouts of hypoglycemia and improving cognition.

Many studies in animals have demonstrated that exercise can increase hippocampal 

neurogenesis or rescue the process from various insults, including: restricted cerebral blood 

flow, lipopolysaccharide exposure, irradiation, and intracerebroventricular amyloid β 
injection(29, 31, 32, 36, 40–43). The mechanisms by which this occurs are not completely 

understood, however research has provided some insights into potential mediators of the 

process. Studies have implicated brain-derived neurotrophic factor (BDNF), serotonin, and 

adiponectin in the process of exercise-induced hippocampal neurogenesis(36, 40, 42, 44–

48).

Exercise is associated with changes in levels of neurotransmitters, neurotrophic factors, and 

growth factors, alongside increases in temporal lobe functional connectivity(8, 19, 49–54). 

One of these factors, BDNF, is indicated to function to alter the brain mitochondrial 

respiratory efficiency; however the presence of inflammatory cytokines appears to block this 

function(55). The main function of BDNF in the adult brain is to regulate synapses, with 

structural and functional effects on both excitatory and inhibitory synapses, in many brain 

regions(56). BDNF regulates energy homeostasis by controlling patterns of feeding and 

physical activity, and modulating peripheral glucose metabolism(22, 55–61). The role of 

BDNF in cognitive impairment is unclear, but does seem to have an important role, as mice 

with knockout of BDNF in restricted areas of the brain manifest object recognition 

deficiency(62). Previous studies have shown that mice consuming a high-fat diet increase 

BDNF in multiple regions of the brain(57, 63, 64). On the other hand, exercise was shown to 

reverse memory impairment caused by a high fat diet and elevate BDNF in neurons of the 

hippocampal CA3 region(22, 57–59, 65, 66). Further, recent evidence suggests that 
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myokines released by exercising muscles affect the expression of BDNF synthesis in the 

dentate gyrus of the hippocampus(67). These studies suggest that BDNF is a key mediator of 

the effects of exercise on cognitive function.

Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α appears to have a 

role in facilitating some of the effects of exercise on brain health. PGC-1α has been found to 

be part of the mechanism by which exercise induces hippocampal BDNF expression(68). 

One study indicated that exercise training is a more effective at reducing age-associated 

inflammation than resveratrol supplementation and that PGC-1α was required for these anti-

inflammatory effects(69). Exercise training of skeletal muscle changes kynurenine 

metabolism and protects from stress-induced depression(70–73). Activation of PGC-1α1 

can increase skeletal muscle expression of kynurenine aminotransferases, which facilitate 

the conversion of kynurenine into kynurenic acid, a metabolite unable to cross the blood-

brain barrier(73). Reducing plasma kynurenine protects the brain from stress-induced 

changes associated with depression; skeletal muscle-specific PGC-1α1 transgenic mice have 

been found to be resistant to depression induced by chronic mild stress or direct kynurenine 

administration(73–76). These studies indicate that PGC-1α in both muscle and brain may 

mediate the effects of exercise on cognitive function.

Myokines play roles in maintaining biological homeostasis, including energy metabolism, 

angiogenesis, and myogenesis(77, 78). Interleukin (IL)-6, among other myokines, is 

dependent upon contraction and plasma levels increase during exercise; this indicates that it 

may serve as an exercise factor, providing a potential mechanism for the association between 

sedentary behavior and many chronic diseases(8, 34, 78–89). Although IL-6 is often thought 

of as pro-inflammatory, some evidence indicates that it can have anti-inflammatory effects 

as well. Skeletal muscle derived IL-6 produced during exercise has been shown to decrease 

the production and activity of IL-1β and TNF-α(90). Wheel running mice were shown to 

have measurable training effects and significantly lower hippocampal TNF-α and higher 

IL-6, IL-1rα, and IL-12 expression in the hippocampus compared to controls(91). One study 

indicated that an exercise-induced increase in IL-6 within the brain may serve a 

neuroprotective role(92). Additionally, the release of IL-6 from the brain when exercise is 

prolonged may serve as a signal of metabolic stress within the brain(39). Findings suggest 

that the systemic inflammatory response to acute exercise is different in lean compared to 

overweight and obese subjects, with overweight and obese individuals exhibiting a more 

pronounced increase in inflammatory markers (93). Fatigue associated with recovery from 

muscle damage due to eccentric exercise has recently been linked to increases in brain and 

muscle pro-inflammatory cytokines(94). Thus, exercise, particularly with training, may alter 

production of IL-6 and other myokines to produce a beneficial effect on inflammatory 

markers and brain health.

Summary and Conclusions

Moderate physical exercise with training appears to be a modifiable lifestyle factor which 

can provide benefits to cognitive function, these effects and some of the potential 

mechanisms behind this are summarized in Figure 1. Exercise has been demonstrated to 

preserve white and gray matter, induce changes in the hippocampus, including neurogenesis, 
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and improve cognitive function. Although the complete details of the mechanisms are not 

known, researchers have described some aspects of the process. Increased astrocyte 

glycogen storage, increased expression of BDNF, PGC-1α signaling, and altered skeletal 

muscle IL-6 production appear to mediate some of the benefits of exercise for cognitive 

function. Further understanding of these mechanisms may provide insight into potential 

targets for the development of therapeutics for the prevention and treatment of dementia. 

Current evidence provides a compelling argument for the participation in moderate physical 

exercise, consisting of both aerobic and resistance training, as a strategy for improving 

cognitive function and preventing cognitive decline, perhaps preventing the development of 

dementia and other neurodegenerative diseases, such as Parkinson’s disease and multiple 

sclerosis.
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Figure 1. 
Summary of the effects of exercise on cognitive function and potential mechanisms by 

which they occur.

Norman et al. Page 11

Curr Pharm Des. Author manuscript; available in PMC 2019 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Exercise and cognitive function
	Adverse effects of extreme exercise
	Potential mechanisms of improved cognition with exercise
	Summary and Conclusions
	References
	Figure 1.

