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ABSTRACT Human hepatitis B virus (HBV) is a global health problem, affecting
more than 250 million people worldwide. HBV-like viruses, named orthohepadnavi-
ruses, also naturally infect nonhuman primates, rodents, and bats, but their pathoge-
nicity and evolutionary history are unclear. Here, we determined the evolutionary
history of the HBV receptors NTCP and GPC5 over millions of years of primate, ro-
dent, and bat evolution. We use this as a proxy to understand the pathogenicity of
orthohepadnaviruses in mammalian hosts and to determine the implications for spe-
cies specificity. We found that NTCP, but not GPC5, has evolved under positive se-
lection in primates (27 species), rodents (18 species), and bats (21 species) although
at distinct residues. Notably, the positively selected codons map to the HBV-binding
sites in primate NTCP, suggesting past genetic “arms races” with pathogenic ortho-
hepadnaviruses. In rodents, the positively selected codons fall outside and within
the presumed HBV-binding sites, which may contribute to the restricted circulation
of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat
NTCP are conserved, and none of the positively selected codons map to this region.
This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP.
Alternatively, the patterns may reflect adaptive changes associated with metabolism
rather than pathogens. Overall, our findings further point to NTCP as a naturally oc-
curring genetic barrier for cross-species transmissions in primates, which may con-
tribute to the narrow host range of HBV. In contrast, this constraint seems less im-
portant in bats, which may correspond to greater orthohepadnavirus circulation and
diversity.

IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver
disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhu-
man primates, rodents, and bats. As for most viruses, HBV requires a successful in-
teraction with a host receptor for replication. Cellular receptors are thus key deter-
minants of host susceptibility as well as specificity. One hallmark of pathogenic
virus-host relationships is the reciprocal evolution of host receptor and viral enve-
lope proteins, as a result of their antagonistic interaction over time. The dynamics of
these so-called “evolutionary arms races” can leave signatures of adaptive selection,
which in turn reveal the evolutionary history of the virus-host interaction as well as
viral pathogenicity and the genetic determinants of species specificity. Here, we
show how HBV-like viruses have shaped the evolutionary history of their mammalian
host receptor, as a result of their ancient pathogenicity, and decipher the genetic
determinants of cross-species transmissions.
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With approximately 257 million cases of chronic infections, human hepatitis B virus
(HBV) infection is one of the most common viral infections and the leading cause

of liver diseases worldwide. HBV is a member of the family Hepadnaviridae, which are
ancient pathogens that naturally infect mammals (Orthohepadnavirus), birds (Avihep-
adnavirus), fishes (Metahepadnavirus), and amphibians (Herpetohepadnavirus) (1–3).
Hepadnaviruses are host specific to each of these groups, suggesting an ancient
virus-host association (2). However, the evolutionary history of orthohepadnaviruses as
well as their pathogenicity in their mammalian hosts are poorly understood (4–6).

To date, orthohepadnaviruses have been identified in rodents, primates, and bats.
However, their circulation seems predominant in the latter groups, which places
primates and bats as two potential reservoirs of orthohepadnaviruses. Rodent ortho-
hepadnaviruses have been reported in only three species of the Sciuridae family (i.e.,
the arctic ground squirrel, the ground squirrel, and the woodchuck). In primates, most
orthohepadnaviruses have been isolated from hominoid species, including human,
chimpanzee, gorilla, gibbon, and orangutan. Natural Orthohepadnavirus infections were
also reported from two New World monkey species, the Woolly monkey (7) and the
capuchin monkey (8). In contrast, bat orthohepadnaviruses are highly diverse and
naturally infect several bat species from at least five divergent families (9–13), suggest-
ing a long-term virus-host association. It has been further hypothesized that bats could
be a source of primate HBVs (7). Phylogenetic analyses of the orthohepadnaviruses
indicate few cross-species transmissions between distant primates but frequent inter-
species circulations between hominoid species, as revealed by detections of human
HBV genotypes in nonhuman species and by the genetic clustering of gorilla HBV
within chimpanzee HBV strains and that of orangutan within gibbon HBV strains (14,
15). In bats, the occurrence of interspecies circulation between divergent bat species is
contrasted by a clear virus-host association in the Rhinolophidae and Hipposideridae
families (12).

Host proteins, hijacked by viruses for cellular entry, are key determinants for host
susceptibility and species specificity (16–19). HBV has a liver tropism and requires a
low-affinity attachment with the glypican 5 (GPC5) protein (20), followed by specific
binding between the HBV preS1 domain and the cellular sodium taurocholate cotrans-
porting polypeptide (NTCP) for entry into primate hepatocytes (21). In bats, experi-
mental assays have shown that the tent-making bat orthohepadnavirus (TBHBV) was
able to infect human primary hepatocytes using human NTCP (9). However, the entry
pathway of bat orthohepadnaviruses, including their molecular interaction with NTCP,
remains to be characterized.

NTCP is a multiple-transmembrane protein encoded by the solute carrier family 10
member 1 (SLC10A1) gene in humans and is functionally conserved for conjugated bile
acid transport in mammals (22). Its three-dimensional (3D) structure has not been
experimentally solved yet. However, mutagenesis studies have mapped the HBV-NTCP-
binding determinants to amino acids 84 to 87 and 157 to 165 in NTCP (21, 23, 24).
Replacing these motifs in mouse and crab-eating macaque NTCPs, two “HBV-resistant”
species, with the human counterparts rendered these NTCPs functional receptors for
HBV (21, 23, 24). NTCP thus appears to be a host limiting factor for HBV infection.

Such patterns of interaction between host proteins and orthohepadnaviruses can be
studied in the context of virus-host evolution. Indeed, one hallmark of long-term
relationships between pathogenic viruses and hosts is the reciprocal evolution of host
and viral proteins, as a result of their antagonistic interaction over long periods of
evolutionary time (25–28). In particular, pathogenic viruses and their host receptors can
coevolve under a regime of evolutionary “arms races” where both partners reciprocally
change over time for survival (25, 29). These arms races can leave evolutionary
signatures at the exact sites of interaction, which are identifiable by estimating the rates
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of nonsynonymous substitutions (dN) over synonymous substitutions (dS) among
orthologous genes (a dN/dS ratio of �1 indicates positive selection) (30). The study of
these evolutionary interplays has been useful to assess the exact virus-host interfaces,
the genetic factors underlying host range and viral cross-species transmissions (e.g., see
references 29 and 31–35), as well as pathogenicity (36) in different systems.

Here, we examined whether orthohepadnaviruses have driven the evolution of their
cellular receptors, GPC5 and NTCP, and we determined how the resulting genetic
patterns may dictate virus host range. We show that NTCP, but not GPC5, has been
under recurrent positive selection during primate, rodent, and bat evolution. Interest-
ingly, the evolutionary fingerprints in primate NTCP overlap the known HBV-binding
motifs, which may witness past genetic arms races with pathogenic orthohepadnavi-
ruses. In rodents, the positively selected codons were both internal and external to the
presumed HBV-binding sites. Noticeably, the latter were found to be highly variable
across rodent phylogeny, which may contribute to the species specificity of rodent
orthohepadnavirus. In bat NTCP, the genetic fingerprints are external to the presumed
HBV-binding motifs, which may reflect either that pathogenic orthohepadnaviruses
bind to other surfaces in bat NTCP or that orthohepadnaviruses have not been a
selective pressure and that NTCP adaptation in bats results from another selective
pressure (e.g., metabolism or diet). Finally, our findings support a model in which NTCP
represents a genetic barrier for cross-species transmissions in primates. If bat orthohe-
padnaviruses use NTCP as a cellular receptor, this constraint may be less important in
bats, which may have facilitated bat orthohepadnavirus circulation.

RESULTS AND DISCUSSION

To characterize the evolutionary history of NTCP/SLC10A1 and GPC5 in primates,
rodents, and bats, we retrieved their orthologous sequences from public databases
and de novo sequenced the genes from additional species. NTCP sequences from 27
primate species, representing over 87 million years of divergence (37, 38), were
retrieved, and the first exon of NTCP (containing one of the HBV-binding regions)
was sequenced for two additional prosimian species and one New World monkey
(Fig. 1A; see also Table S1 at https://figshare.com/articles/Table_S1_Information_on
_the_species_and_the_sequences_used_for_evolutionary_analyses_in_primates_A
_rodents_B_and_in_bats_C_/7315235). Similarly, available sequences of rodent NTCP
were obtained for 18 species, spanning 65 million years of divergence (Fig. 1) (39). NTCP
sequences were publicly available for only nine bat species, representing 5/19 bat
families, which is too limited for robust evolutionary analyses (e.g., see reference 40),
and our preliminary analyses based on the publicly available data were not statistically
supported. We thus conducted an extensive sampling of bat species from key geo-
graphic locations (French Guyana, Metropolitan France, and Gabon) in order to cover
a more substantial part of bat diversity. Species from 10 families of 19 were sampled,
allowing us to significantly increase our sampling of NTCPs from bats. Through de novo
sequencing of the NTCP/SLC10A1 genes from 12 divergent bat species, including 4
natural host species of orthohepadnaviruses, our samples now span 64 million years
of bat divergence (41, 42) (Fig. 1C; see also Table S1 at https://figshare.com/articles/
Table_S1_Information_on_the_species_and_the_sequences_used_for_evolutionary
_analyses_in_primates_A_rodents_B_and_in_bats_C_/7315235).

Pairwise amino acid identities of NTCP and GPC5 protein sequences (ranging from
81% to 96% [see Fig. S1A at https://figshare.com/articles/FIG_S1_NTCP_and_GPC5
_protein_are_mostly_conserved_in_mammals/7315124]) revealed that they are mostly
conserved in primates, rodents, and bats. This conserved property was also evident
across mammalian species (78.1% pairwise amino acid identity [see Fig. S1A at https://
figshare.com/articles/FIG_S1_NTCP_and_GPC5_protein_are_mostly_conserved_in
_mammals/7315124]), which may reflect the overall pressure to maintain their structure
and cellular functions. Notwithstanding, fitting the codon sequence alignments of
NTCP and GPC5 to models that disallow positive selection (models M1 and M7, from the
PAML Codeml package [43]) compared to those that allow for positive selection (M2
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FIG 1 Phylogenetic analysis of primate, rodent, and bat NTCPs. The phylogenies were built using a PRANK alignment of orthologous
nucleotide sequences of NTCPs from 27 primate (1,047 bp), 18 rodent (1,029 bp), and 21 bat (1,005 bp) species retrieved from public

(Continued on next page)
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and M8, respectively), we found that primate, rodent, and bat NTCPs, but not GPC5s,
have experienced significant and strong positive selection (Table 1). As GPC5 was
shown to be a low-affinity attachment factor during the initial entry process of HBV (20),
the contrasting evolutionary patterns observed between both proteins could reflect a
difference in their molecular interaction affinity with HBV, with NTCP being the major
and constraining receptor for HBV infection. As a result, pathogenic HBVs may have
exerted a higher selective pressure on the NTCP protein than on GPC5.

To assess which sites have been under positive selection in NTCP, we ran different
site-specific models from HYPHY (44–47), and we used Bayesian empirical Bayes (BEB)
posterior probabilities (PPs) at codon sites in PAML (models M2 and M8). Based on
these analyses, we found different evolutionary patterns in primate, rodent, and bat
NTCPs, involving distinct sites (Table 2).

In primates, four codons (84, 157, 158, and 335) were found under positive selection
(Table 2 and Fig. 2). Of these, the sites at positions 84, 157, and 158 correlate with
amino acids that directly interact with the preS1 domain of the large envelope protein
of HBV (Fig. 2A and C) (21, 23, 24). Functional studies through domain/point mutations
have shown that species-specific differences at these HBV-binding sites of NTCP govern
species susceptibility/resistance by impacting orthohepadnavirus receptor usage with-
out affecting the bile acid transport function of NTCP (21, 23, 24, 48, 49). Combined with
our findings, this supports a model of pathogen-driven selection, as observed in other
systems in which signatures of diversification have been identified in housekeeping
genes encoding proteins hijacked by viruses for cellular entry (e.g., see references 29
and 31–35). Given that NTCP is expressed only in hepatocytes, its role as a viral receptor

FIG 1 Legend (Continued)
databases and newly sequenced in this study (in boldface type and highlighted by asterisks). The PhyML program was run using the
substitution models GTR�I�G for primates and rodents and HKY�I�G for bats (see Materials and Methods for details). Node
statistical supports are calculated with 1,000 bootstrap replicates (only values above 0.7 are shown). Virus pictograms indicate the
species in which orthohepadnaviruses have been reported. In New World monkeys, orthohepadnaviruses have been reported from
the woolly monkey and the capuchin monkey. However, NTCP sequences are not available for these species. The virus pictogram
for New World monkeys indicates natural circulation of orthohepadnaviruses within this group. The bars indicate the number of
nucleotide substitutions per site.

TABLE 1 Positive selection analyses of primate, rodent, and bat NTCP/SLC10A1 and GPC5 as well as of the orthohepadnavirus preS1
regiona

Data set Gene
M1 vs M2
P valueb

% positively
selected sites
in M2c

M2 �
(dN/dS ratio)d

M7 vs M8
P valueb

% positively
selected sites
in M8c

M8 �
(dN/dS ratio)d

Primates
All primate species NTCP 4E�03 2.61 3.87 2E�04 3.38 4.02
Simians (hominoids, NWM, OWM) NTCP 6E�04 5.19 3.68 8E�05 2.91 5.74
All primate species excluding hominoids NTCP 0.02 3.25 3.20 0.001 5.14 3.69
Rodents NTCP 2E�08 2.10 4.16 8E�10 2.67 3.32
Bats NTCP 2E�04 4.1 2.77 7E�08 7.31 2.20

Primates GPC5 1 — — 0.20 — —
Rodents GPC5 1 0.38
Bats GPC5 1 — — 1 — —

Hominoid HBV HBV preS1 1 — — 1 — —
Bat orthohepadnaviruses HBV preS1 1 — — 1 — —
aResults of the positive-selection analyses performed with PAML Codeml and comparing models that disallow positive selection (models M1 and M7; dN/dS ratio of
�1) to models allowing for positive selection (M2 and M8). Positive selection in the primate NTCP/SLC10A1 gene was assessed for different data sets: the whole
primate data set (n � 27), the simian primate data set (excluding the prosimians; n � 24), and the primate data set excluding hominoid species (n � 21). Evolutionary
analyses were also carried out on rodents (18 species). For bats, the analyses were performed on 21 species, including the newly obtained sequences in this study.
The GPC5 gene was analyzed for 20 primate, 19 rodent, and 7 bat species. The data shown were obtained with codon frequencies F61 and a starting omega dN/dS
ratio of 0.4. Similar results were found with a codon frequency of F3*4 and a starting omega value of 1.5. NWM, New World monkeys; OWM, Old World monkeys.

bP values generated from maximum likelihood ratio tests indicate whether the model that allows positive selection (models M2 and M8) better fits the data than the
nearly neutral one (M1 and M7).

cPercentage of codons evolving under positive selection (dN/dS ratio of �1). —, not applicable.
dAverage dN/dS ratio (�) associated with the positively selected sites.
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FIG 2 Primate NTCP has evolved under positive selection, with positively selected sites mapping to the HBV-binding region. (A) Representation of NTCP
with positively selected sites. A diagram representing the predicted domains of NTCP is shown (89), and the HBV-binding interfaces are highlighted in
yellow. Specific codons found to be evolving under positive selection (PAML, Bayesian empirical Bayes [BEB] posterior probability [PP] of �0.9; MEME,
P value of �0.1; FUBAR, PP of �0.9; REL, Bayes factor [BF] of �80), by at least three of the models used in this study (see Materials and Methods), are
indicated in red and in blue for the primate (n � 27) and the simian primate (n � 24) data sets, respectively. aa, amino acids. (B) Histogram of the BEB
PPs for a dN/dS ratio of �1 at each codon in an alignment of primate NTCP coding sequences. BEB values were inferred under the M8 site model
implemented in PAML Codeml. The codons shown with stars are those identified as being under positive selection by at least three methods. (C) Amino
acid alignment of the HBV-binding regions of NTCP from primates (27 publicly available species and 3 de novo-sequenced species). On the left, the
cladogram of primate NTCP, with the newly sequenced species highlighted in blue, is presented. Amino acid alignment was performed with PRANK, and
the color-coding is from Rasmol (Geneious, Biomatters). The positively selected sites, inferred by at least three methods, are indicated by the gray
symbols. On the right, human SNP information is given for the HBV-binding regions in human NTCP. NWM and OWM, New and Old World monkeys,
respectively. Codon numbering is based on the human NTCP sequence as a reference.
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is restricted to hepatotropic viruses, and hepadnaviruses seem to be the main driver
candidates for such genetic patterns. Indeed, hepatitis C virus (HCV) has no direct
binding interaction with NTCP (50). One cannot exclude a potential (additional) effect
of hepatitis D virus (HDV), because this defective RNA pathogen depends on HBV
envelope determinants to enter cells through NTCP, and chronic HBV/HDV infection
causes more-severe liver diseases in humans than HBV monoinfection. However, at
present, HDV has been described only in humans (51). Overall, this favors a model in
which the adaptive fingerprints of primate NTCP are the result of Orthohepadnavirus
selective pressure.

The four positively selected codons in primate NTCP have experienced recurrent
selection for mutations that replace the encoded amino acids. These positions are
therefore highly variable at the protein level (Fig. 2C), particularly in New World
monkeys and prosimians. In contrast, the HBV-binding interfaces of NTCP are highly
conserved within the hominoids (Fig. 2C). Evolutionary analyses of a primate NTCP
alignment without the hominoid species still show a significant signal of adaptive
evolution (Table 1). At the human population level, no polymorphism was reported at
these HBV-binding sites (NCBI dbSNP [Single Nucleotide Polymorphism Database]).
Notwithstanding, single nucleotide polymorphisms (SNPs), external to the HBV-binding
determinants, have been reported in Asian and African populations (52–54). In partic-
ular, the S267F mutation has been shown to impair NTCP function and impact HBV
infectivity (55, 56). Given the dual effect of this mutation, ascribing the presence of this
polymorphism to an ongoing arms race with HBV is delicate although possible.
Therefore, the absence of inter- and intraspecies variability in hominoid NTCP (Fig. 2C),
despite the broad circulation of orthohepadnaviruses (4, 5), suggests that orthohep-
adnaviruses have no longer been a strong selective pressure, since or following their
emergence in hominoids. Chronic HBV infection in humans and the related morbidity
appear mostly after reproductive life (57), which supports this hypothesis. Although less
likely, the passage of orthohepadnaviruses in hominoids may be too recent to track any
signatures of evolutionary arms races in their NTCP sequences.

Altogether, these findings suggest that adaptive evolution of NTCP has occurred
prior the hominoid diversification and that ancient and/or extinct pathogenic ortho-
hepadnaviruses have circulated in primates. This model further implies that orthohe-
padnaviruses have been associated with primates much earlier, at least prior to the
diversification of the simian primates, and for a far longer period during the Eocene (37,
38) than stated by previous hypotheses on HBV origin (4, 5). Our findings are also
consistent with the recent discovery of another Orthohepadnavirus from a New World
monkey, the capuchin monkey (CMHBV), and its basal position with woolly monkey
HBV (WMHBV) in the phylogenetic tree (7, 8). On the other hand, orthohepadnaviruses
have not yet been reported in the Old World monkeys and prosimians, except for
isolated cases of cross-species transmissions of human HBVs in crab-eating macaques
(58) and chacma baboons (59). Specific amino acid differences in the presumed
HBV-binding interfaces of NTCPs may explain the supposed absence of HBV-like viruses
in Old World monkeys (Fig. 2C) (49). Apart from hominoid species, primates are
generally understudied for orthohepadnaviruses, which may bias the knowledge of
their epidemiology and evolution. Our “indirect paleovirology” approach allows ad-
vancing knowledge on hepadnaviral evolutionary history in host species where viral
surveys are complicated.

Likewise, information on rodent orthohepadnaviruses is very scarce, which makes
the understanding of Orthohepadnavirus evolutionary history very difficult. By perform-
ing evolutionary analyses of rodent NTCP, we found that the evolutionary fingerprints
are both internal and external to the presumed HBV-binding sites (Tables 1 and 2; see
also Fig. 3) and that the presumed HBV-binding motifs in rodent NTCP have undergone
rapid evolution (Table 2; see also Fig. 3C). Noticeably, codon 84 was found to be under
significant positive selection, as in primates. It remains unclear whether all orthohep-
adnaviruses use NTCP as a cellular receptor. However, previous studies have shown that
woodchuck NTCP supports human HBV infection, although at low levels (60), and that
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variability at positions 84 to 87 in mouse NTCP was the limiting factor for human HBV
binding (23, 24). It is thus possible that rodent orthohepadnaviruses also use NTCP,
although further work would be necessary to confirm this. In combination with our
findings, it is tempting to speculate that the variability at the presumed HBV-binding
sites in rodent NTCP reflect a past genetic arms race with ancient pathogenic ortho-
hepadnaviruses. This is in accordance with the relatively high pathogenicity of wood-
chuck hepatitis virus (WHV) (61). This would also suggest that the Sciuridae are not the
sole family infected by extinct and/or extant orthohepadnaviruses. Furthermore, the
high variability, in particular at positions 84 and 157 (although codon 157 is supported
by only two of the five evolutionary models used in this study [Fig. 3C and Table 2]),

FIG 3 Rodent NTCP has evolved under positive selection and displays similar patterns of evolution as those observed in primates. (A) Representation of NTCP
(as in Fig. 2A) with positively selected sites during rodent evolution. Specific codons found to be evolving under significant positive selection by at least three
of the models used in this study (see Materials and Methods) are indicated by the gray symbols. (B) Histogram of the BEB PPs for a dN/dS ratio of �1 at each
codon in an alignment of rodent NTCP coding sequences. BEB values were inferred under the M8 site model implemented in PAML Codeml. The codons shown
with stars are those identified as being under positive selection by at least three methods. (C) Amino acid alignment of the HBV-binding regions of rodent NTCP
is presented along with the cladogram on the left, as in Fig. 2C. Codon numbering is based on the human NTCP sequence as a reference.
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could be a key determinant of species specificity and explain, at least partly, the
presumed restricted circulation of orthohepadnaviruses in rodents.

In bats, the signatures of diversifying selection in NTCP are scattered along the
protein sequence (Fig. 4). Importantly, none of the six positively selected codons (29,
33, 203, 204, 294, and 330) map to the presumed HBV-binding motifs (Fig. 4). Instead,
the latter are mostly conserved (Fig. 4C). The 3D homology model of bat NTCP also
supports that the positively selected residues lie outside the presumed HBV-binding
interface (Fig. 5). There are at least three possible explanations for such adaptation of
bat NTCP.

FIG 4 Strong signatures of positive selection in bat NTCP are observed, but none of the positively selected sites map to the presumed HBV-binding interface.
(A) Representation of NTCP (as in Fig. 2A) with positively selected sites during bat evolution. Specific codons found to be evolving under significant positive
selection by at least three of the models used in this study (see Materials and Methods) are indicated by the gray symbols. (B) Histogram of the BEB PPs for
a dN/dS ratio of �1 at each codon in an alignment of bat NTCP coding sequences (from the PAML Codeml M8 model). The codons shown with stars are those
identified as being under positive selection by at least three methods. (C) Amino acid alignment of the HBV-binding regions of NTCPs from 21 bat species is
presented along with the cladogram on the left, as in Fig. 2C. The newly sequenced species are highlighted in boldface type. (D) Amino acid alignment of the
positively selected sites (from panel A) in bat NTCP. Codon numbering is based on the human NTCP sequence as a reference.
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First, it is possible that bat orthohepadnaviruses bind to other NTCP surfaces in bats.
It has been shown that tent-making bat orthohepadnavirus (TBHBV) was able to
interact with human NTCP for entry into hepatocytes (9). Moreover, the preS1 domain
of bat orthohepadnaviruses shows high sequence identity with the typical core signa-
ture of NTCP binding of primate HBV (NPLGFFP motif). This suggests that bat ortho-
hepadnaviruses may use NTCP as a cellular receptor, but the molecular interactions
have yet to be characterized. Otherwise, we cannot exclude that bat viruses use
another receptor altogether. The study of pathogenic virus-host evolutionary interac-
tions has the power to predict and identify the sites of interaction and has been
successfully used to characterize binding interfaces of host-virus protein interactions
(e.g., see references 62–66). In line with this, the positively selected codons identified
in bat NTCP (Fig. 4D) could represent the binding surfaces of bat orthohepadnaviruses.
If so, the signatures of rapid evolution in NTCP may be reminiscent of past genetic
conflicts with orthohepadnaviruses during bat evolution. This hypothesis supposes not
only a long-term coevolution but also that orthohepadnaviruses have been pathogenic
to bats. Functional analyses are further required to decipher the implication of ortho-
hepadnaviruses in bat NTCP evolution.

Second, the genetic fingerprints in bat NTCP may reflect a different selective
pressure of orthohepadnaviruses in bat species. Indeed, if bat orthohepadnaviruses
interact with the same NTCP surfaces, the absence of positive selection in this interface
suggests that orthohepadnaviruses have not been strong drivers of bat NTCP evolution
despite their presumed long-term association with chiropteran species (12, 67). Bats are
assumed to host most zoonotic viruses asymptomatically (68). Specific immunological
features may allow them to tolerate or enhance the antiviral response to efficiently
control viral infection and/or pathogenesis (69–73), including orthohepadnavirus infec-
tions.

In the latter scenario, the observed signatures of positive selection in bat NTCP could
have resulted from other pathogens, including pathogenic viruses or bacteria (e.g., see
reference 74).

It is worth mentioning that the genetic fingerprints external to the presumed
HBV-binding sites in primates and rodents could also be explained by the above-
mentioned hypotheses. In particular, one cannot exclude that other sites (i.e., those
under positive selection) are also involved in HBV binding.

FIG 5 3D homology modeling of primate, rodent, and bat NTCPs highlighting the sites under positive selection and the HBV-binding
determinants. The 3D modeling of NTCP was performed with the SWISS-MODEL program (87, 88) based on the crystal structure of ASBTYf

(89). The amino acid NTCP sequences of human, mouse, and little brown bat were used as queries for modeling the structures of primate,
rodent, and bat NTCPs, respectively. The models represent amino acids 27 to 308 for primates (A), rodents (B), and bats (C). The
HBV-binding determinants are depicted in yellow, and the positively selected sites are highlighted red.
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A third nonexclusive hypothesis is that the observed genetic fingerprints reflect
adaptive changes related to bat metabolism. Indeed, as a major bile acid transporter,
NTCP has a key role in mammalian enterohepatic circulation, digestion, and metabolic
regulation (75). Given the huge diversity and adaptive radiations in bats into novel
trophic niches (41), accompanied by extensive changes in various traits (such as diet),
it is conceivable that the bat NTCP protein has been a target of molecular adaptation
in relation to energy and/or dietary metabolism. To explore this hypothesis, we
performed a principal-coordinate analysis (PCoA) on the genetic distances of bat NTCP
sequences. The Euclidian distances were computed using the polymorphic sites from
an alignment of bat NTCP protein sequences (Fig. 6). Projection of the PCoA data on the
first two axes reveals a clear structuration of bat NTCP variability depending on diet
(axis 1) and phylogeny (axis 2) (Fig. 6). This pattern suggests that bat NTCP may have,
at least partly, evolved in response to the diversification of diet in bats, although more
species are needed to further confirm the observed tendency. Such an evolutionary
response to diet has been reported for the SLC2A4 gene, encoding the transmembrane
glucose transporter 4 protein (GLUT4), in which the genetic footprints are due to the
frugivorous diet of Old World fruit bats (76).

While a combination of coevolution and host switches has been described in
mammalian orthohepadnaviruses (67, 77), the involved molecular factors/barriers are
yet to be determined. Here, we suggest that NTCP may contribute to Orthohepadna-
virus differential host specificity in mammals. In nonhominoid primates, the adaptive
changes in NTCP may contribute to the current narrow host range of orthohepadna-
viruses, while the conserved HBV-binding regions in hominoid NTCP (Fig. 2C) may allow
viral interspecies circulation. This is further reflected on the virus side, where the
determinants of NTCP interaction in the HBV preS1 domain are mostly conserved in
hominoid viruses (see Fig. S2 at https://figshare.com/articles/FIG_S2_Comparative
_amino_acid_variability_at_the_virus_and_host_interfaces_mammal_NTCP_and
_orthohepadnavirus_preS1_domain/7321097). In addition, evolutionary analyses of a
hominoid HBV preS1 alignment did not identify any significant adaptive signatures of
positive selection (Table 1), supporting the absence of virus-host coevolutionary dy-

FIG 6 Principal-coordinate analysis (PCoA) of bat NTCP highlights an effect of diet on NTCP evolution. PCoA was performed on the bat NTCP protein sequence
alignment using the ADEGENET package in R (91). Only polymorphic sites were retained for the analysis. The pairwise distance between each sequence was
calculated and then centered, and a planar representation of these distances was achieved by PCoA. The PCoA plots were generated using the first two principal
coordinates (PCs), which explain a total of 33% of the variation. The graphics were obtained with the ADEGRAPHICS package available in R (92). The plot shows
bat species grouping by similarities in polymorphic sites of the NTCP protein sequence. (A) Projection of species genetic distance, with each species label
abbreviation. (B and C) A clear structure opposes frugivorous to insectivorous species on the first axis (B), while the second axis shows a tendency of
phylogenetic groups opposing the Yinpterochiroptera to Yangochiroptera (C). Abbreviations: Ep_fus, Eptesicus fuscus; My_luc, Myotis lucifugus; My_dav, Myotis
davidii; My_bra, Myotis brandtii; Mi_sch, Miniopterus schreibersii; Mi_nat, Miniopterus natalensis; Ur_bil, Uroderma bilobatum; Ca_per, Carollia perspicillata; Pt_rub,
Pteronotus rubiginosus; Na_tum, Natalus tumidirostris; Mo_mol, Molossus molossus; Eu_aur, Eumops auripendulus; Pe_mac, Peropteryx macrotis; Sa_lep, Saccop-
teryx leptura; No_alb, Noctilio albiventris; Pt_ale, Pteropus alecto; Ro_aeg, Rousettus aegyptiacus; Rh_sin, Rhinolophus sinicus; Rh_fer, Rhinolophus ferrumequinum;
Hi_arm, Hipposideros armiger; Hi_rub, Hipposideros ruber.
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namics within the hominoids. In contrast, positive selection would be expected in the
preS1 domain of orthohepadnaviruses from other primate clades. However, no viruses
have been reported in prosimians, and only two orthohepadnaviruses have been
reported in New World monkey species, which is not enough to seek signatures of
positive selection. Likewise, orthohepadnaviruses have been reported in only three
rodent species, thereby limiting the screen of positive selection on the virus side. In
bats, while interspecies transmissions may have arisen on a background of an ancient
Orthohepadnavirus-bat association, cross-species transmissions between highly diver-
gent species seem more recurrent (12). The latter may be facilitated by biological and
ecological factors specific to bats, including their large population sizes, high intra- and
interspecies contact rates, or migration (78). If bat orthohepadnaviruses use the same
NTCP motifs as those in primates, the conserved property of these sites in bat NTCP
suggest that NTCP may be a weak genetic constraint in bats, which could increase the
transmission of orthohepadnaviruses among diverse bat species and favor bat Ortho-
hepadnavirus diversity.

Overall, this study brings insights on the pathogenicity and molecular determinants
currently governing interspecies circulation of orthohepadnaviruses within mammals.
While modern orthohepadnaviruses may have a mild pathogenicity in their hosts, our
findings suggest that ancient pathogenic orthohepadnaviruses have been a selective
pressure during mammalian evolution, particularly in primates and rodents. The con-
trasting genetic pattern in bats indicates a different Orthohepadnavirus-NTCP molecular
interaction or may reflect adaptive changes associated with bat metabolism. Our study
further points to NTCP as a genetic constraint for orthohepadnavirus cross-species
transmissions in primates and rodents but less so in bats. This difference in NTCP
genetic constraints may explain, at least partly, the difference in orthohepadnavirus
diversity in mammals.

MATERIALS AND METHODS
Collection of NTCP and GPC5 orthologous sequences from public databases. NTCP and GPC5

sequences from primates, rodents, and bats were obtained by tBLASTn searches of the nucleotide
databases from GenBank (79) using human, mouse, and little brown bat NTCP or GPC5 protein sequences
as queries, respectively. In total, 27 NTCP and 20 GPC5 sequences from hominoids, Old World monkeys,
New World monkeys, and prosimians were obtained (see Table S1A at https://figshare.com/articles/Table
_S1_Information_on_the_species_and_the_sequences_used_for_evolutionary_analyses_in_primates_A
_rodents_B_and_in_bats_C_/7315235). NTCP and GPC5 sequences from 18 rodent species were ob-
tained. For bats, NTCP and GPC5 sequences were publicly available for nine and seven species,
respectively (see Tables S1B and C at https://figshare.com/articles/Table_S1_Information_on_the_species
_and_the_sequences_used_for_evolutionary_analyses_in_primates_A_rodents_B_and_in_bats_C_/
7315235).

Sampling of additional primate and bat species. Prosimian peripheral blood mononuclear cells
(PBMCs) were isolated using Histopaque 1077 from leftover blood samples (approximately 1 ml, from
blood drawn for health purposes) from two Lemuridae prosimians (Lemur catta and Hapalemur simus)
hosted at the Zoo de Lyon, France (Guillaume Douay). New World monkey cells from owl monkey (Aotus
trivirgatus) (owl monkey kidney [OMK] cells) were obtained from CelluloNet Lyon and were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum.

Bats were sampled in Gabon (Hipposideros cf. ruber), French Guiana (Peropteryx macrotis, Pteronotus
rubiginosus, Carollia perspicillata, Natalus tumidirostris, Saccopteryx leptura, Eumops auripendulus, Molossus
rufus, Noctilio albiventris, and Uroderma bilobatum), and France (Miniopterus schreibersii and Rhinolophus
ferrumequinum). Importantly, M. schreibersii, R. ferrumequinum, U. bilobatum, and Hipposideros cf. ruber
are known as natural hosts of hepadnaviruses (9–13). Authorization for bat capture in France and in
French Guiana was provided by the Ministry of Ecology, Environment, and Sustainable Development over
the period from 2015 to 2020 (approval no. C692660703 from the Departmental Direction of Population
Protection [DDPP], Rhône, France). All methods (capture and animal handling) were approved by the
Museum National d’Histoire Naturelle (MNHN), the Société Française pour l’Étude et la Protection des
Mammifères (SFEPM), and the Direction de l’Environnement, de l’Aménagement et du Logement Guyane
(DEAL-Guyane). African bat samples used here were collected in a previous study, which was approved
by the Gabonese National Ethics Committee (authorization no. PROT/0020/2013I/SG/CNE).

Bats were captured using harp traps at the entrance of caves or mist nests hoisted on the forest floor
and in the tree canopy. Captured bats were removed carefully from nests or harp traps as soon as
possible to minimize injury or stress. Tissue samples for DNA analysis were collected from the wing
membrane (patagium) using a 3-mm-diameter biopsy punch (Kai Industries, Gifu, Japan) and preserved
in a 70% ethanol solution until DNA extraction. Bats were released after sampling.
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Nucleic acid extraction and molecular identification. Total genomic DNA (gDNA) was extracted
from the primate cells and from the ethanol-preserved samples of bat punch specimens using a
Macherey-Nagel NucleoSpin tissue kit according to the manufacturer’s protocol. To ensure proper
identification of the sampled bat species, we amplified and sequenced the mitochondrial gene cyto-
chrome b (Cytb), using the primers CytB-F and CytB-L/R (80). PCRs were carried out in a total volume of
25 �l containing 1� reaction buffer (DreamTaq DNA polymerase; Thermo Fisher Scientific), 0.2 mM each
deoxynucleoside triphosphate (dNTP), 0.2 �M each primer, 1 U of Taq polymerase (DreamTaq DNA
polymerase; Thermo Fisher Scientific), and approximately 10 ng of extracted genomic DNA. Cycling
conditions consisted of an initial denaturation step at 94°C for 3 min, followed by 35 cycles at 94°C for
30 s, 58°C for 45 s, and 72°C for 1 min and then a final extension step at 72°C for 3 min. PCR products with
multiple bands were excised and purified from gel using the NucleoSpin gel and PCR clean-up kit from
Macherey-Nagel. Single PCR products from each species were sequenced by a commercial company
(GATC Biotech, Germany).

De novo sequencing of NTCP/SLC10A1 genes. We amplified and sequenced the NTCP/SLC10A1
gene from the extracted gDNA. We used bat and primate NTCP alignments generated from publicly
available sequences Specific primers targeting SLC10A1 intronic regions were designed to amplify and
sequence each of the five exons (see Table S2 at https://figshare.com/articles/Table_S2_Primers_and
_PCR_conditions_for_NTCP_amplification_in_bats_and_primates/7321100). We used the Qiagen Dream
Taq kit under conditions for amplification presented in Tables S3 and S4 at https://figshare.com/articles/
S3_Table_Primer_pairs_used_for_NTCP_amplification_of_each_species_/7321109 and https://figshare
.com/articles/S4_Table_Mix_PCR_for_NTCP_amplification_/7321115. Gel purification was performed
when necessary using the NucleoSpin gel and PCR clean-up kit from Macherey-Nagel. The exon
sequences were assembled together to generate the whole coding sequence of NTCP.

Phylogenetic analyses of NTCP and GPC5. NTCP and GPC5 sequences were aligned using
webPRANK (81). Poorly aligned codons at the C terminus were removed for rodents and bats,
leading to alignment lengths of 1,029 bp and 1,005 bp for rodents and bats, respectively. The overall
pairwise amino acid identities were estimated for both proteins from eutherian mammal (NTCP, n �
55; GPC5, n � 44), bat (NTCP, n � 21; GPC5 n � 7), rodent (NTCP and GPC5, n � 18), and primate
(NTCP, n � 27; GPC5, n � 20) species using MEGA v.7 (82). Using these same data sets, amino acid
variability at each position was further assessed with the ConSurf Web server (83). The following
approach was used for primate, rodent, and bat data sets. To account for potential confounding
effects of recombination, we tested our data sets with the Genetic Algorithm for Recombination
Detection (GARD) (84), which is available in the HYPHY package (46). Based on codon sequence
alignments, we tested for the best substitution model using Smart Model Selection (SMS) in PhyML
(85), which was used for subsequent phylogenetic analyses (GTR�Invariant sites [I]�Gamma [G] for
primates and rodents and HKY�I�G for bats). A phylogenetic tree of NTCP and GPC5 orthologous
sequences was constructed using the maximum likelihood method implemented in the ATGC-PhyML
Web server (86). Node supports were tested using the bootstrap method through 1,000 replicates. For
supplemental data sets, see https://figshare.com/articles/Dataset_S1_Nucleotide_Alignments_of_primate
_rodent_and_bat_NTCP/6809618, https://figshare.com/articles/Dataset_S2_Nucleotide_Alignments
_and_Phylogenetic_Trees_of_primate_rodent_and_bat_GPC5/6809657, and https://figshare.com/articles/
Dataset_S3_Eutherian_NTCP_and_GPC5_codon_alignments/6809663.

Positive-selection analyses of NTCP and GPC5. Detection of recurrent positive selection in primate,
rodent, and bat NTCPs and GPC5s was carried out using five different methods. These include the
Codeml program implemented in the PAML package (43), the Fast Unbiased Bayesian Approximation
(FUBAR) that uses Bayesian inference to detect positive and negative selection at individual sites (44), and
the Random Effects Likelihood (REL) and the Mixed Effects Model of Evolution (MEME) implemented
through the HYPHY package (45, 47). Codeml allows both gene- and site-specific detection of positive
selection by comparing constrained models that disallow positive selection (models M1 and M7; dN/dS
ratio of �1) to unconstrained models allowing for positive selection (M2 and M8). We first ran the
one-ratio model (M0) to check the parameters. The phylogenetic tree generated by this model was then
used to run the other models under the following parameters: codon frequencies of F61 and F3*4 and
starting omega (dN/dS ratio) values of 0.4 and 1.5. The percentage of sites exhibiting a significant signal
of positive selection was estimated, as were the average dN/dS ratios of these sites. Likelihood ratio tests
(LRTs) were performed to compare models M1 versus M2 and M7 versus M8, and posterior probabilities
for sites were calculated according to the Bayesian empirical Bayes model (43). To ensure the robustness
of results, we kept the sites that were significantly identified by at least three methods of the five used
in this study (Table 2). Given the low number of prosimian samples and the longer branches of
prosimians in the primate data set, we performed three different series of analyses for detection of
positive selection: the first set included all the primate species (n � 27), the second data set comprised
only simian species (hominoids, Old World monkeys, and New World monkeys; n � 24), and the last one
included sequences of the first exons of NTCPs from the whole data set and the newly sequenced species
(n � 30) (see Table S1 at https://figshare.com/articles/Table_S1_Information_on_the_species_and_the
_sequences_used_for_evolutionary_analyses_in_primates_A_rodents_B_and_in_bats_C_/7315235).

Positive-selection analyses of HBV preS1. The determinants of interaction with NTCP are located
in the HBV preS1 domain of the large envelope protein. We thus performed positive-selection analyses
on a codon sequence alignment of the preS1 domain, using models M1 versus M2 and M7 versus M8 of
Codeml. Given the scarcity of Orthohepadnavirus sequences from primates, evolutionary analyses were
restricted to the viruses naturally infecting hominoids and were therefore performed on 12 hominoid
HBVs (human HBV genotypes A to H, chimpanzee HBV, gorilla HBV, gibbon HBV, and orangutan HBV).
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The same analysis was performed for bat orthohepadnaviruses (RBHBV China, HBVBV China, RBHVB
Gabon, RBHBV Gabon, Lushi_RpHBV, Guizhou_MsHBV, Jiyuan_RfHBV, TBHBV, and LBHBV).

3D homology modeling of NTCP. Human NTCP as well as the mouse and little brown bat NTCP
protein sequences were used as queries for the SWISS-MODEL tool (https://swissmodel.expasy.org) (87,
88) to model the 3D homology of NTCPs. Models were inferred using the apical sodium-dependent bile
acid transporter protein of Yersinia frederiksenii (ASBTYf) as a template (PDB accession no. 4N7W) (89).
N-terminal residues 1 to 27 and C-terminal residues 309 to 349 could not be structurally predicted. As
a result, the 3D model represents amino acids 28 to 308 for primate, rodent, and bat NTCP proteins. The
protein structure was edited with Swiss PDB viewer (90).

Principal-coordinate analysis. To explore what contributes to bat NTCP evolution, we carried out
a principal-coordinate analysis (PCoA) on a bat NTCP protein sequence alignment. The latter was
obtained by translating the codon alignment used for the positive-selection analyses, using MEGA v.7
(82). The polymorphic sites were extracted from the protein alignment, and pairwise Euclidian genetic
distances between species were computed and centered, based on the polymorphic sites. PCoA was
then performed on the genetic distance matrix using the ADEGENET package in R (91). The PCoA plots
were generated using the first two principal coordinates (PCs), which explain a total of 33% of the
variation. The graphics were obtained with the ADEGRAPHICS package available in R (92).

Accession number(s). The exon sequences have been deposited in GenBank under accession no.
MK131104 to MK131149.
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