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Summary

The human gut microbiome matures toward the adult composition during the first years of life and 

is implicated in early immune development. Here, we investigate the effects of microbial genomic 

diversity on gut microbiome development using integrated early childhood datasets collected in 

the DIABIMMUNE study in Finland, Estonia and Russian Karelia. We show that gut microbial 

diversity is associated with household location and linear growth of children. Single nucleotide 

polymorphism (SNP)- and metagenomic assembly-based strain tracking revealed large and highly 

dynamic microbial pangenomes, especially in the genus Bacteroides, in which we identified 

evidence of variability deriving from Bacteroides-targeting bacteriophages. Our analyses revealed 

functional consequences of strain diversity; only 10% of Finnish infants harbored Bifidobacterium 
longum subsp. infantis, a subspecies specialized in human milk metabolism, whereas Russian 

infants commonly maintained a probiotic Bifidobacterium bifidum strain in infancy. Groups of 

bacteria contributing to diverse, characterized metabolic pathways converged to highly subject-

specific configurations over the first two years of life. This longitudinal study extends the current 

view of early gut microbial community assembly based on strain-level genomic variation.

Introduction

Mounting evidence shows the developing gut microbiome, particularly immediately after 

birth, plays an important role in human health1–3. Immune system maturation is orchestrated 

by early microbial exposures4,5, and early childhood immune-mediated disorders including 

type 1 diabetes (T1D)6, asthma7, juvenile rheumatoid arthritis8, allergic disease9, and 

inflammatory bowel disease 10 are linked to aberrations in gut microbiota. Several human 

T1D cohort studies reported gut microbiota alterations11 and increased intestinal 

permeability12 prior to diagnosis, but mechanisms connecting gut health to autoimmune 

destruction of pancreatic beta cells remain relatively unknown. Complex relationships 

between the microbiome and the immune system13,14 during the first years of life appear 

critical to later life health outcomes but have not been explored at the population scale.

Increasingly, microbiome-linked health outcomes appear to be consequences of individual 

strains of specific microbes15–17. These outcomes can result from structural variants in gene 

products of individual strains18, the presence or absence of gene cassettes19,20 or currently 

unexplained mechanisms. Until recently, most culture-independent methods for investigating 

microbiomes in large-scale human populations (e.g., 16S rRNA gene amplicon sequencing) 

were limited in their resolution of distinct microbial strains. Now, efficient metagenomic 
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sequencing and culture-independent strain-level analysis methods enable more detailed 

investigation of the early life microbiome.

Single-nucleotide polymorphisms (SNPs) accruing in microbial genomes over time can be 

used as a molecular clock to evaluate evolutionary distance between strains of the same 

species21–24. Such approaches have been instrumental in investigating maternal seeding of 

infant gut microbiomes23,25–28. Complementing SNP-based methodologies, metagenomic 

assembly enables detecting and profiling known and previously unknown metagenomic 

species and genes, as well as gene content-based strain tracking16,29–31. Gene-centric strain 

profiling also evaluates functional implications of strain-level variability more directly19,20. 

While SNP- and assembly-based approaches successfully improved the resolution and 

clinical relevance of many population-level microbiome studies, comparisons of these 

complementary approaches on a single large microbiome dataset to identify subpopulations 

and functional adaptations has not been published.

For instance, bifidobacteria are widely-characterized beneficial commensals, commonly 

dominating the gut during breastfeeding and dissipating throughout life, that possess 

immunomodulatory functions, produce beneficial metabolites and metabolize a range of 

diet-derived, nondigestible carbohydrates32. Subspecies found specifically in the infant gut 

typically harbor a wide variety of genes enabling the sole use of human milk 

oligosaccharides (HMOs) for energy33. B. longum subsp. infantis (B. infantis)34 and some 

B. longum subsp. longum strains35 are capable of membrane transport and intracellular 

degradation of intact HMOs, whereas other B. longum subspecies rely partially on 

extracellular enzymes for HMO utilization36. Culture-independent detection of B. infantis, 

or any other Bifidobacterium strains, in metagenomic data is not well-established and 

requires the above-mentioned strain characterization methods.

Here, we characterize strain-specific genomic variation and its contribution to the early gut 

microbiome using an integrated and extended dataset from DIABIMMUNE, which includes 

nearly 300 children with human leukocyte antigen (HLA) haplotypes conferring increased 

risk to autoimmune disorders (roughly four-fold over the background population) in three 

neighboring countries: Finland, Estonia, and Russian Karelia. These children were observed 

for three years from birth by monthly stool sampling, frequent questionnaires about common 

life events and circumstances, and periodic blood sampling to track different immune 

parameters. The integrated DIABIMMUNE dataset consists of 16S rRNA gene sequencing 

of 3,204 samples and metagenomic sequencing of 1,154 samples, together spanning 289 

subjects at an average of 11.4 (range 1-36) timepoints per subject. We briefly report 

association analyses of 16S data followed by SNP- and metagenomic assembly-based strain 

and pangenome analyses of common early gut species. The integrated DIABIMMUNE 

microbiome data provide detailed, strain-level characterizations of the developing gut 

microbiome.

Results

DIABIMMUNE followed Finnish, Estonian, and Russian children for three years from birth 

by collecting monthly stool samples, periodic serum samples, and frequent questionnaires on 
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early life events. Here, we integrate all published DIABIMMUNE microbiome data 

generated in multiple studies using 16S rRNA amplicon, metagenomic and virome 

sequencing techniques37–40. After a unified quality control process, the data consisted of 

3,204 16S amplicon and 1,154 metagenomic sequencing profiles from 289 and 269 subjects, 

respectively (Table 1, Supplementary Figure 1, Supplementary Table 1).

Early gut microbiome explorations are complicated by natural dynamics and numerous 

interactions with intrinsic and extrinsic factors. To further understand early microbial 

development relative to these factors, we analyzed 16S data using both omnibus and 

individual association tests. Early growth, household location and antibiotic courses during 

pregnancy, among other variables, were associated with early gut microbial composition 

(Supplementary Note 1, Supplementary Figure 1, Supplementary Tables 2–4). Height at 

age three (Supplementary Figure 1) and growth rate during the first three years of life were 

positively associated with microbial diversity.

Strain diversity and ecology in the early gut

To expand the analysis beyond the genus level typical for 16S data, we leveraged shotgun 

metagenomic data to perform in-depth, strain-level analyses using SNPs and gene content. 

Strain analysis can delineate microbial sub-populations22,41 and identify potential functional 

adaptations in the gut microbiome31. Particularly, de novo strain identification is important 

for species with a limited number of isolates, and the gut microbiome has many such 

understudied species despite large cultivation efforts42.

We first characterized dominant strains for the most abundant species in the metagenomic 

data by calling SNPs on conserved and unique species-specific marker genes selected from 

their core genomes (i.e., genes shared across all strains within the species)21. This resulted in 

a marker gene-based SNP haplotype of the dominant strain per species, hereby referred to as 

SNP haplotype. We then compared SNP haplotypes by sequence similarity and stratified 

them in intra- and inter-subject comparisons (Fig. 1A, Supplementary Figure 2, 

Supplementary Table 5). Longitudinal, intra-subject comparisons showed more similar 

strains compared to inter-subject comparisons, as previously observed22,43. We found a wide 

range of strain diversities among investigated bacterial species (Fig. 1A, Supplementary 

Table 5): Haemophilus parainfluenzae and Faecalibacterium prausnitzii were among the 

most diverse species, with strains having less than 95% sequence similarity in SNP 

haplotype comparisons. Conversely, all investigated members of genus Bacteroides had very 

low sequence variability, with virtually identical SNP haplotypes in intra-subject 

comparisons (mean sequence similarity 99.96% over an average of 44.3kb of core genome 

per species) and over 99.6% sequence similarity on average in inter-subject comparisons. All 

other species analyzed had an average inter-subject similarity of 98.9%.

The observed high level of sequence identity in Bacteroides spp. contradicted existing 

evidence of diversity in their gene content44. We speculated that the SNP haplotypes did not 

capture all means of microbial genetic diversification, which include lateral gene transfer 

(LGT) and niche adaptation. Previously, we identified Bacteroides dorei as a highly 

abundant species potentially interfering with early immune maturation39. Therefore, we 

investigated genome diversity further in this species by isolating and sequencing eight B. 

Vatanen et al. Page 4

Nat Microbiol. Author manuscript; available in PMC 2019 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dorei strains from human stool (Supplementary Note 2, Supplementary Figure 2, 

Supplementary Tables 6–7). Each isolate genome harbored between 276 and 1,168 

(median 750) unique accessory genes representing, on average, 13% of their genomes. 

Given the numbers of unique accessory genes across these B. dorei isolates, we wondered 

whether this diversity partially owed to LGT by bacteriophages.

Bacteriophages contribute to genome plasticity in Bacteroides spp.

Bacteroides-targeting bacteriophages (phages) are among the most common members of the 

highly diverse human gut virome, leading us to evaluate their contribution to the observed 

genome plasticity in this genus. To investigate bacteria-phage interactions in the gut, we 

utilized viral contigs (viromes) assembled using data from virus-like particle preparations of 

22 DIABIMMUNE subjects40. Using bacterial metagenomes of subjects with viral contig 

data and a designated computational method45 (Supplementary Note 3), we reconstructed 

metagenomic CRISPR arrays that harbor spacer sequences targeting phages to which 

bacteria have adapted a response. We found the number of CRISPR spacers in the 

metagenomes reflected the microbiomes’ increasing diversity and overall maturation 

(Supplementary Figure 3). In total, we identified 2,463 CRISPR spacers matching sequences 

in the gut virome across all samples, of which 223 matched sequences in the gut virome of 

the same subject (Supplementary Figure 4, Supplementary Table 8). We found 658 of these 

spacers in CRISPR cassettes on assembled metagenomes, covering 32 bacterial taxa, with B. 
vulgatus harboring the most (84, 28.5% of the spacers matching contigs annotated on 

species level), B. dorei harboring 9, and all Bacteroides spp. collectively harboring 138 

spacer sequences (Supplementary Table 9). Additionally, when mapped against the virome, 

105 (4.2%) spacers matched viral contigs annotated as Bacteroides spp phages. These data 

suggest Bacteroides spp. were exposed to an extensive phage repertoire in the children’s 

guts, providing a plausible mechanism for increased genomic plasticity in Bacteroides.

Metagenomic assembly highlights strain diversification patterns within gut species

To explore accessory genome variation more broadly and across all taxa, we turned to de 
novo metagenome assembly of DIABIMMUNE metagenomes. This expanded the gene pool 

(number of observed non-redundant genes) to 6,328,944 gene families, compared to 

1,932,010 gene families found using NCBI isolate genomes. Using a co-abundance 

technique30, we binned the assembled metagenomes into metagenomic species and 

constructed pangenomes for 22 species (Fig. 1B, C).

Among all analyzed species, Bacteroides spp. and E. coli harbored the largest assembled 

pangenomes, each with over 25,000 genes (Fig. 1C), consistent with high genome plasticity 

reported in these taxa44,46. Consistent with the SNP haplotype analysis, strains recovered 

from the same individual were more similar to each other than to strains found in different 

individuals (Fig. 1B, Supplementary Table 5). The magnitude of variability, however, was 

much higher for gene content than for SNP haplotypes (Fig. 1A, B). These measures were 

highly correlated in most species but showed low or no correlation in a minor subset, 

including F. prausnitzii and B. dorei (Fig. 1D). In B. dorei, the results from metagenomic 

assemblies and isolate genomes showed a similar trend, suggesting the incongruity between 

SNP haplotypes and assembled genomes was not an artefact of metagenomic assembly (Fig. 
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1E). Rather, it indicates a more rapid or higher volume diversification in the accessory 

genome compared to the point mutation rate in the core genome. In contrast, E. coli 
metagenome assemblies displayed a high correlation between gene content and SNP 

haplotype similarities (Fig. 1F) as previously reported47.

We again used the longitudinal nature of our study to compare the difference in gene content 

between strains from the same or different individuals. On average, B. dorei metagenomic 

assemblies had 88% gene content similarity in intra-subject comparisons and significantly 

lower (69%) similarity in inter-subject comparisons. Notably, these values are within the 

observed range comparing B. dorei isolate genomes (Supplementary Figure 2). H. 
parainfluenzae, an autochthonous oral cavity member, was an outlier with very similar intra- 

and inter-subject gene similarities (65% and 62%, respectively), conceivably reflecting 

transient gut colonization events and frequent replacement with new strains transmitted from 

the oral cavity. A closer investigation of colonization patterns for several common oral 

species in the guts of these children revealed that many such species bloomed in Finnish and 

Estonian infants during the first year of life (Supplementary Note 4, Supplementary Figure 

5, Supplementary Table 10).

Strain-level variation in Bifidobacterium spp. reflects breastfeeding patterns and 
geography

Our strain diversity analysis identified relatively high intra-subject variability in B. longum 
compared to other common Bifidobacterium species B. bifidum or B. breve (Fig. 1A, B). 

Given implications of bifidobacteria in immune development and early microbial 

community assembly2,48, we sought to explore in more detail the functional consequences of 

this strain-level variation during infancy. To first identify a known B. longum subspecies 

clade, B. infantis, we surveyed the metagenomic data for genes of a well-characterized B. 
infantis cluster responsible for HMO transport and degradation34. Presence of these genes 

corresponded with the SNP haplotype-based phylogeny of B. longum strains (Fig. 2A, B) 

and two B. infantis reference sequences (ATCC 15697) clustered with 70 strains harboring 

these genes (highlighted red in Fig. 2A). We found evidence of this gene cluster in 14 

additional samples, which possibly harbored multiple B. longum strains, of which B. infantis 
was non-dominant, and resulted in a SNP haplotype profile not based on B. infantis.

B. infantis was found in 23.7% (42/177) of stool samples collected during breastfeeding but 

only 3.2% (11/343) of samples collected after weaning (excluding samples with low relative 

abundance of B. longum precluding strain identification and samples from subjects with no 

breastfeeding information), reflecting a clear strain shift relative to breastfeeding cessation. 

Overall, 10% of Finns, 20% of Estonians and 23% of Russians harbored B. infantis in at 

least one stool sample (either during breastfeeding or after cessation), suggesting that most 

subjects in this cohort never obtained B. infantis in their gut ecosystems. Comparing B. 
infantis with other B. longum strains revealed evidence of a competitive advantage, 

conferred by the HMO gene cluster or other genomic differences, that allows B. infantis to 

reach higher relative abundances on average (Fig. 2B), albeit with modest effect sizes.

Probiotics supplements and foods containing commercial strains of Bifidobacterium spp. are 

also a common source of bifidobacteria in early life. One such species, B. bifidum, showed 
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contrasting relative abundances between the countries: unlike Finnish and Estonian samples, 

Russian samples commonly contained over 10% of B. bifidum (Fig. 2C). B. bifidum SNP 

haplotypes revealed that 79 samples from 34 Russians, 3 Estonians, and 2 Finns harbored 

the same B. bifidum strain with greater than 99.9% sequence similarity (Fig. 2D). This SNP 

haplotype was identical to the NCBI isolate genome B. bifidum 791, which was isolated 

from a healthy human gut in Nizhny Novgorod, Russia and has been patented for medical 

use in Russia. B. bifidum relative abundance was over 10% in 57 of 79 (75%) samples 

containing this strain. While these observations are not direct evidence for engraftment of 

this strain, they show that a probiotic strain can obtain high (>50%) relative abundance in the 

infant gut.

Contributional diversity of microbial functions

Finally, we approached the developing microbiome from a function-centric view49. We 

binned species based on shared functional pathways and assessed their contributional 

diversity (i.e., how diverse sets of species encode and have a potential to perform a given 

function per sample)49 for 365 Gene Ontology (GO) biological process terms present in over 

100 metagenomes. Most GO terms displayed increasing within-sample functional diversity 

(Gini-Simpson index) with increasing age that coincides with microbiome maturation and 

increasing taxonomic diversity (Fig. 3A, Supplementary Table 11). Many widely distributed 

pathways such as sporulation (GO:0030435), glycolysis (GO:0006096) and riboflavin 

biosynthesis (GO:0009231) followed this pattern. Contrastingly, a few specific pathways 

displayed the opposite trend: aerobic electron transport chain (r=−0.16, q=0.001, GO:

0019646), viral release from host cell (r=−0.05, q=1.0, GO:0019076) and siderophore 

biosynthetic process (r=−0.07, q=1.0, GO:0015891) showed decreasing or stable functional 

diversity within samples over time (Fig. 3A, Supplementary Table 11).

Between-sample contributional diversities (beta-diversity, Bray-Curtis dissimilarity) reflect 

the stability of functional contributions per pathway and can be assessed longitudinally 

within and across subjects. We observed a decreasing longitudinal trend in contributional 

beta-diversities with increasing age (Fig. 3B, correlation between age and beta-diversity, 

Pearson r=−0.28, p<2.2e-16), reflecting a change towards a more stable, adult microbial 

composition. Microbial contributions to pathways were more stable within individuals 

(Student’s t-test p<1e-20 in all time windows), as reflected by lower beta-diversities, and the 

gap between intra- and inter-subject comparisons tended to widen with time, similar to the 

average beta-diversities of taxonomic profiles (Fig. 3B). This provides another perspective 

of early stabilization of gut microbial communities: as pathways in some cases reflect 

ecological niches (e.g., aerobic electron transport), the above trend may mirror convergence 

to specific ecological attractor states, which in turn results in stabilization after community 

adaptation and competition over the niche has resolved (Fig. 3B).

Pathways related to bacterial acquisition of iron by siderophores (Fig. 3A) provide an 

example interpreting contributional diversities49. Bacteria secrete iron-binding siderophores 

to harvest iron, but extracellular siderophores are exploited by other bacteria. According to 

the black queen hypothesis, the ability to produce such costly but necessary molecules is 

under negative selection until the production is minimal but sufficient to support the 
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microbial community50. Indeed, according to our data, a single dominant species per 

community contributes to siderophore biosynthesis (i.e., low contributional alpha-diversity, 

Fig. 3A, C), whereas siderophore transport-related genes are more widely distributed across 

community members (Fig. 3A, D).

Discussion

Here, we report a longitudinal, strain-level investigation of the developing gut microbiome 

utilizing the DIABIMMUNE cohort and its rich metadata of various life events. We 

integrated all published microbiome data, resulting in 3,204 16S amplicon and 1,154 

metagenomic sequencing profiles from 289 and 269 subjects, respectively. This integrated 

dataset will serve as a reference resource for the microbiome research community. Further, 

our analyses contribute to taxonomic and functional understandings of early gut 

communities.

A strain can be defined experimentally — a single clonal isolate — or operationally — a 

combination of variants detected in a metagenomic assembly, phased haplotype, or 

collection of reads — as used here. SNP and gene content profiling offer complementary 

means of tracking microbial strains in metagenomic data. While metagenomes can provide 

information on many strains simultaneously, depth of resolution on any one strain is limited. 

SNP-based methods usually operate within a few percentages of each genome that serves as 

a marker region for evaluating evolutionary distance within a population21–24. Evaluating the 

gene content of microbial strains offers more direct means for functional interpretation of 

any observed differences19,20. For most species, these approaches provided highly 

concordant phylogenetic population structures, as evidenced by high correlation between 

SNP haplotype and gene content similarities. In some species such as F. prausnitzii and B. 
dorei, however, these measures did not correlate. F. prausnitzii is a phylogenetically diverse 

clade, consisting of distinct subspecies clades that blur the distinction between strain 

tracking and species differentiation and potentially confound the methodologies for tracking 

strains41. We isolated and sequenced eight high-quality B. dorei genomes that confirmed this 

observation. For these and similar species, such as B. adolescentis and R. intestinalis, the 

observed lack of correlation may stem from the difference between the time scales at which 

the measures operate; rapid genetic adaptation driven by promiscuous LGT and gene loss 

contrasted by slower, long-term SNP acquisition may confound the correlation51. The 

consequence of most of these adaptations for strain fitness or symbiosis with the host early 

in life, especially considering the known immunomodulatory effects of specific strains , 

remains to be elucidated.

This study contributes several observations on another group of bacteria common in early 

childhood, Bifidobacterium. We observed virtually identical B. bifidum strains in 79, mostly 

Russian, samples. This analysis demonstrates that microbial strains may be shared on the 

population level and such strain-level trends can be detected from metagenomic data. The 

observed strain, B. bifidum 791, has been patented for medical use in Russia (http://

russianpatents.com/patent/216/2165454.html), and local regulation allows adding such 

bacterial components to infant formulas (GOST 30626-98 “Dry milk products for infant 

feeding” http://gostexpert.ru/data/files/
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30626-98/0f82d40248598989307bf0a50b573429.pdf). Our communication with locals 

confirmed this strain is common in baby formulas and other infant food products. Therefore, 

these 34 Russian infants potentially obtained this strain, which may achieve stable 

engraftment, as a probiotic supplement. This observation supports the idea that early gut 

microbial assembly can be intervened by probiotics48, which can confer beneficial effects 

such as restoration of healthy growth52 and protection against immune-mediated diseases53 

or adverse effects of antibiotic courses54.

There are consequential differences in HMO processing capabilities within Bifidobacterium 
species that underscore the importance of identifying bacterial strains in this genus. We 

detected B. infantis in metagenomic data by both its HMO processing genes and SNP 

haplotype profile. We observed B. infantis in only 10% of Finns in this cohort, suggesting 

that this keystone species may be less prevalent in Finnish gut ecosystems. Among other 

effects, this may lead to elevated fecal pH levels, further promoting inflammation-favoring 

bacteria and gut dysbiosis55. A probiotic trial adding B. infantis to breast milk during the 

first weeks of life demonstrated persistent B. infantis engraftment and beneficial alterations 

in intestinal fermentation48. Our data corroborates the notion that intracellular HMO 

utilization provides B. infantis a competitive advantage over other HMO-consuming species, 

allowing B. infantis to dominate the infant gut during breastfeeding. Based on these findings 

and literature (reviewed by Insel and Knip56), we hypothesize that natively resident or 

supplemented B. infantis during breastfeeding drives a shift in gut microbial community 

structure, shaping subsequent ecology and potentially immune development and/or 

protection against immune disorders in genetically predisposed populations. This could be 

tested by further characterization of the associated bifidobacterial functional diversity and by 

randomized, placebo-controlled clinical trials in humans.

Methods

DIABIMMUNE cohort

The DIABIMMUNE cohort recruitment took place between September 2008 and July 2011 

in Finland, Estonia and Russia. Families with a newborn infant with HLA DR-DQ alleles 

conferring increased risk for autoimmunity, determined by a cord blood test, were invited to 

join the study. The parents gave their written informed consent prior to sample collection. 

The study participants were monitored for infections, use of antibiotics, breastfeeding, 

introduction of complementary foods, and other life events on study visits at months 3, 6, 

12, 18, 24, and 36 from birth. Maternal information and events during the pregnancy were 

collected using a questionnaire on these visits. Serum samples were collected from all 

subjects during visits to the clinic at the following time points: 0 (cord blood), 3, 6, 12, 18, 

24, and 36 months. Diabetes-associated autoantibodies were analyzed as previously 

described37. The DIABIMMUNE study was conducted according to the guidelines in the 

Declaration of Helsinki, and all procedures involving human subjects were approved by 

Ethical Committee for Psychiatric Diseases and Diseases in Children and Adolescents, 

Helsinki and Uusimaa Hospital District (Finland), Ethics Review Committee on Human 

Research of the University of Tartu (Estonia) and Ethical Committee, Ministry of Health and 

Social Development, Karelian Republic of the Russian Federation (Russia). More 
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information about the cohort and data collection can be found in other DIABIMMUNE 

publications37–39 and online at http://www.diabimmune.org/ and https://

pubs.broadinstitute.org/diabimmune/.

For statistical association testing described below, the additional information (external 

variables) of subjects was preprocessed as follows. The external variables were categorized 

into two categories: generic and complex variables. Here, generic variable (maternal age at 

delivery, gestational diabetes, gestational age in days, mode of delivery, gender, country of 

birth, cohort, and HLA risk class) information was available for all subjects and contained 

no missing values. Complex variables, on the other hand, contained missing values and in 

many cases required pre-processing and exact defining beforehand (e.g., antibiotics courses, 

maternal illnesses during pregnancy, urban or rural family location when the child was born, 

daycare attendance, elder siblings, etc.). As breastfeeding information was not available for 

all the subjects and reduced the sample sizes significantly in cross-sectional analyses, it was 

not considered a generic variable. While the associations between the generic variables and 

the gut microbial communities were modeled together in one analysis, the associations of 

complex variables were determined by modeling them one-by-one with all generic variables.

16S sequencing analysis

16S rRNA gene sequencing was conducted essentially as previously described57. Paired-end 

sequencing reads were demultiplexed using ea-utils command line tools (https://

code.google.com/p/ea-utils/) and clustered into operational taxonomic units (OTUs) using 

the UPARSE pipeline58. Reads were quality-filtered using the UPARSE quality-filtering 

threshold of Emax=1, at which the most probable number of base errors per read is zero for 

filtered reads59. Filtered reads were trimmed to a fixed length, singletons removed, and 

clustered de novo into OTUs, with simultaneous chimera filtering. Taxonomic classification 

of OTUs was performed against the Greengenes version 13.8 16S rDNA database60. The full 

OTU table was filtered by removing samples with less than 3,000 OTU counts and by 

removing OTUs appearing in less than 5% of samples (178 samples). This resulted in an 

OTU table consisting of 3,204 samples from 289 subjects and 920 OTUs.

PERMANOVA analysis between the external variables and gut microbiomes were 

performed on 16S rRNA amplicon sequencing data of samples collected roughly at 2 

(between 0 and 90 days), 6 (170 and 260 days) and 18 months (510 to 600 days) of age 

using adonis function in vegan R package (default parameters). Per each subject, the sample 

closest to the exact cross-section time under analysis was chosen, resulting in 140, 184 and 

202 samples per time window, respectively. The order of external variables in the 

multivariable PERMANOVA model formula was determined by first analyzing each variable 

individually using univariable PERMANOVA model and then ordering the variables based 

on the significance of their association (i.e., permuted p-value) from the most to the least 

significant in the multivariable PERMANOVA model. Statistical significance of 

PERMANOVA results was evaluated by permutation test with 10,000 permutations.

Individual associations between bacterial genera and external variables were tested using 

MaAsLin, which conducts outlier removal, feature selection and linear modeling61. 

Association analyses were performed in both cross-sectional and longitudinal manners. The 
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cross-sectional analyses were conducted on the same samples from the time windows chosen 

for the PERMANOVA analyses, where all variables of the analyses (only generic variables 

or generic and one added complex variable) were used as fixed effects. In the longitudinal 

analyses, subject IDs were used as a random effect, and all the generic variables and 

breastfeeding information were used as fixed effects. In the case a complex variable was 

added to the analysis, it was also used as a fixed effect. With these effect settings in 

longitudinal analyses, a total of 2,586 samples from 237 subjects were available, where the 

numbers varied according to the complex variable added to the analysis and the amount of 

missing values it introduced. For both the cross-sectional and longitudinal analyses, genus-

level 16S rRNA microbiome data was used for identifying taxonomic level associations of 

the external variables.

Metagenomic sequencing

The metagenomic shotgun sequencing was conducted as previously described37–39. 

Additional sequencing data was generated for 45 samples which were excluded from a 

previous investigation39 due to low read count and are indicated in Supplementary Table 1. 

The quality control for the metagenomic shotgun sequencing data was conducted using 

kneadData v0.4.6.1 with additional automatic adapter detection and trimming at a minimum 

overlap of 5bp by Trim Galore!. Taxonomic profiles were generated using MetaPhlAn 

v2.662 and functional profiling was done by HUMAnN2 v0.10.049, which provides gene 

family level (here, 90% similarity) quantifications of microbial genes that are further 

stratified by contributing organisms. The gene families were further mapped to Gene 

Ontology (GO)63 terms as previously described39. Strain SNP haplotypes were generated 

using StrainPhlAn21 by requiring minimum coverage of 10 bases for SNP calling (“--

min_read_depth 10” command line parameter for sample2markers.py).

Metagenomic assembly

Metagenomic reads were assembled into contigs using MegaHIT64 individually for each 

sample, followed by an open reading frame prediction using Prodigal65. A non-redundant 

gene catalogue was constructed in a fashion similar to earlier approaches29 by clustering 

genes based on sequence similarity at 95% identity and 90% coverage of the shorter 

sequence using CD-HIT66. Subsequently, the gene catalogue was merged with the IGC gene 

catalogue67 using the same criteria to create a more comprehensive reference gene catalogue 

for the gut microbiome. Only genes detected in DIABIMMUNE samples (~6M) were used 

in the downstream analysis. Gene abundance was estimated by mapping quality trimmed 

reads from each sample to the gene catalogue with BWA68. This served as an input for 

binning genes into metagenomic species using canopy clustering that finds core genes for 

each metagenomic species30. Metagenomic species with at least 400 genes were retained for 

further analysis. To extend the analysis beyond core genes, we detected accessory genes in 

each sample in which the metagenomic species was present in the following manner. We 

recruited genes co-assembled on the same contigs as core genes as long as the abundances of 

these genes was between the 10th and 90th percentiles of the abundances of core genes in a 

sample. Core genes and accessory genes grouped together in this manner across all samples 

defined the metagenomic pangenome of a species. To define a metagenomic strain, we used 

the same 10th and 90th percentiles of the abundances of core genes criteria to determine the 
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specific accessory genes from the pangenome associated with the core genes of a 

metagenomic species in a sample. Similarity between pairs of metagenomic strains within 

species was measured using the percentage of shared genes in the smallest of the two 

genomes, as established previously47. Assembled genes were annotated with COG, KEGG 

and GO terms using eggnog mapper69 and at species, genus and phylum levels with NCBI 

RefSeq (version July 2017) as described previously67.

Phylogenetic trees

Phylogenetic trees (Fig. 2A, D, Supplementary Figure 5) were generated based on 

StrainPhlAn SNP haplotypes using the phangorn R package70. Briefly, similarities between 

strain haplotypes were computed using Jukes and Cantor (JC69) model, and an initial tree 

was constructed using UPGMA hierarchical clustering. The tree was optimized using 

maximum likelihood method, by iterative optimization of edge lengths, base frequencies and 

topology. Visualizations were generated using ggtree R package. For Bifidobacterium 
bifidum (Fig. 2D), strains with >99.5% sequence similarity were collapsed to a single tip 

and represented by the strain with the lowest average distance to other strains prior to 

optimizing the phylogenetic tree.

B. dorei isolate genomes

Bacteroides dorei colonies were isolated from serial dilutions of DIABIMMUNE and 

PRISM (Prospective Registry in IBD Study at Massachusetts General Hospital) stool 

samples plated on selective and non-selective media after being incubated anaerobically at 

37 °C for 72 hours. To isolate high molecular weight DNA for PacBio sequencing (Pacific 

Biosciences, Menlo Park, USA), the isolates were grown on brain heart infusion agar 

supplemented (sBHI) with 10% fetal bovine serum (Hyclone), 1% hemin/vitamin K solution 

(BD), 1% trace vitamins (ATCC), 1% trace minerals (ATCC), 0.5 g/L cysteine hydrochloride 

(Sigma), 1 g/L maltose, 1 g/L fructose (VWR), and 1 g/L cellubiose (Sigma) anaerobically 

at 37 °C for 72 hours. Colonies were transferred to 30 mL sBHI broth and grown 

anaerobically for 48 hours. Cells were centrifuged at 4,450 rpm for 10 minutes and 

supernatant was discarded. DNA was extracted using the Genomic-tip 500/G kit (Qiagen) 

according to the manufacturer’s instruction. After isopropanol treatment, precipitated DNA 

was spooled and transferred to 70% ethanol 1.2 mL tube and left to dry in a clean PCR hood 

for 4 hours. Dried DNA was resuspended in elution buffer (Qiagen). DNA fragment size was 

measured with 4200 TapeStation (Agilent) using a Genomic DNA ScreenTape (Agilent). 

PacBio sequencing libraries were constructed by the blunt-ended ligation of SMRT bell 

adapter sequences to needle-sheared genomic DNA as per the manufacturer’s instructions 

(Pacific Biosciences). The libraries were damage-repaired using the SMRTbell Damage 

Repair Kit (Pacific Biosciences) following the manufacturer’s instructions and subsequently 

size-selected on a Blue Pippin with an 8 kb cut-off and then loaded on a Sequel sequencing 

instrument with MagBeads as per the manufacturer’s instructions (Pacific Biosciences). The 

genomes were assembled using the internal PacBio assembler HGAP4. Reads less than 6 kb 

in length were excluded from the assembly process.

The assembled B. dorei genomes were analyzed using PanPhlAn71 (default settings) 

together with five existing isolate genomes in NCBI. The resulting non-redundant gene 

Vatanen et al. Page 12

Nat Microbiol. Author manuscript; available in PMC 2019 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



catalogue was annotated by translated DIAMOND search72 against the UniRef90 and 

UniRef50 databases and by enforcing UniRef’s clustering criteria. We primarily used 

UniRef90 annotations, if available, but applied UniRef50 annotation in absence of UniRef90 

annotation.

B. longum gene analysis

B. longum HMO gene presence in the metagenomic samples (Fig. 2A) was determined as 

follows. We identified UniRef90 gene families corresponding to the protein sequences in B. 
infantis HMO gene cluster34 (protein sequences Blon_2331-Blon_2361 in NCBI protein 

sequence database) by translated BLAST search against B. longum pangenome in 

ChocoPhlAn pangenome collection73 utilized by HUMAnN2. Specifically, we required 

≥90% alignment identify and ≥80% mutual coverage (corresponding to the definition of 

UniRef90 gene families) and accepted only the best hit per protein sequence. Combining 

this information with HUMAnN2 species-stratified UniRef90 gene family quantification 

enabled calling these genes present given that they had sufficient read coverage, here defined 

as log10(counts-per-million / B. longum relative abundance) > 1.

Contributional diversities of metagenomic functions

Contributional diversities of the metagenomic functions were analyzed as previously 

described49. Briefly, stratified abundances of metagenomic functions were first renormalized 

after excluding any “unclassified” relative abundance. Contributional diversity for a given 

metagenomic function was then calculated by applying ecological similarity measures to the 

stratified abundance of that function. Gini-Simpson index was used for alpha-diversity and 

Bray-Curtis dissimilarity was used for beta-diversity.

CRISPR array detection and mapping

CRISPR spacers and repeat sequences were searched using Crass version 0.3.845. We 

mapped all identified 42,412 CRISPR spacers sequences to viral contigs of 112 samples 

with viromic data using bowtie2 version 2.3.4.174 using the parameters `-N 1 --local --no-

unal` and exported results in bam format using `samtools view -bS -` with an overall 

alignment rate of 5.81% (2,463 aligned spacers). Alignment of the 42,412 spacers and 3,272 

repeats against the full set of metagenomic assembled contigs (n=5,368,547) were 

performed with the same bowtie2 setting, resulting in an overall alignment rate of 73% and 

95% for spacers and repeats, respectively. We determined the number of spacer and repeat 

matching the contigs of the DIABIMMUNE assembly and marked 658 spacers matching a 

virome contig in which also repeat matches were found. The majority of the repeats (93%) 

had multiple matches in the assembly, as expected for CRISPR repeats.

Data availability

All 16S rRNA and metagenomic sequencing data are available in NCBI Sequence Read 

Archive under BioProject PRJNA497734 and through the DIABIMMUNE microbiome 

website at https://pubs.broadinstitute.org/diabimmune/.
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Code availability

The analysis software used for quality control and taxonomic and functional profiling is 

publicly available in bioBakery at https://bitbucket.org/biobakery/biobakery/ and referenced 

as appropriate. More detailed analysis scripts will be made available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Strain diversity across species in early gut metagenomes.
A SNP haplotype similarities per species based on all pairwise comparisons (dominant strain 

per species per sample) and stratified to intra-subject and inter-subject comparisons. Species 

containing >10 comparisons in both strata are shown. B Gene content similarities (the 

percentage of shared genes in the smallest of the two genomes) per species, evaluated on 

pangenomes generated by metagenomic assembly. Boxplots as in panel A. The box (A, B) 

shows the interquartile range (IQR), the vertical line shows the median and the whiskers 

show the range of the data (up to 1.5 times IQR). Sample size (n) per boxplot in panel A 
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gives number of comparisons per panels A and B. C The size of core and accessory 

genomes per species stratified by the functional annotation of genes using eggNOG. Panels 

A-C are ordered according to the size of the metagenomic pangenome. D Pearson’s 

correlation coefficients between SNP- and gene content-based similarity measures between 

strains. Sample size (n) is indicated. E B. dorei strains’ SNP and gene content similarities 

show low Pearson’s correlation (r=0.2, n=8646 comparisons from metagenomes, n=136 

comparisons of isolate genomes). Comparisons between isolate genomes are shown in 

orange for reference. F E. coli strains’ SNP and gene content similarities (Pearson’s r=0.88, 

n=16,110 comparisons).
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Figure 2. Bifidobacterium strains in DIABIMMUNE children.
A Phylogenetic tree of B. longum strains in DIABIMMUNE stool samples and 18 NCBI B. 
longum isolate genomes based on SNP haplotypes. Highlighted B. infantis strains (red) 

include two reference sequences (ATCC 15697). The heatmap illustrates strain-specific 

carriage of 21 genes in the B. infantis HMO gene cluster responsible for intracellular HMO 

degradation, evaluated using the metagenomic data. B B. longum relative abundance 

stratified by country and B. longum strain; B. infantis (highlighted red in panel A) has, on 

average, higher relative abundance compared to other B. longum strains (mixed effects 

logistic regression p=0.00049). The box shows the interquartile range (IQR), the vertical line 

shows the median and the whiskers show the range of the data (up to 1.5 times IQR). 

Number of samples (n) are indicated below each box and include samples from subjects with 

no breastfeeding information. C Relative abundance of B. bifidum longitudinally stratified 

by the countries up to 24 months of age (n = 864). Russians have more B. bifidum, 
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especially during the first year of life. The curves show locally weighted scatterplot 

smoothing (LOESS) fits for the relative abundances, and shaded areas show 95% confidence 

interval for each fit, as implemented in geom_smooth function in ggplot2 R package. D 
Phylogenetic tree of B. bifidum strains in the DIABIMMUNE stool samples based on SNP 

haplotypes. Strains with >99.5% sequence similarity have been collapsed into a single tip. A 

known strain, B. bifidum 791, was found in 79 stool samples. The scale bars on phylogenetic 

trees denote difference in sequence similarity of SNP haplotypes.
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Figure 3. Contributional diversity of microbial pathways.
A-B We applied alpha- (A) and beta-diversity (B) to the distribution of species contributing 

to functional categories (GO biological process terms), measuring their contributional 

diversities. The histograms show the mean alpha- (A) and beta-diversities (B) per GO term 

stratified by time windows. Colored shapes show (A) examples of pathways with different 

trends and (B) mean intra- and inter-subject beta-diversities of taxonomic profiles. C-D 
Species contributing to (C) siderophore biosynthetic process and (D) siderophore transport. 

Colors displaying the contributions of individual species are linearly scaled within the log-

scaled total bar height depicting the total abundance of the pathway.
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Table 1.
DIABIMMUNE microbiome cohort statistics.

Distribution of study subjects, stool samples with sequencing data and several other external variables across 

the study sites. The table shows the number of study subjects (N) per category unless otherwise specified. T1D 

autoantibody and diagnosis information as of Nov. 2016.

Finland Estonia Russia

Study subjects 140 80 73

Samples profiled by 16S rRNA gene sequencing (median per subject) 2,080 (9) 501 (6) 623 (7)

Samples profiled by metagenomic sequencing (median per subject) 616 (4) 221 (3) 317 (3)

Males/Females 78/62 39/41 40/33

Caesarean sections 9 6 12

Mean maternal age at birth (sd) 31.1 (4.9) 29.1 (5.1) 27.8 (4.7)

Born in rural household 10 (7.7%) 19 (23.8%) 0

T1D AAB seropositive subjects 11 4 1

Subjects with T1D diagnosis 5 1 1
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