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Abstract

Indole-diterpenes (IDTs) such as the aflatrems, janthitrems, lolitrems, paspalitrems, penitrems, 

shearinines, sulpinines, and terpendoles are biogenetically related but structurally varied 

tremorgenic and neurotoxic mycotoxins produced by fungi. All these metabolites derive from the 

biosynthetic intermediate paspaline, a frequently occurring IDT on its own right. In this 

comprehensive review, we highlight the similarities and differences of the IDT biosynthetic 

pathways that lead to the generation of the main paspaline-derived IDT subgroups. We survey the 

taxonomic distribution and the regulation of IDT production in various fungi and compare the 

organization of the known IDT biosynthetic gene clusters. A detailed assessment of the highly 

diverse biological activities of these mycotoxins leads us to emphasize the significant losses that 

paspaline-derived IDTs cause in agriculture, and compels us to warn about the various hazards 

they represent towards human and livestock health. Conversely, we also describe the potential 

utility of these versatile molecules as lead compounds for pharmaceutical drug discovery, and 

examine the prospects for their industrial scale manufacture in genetically manipulated IDT 

producers or domesticated host microorganisms in synthetic biological production systems.
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Introduction

Indole-diterpenes (IDTs) are small molecule secondary metabolite natural products 

biosynthesized by a select group of ascomycetous fungi including Aspergillus, Penicillium, 
Emericella, Eupenicillium, Claviceps, Epichloë, Escovopsis, Neotyphodium, Periglandula 
and Tolypocladium species, as well as the zygomycetous fungus Mucor irregularis (Saikia et 

al. 2008; Schardl et al. 2013; Gao et al. 2016; Dhodary et al. 2018; Supplementary Table 

S1). IDTs are important mycotoxins that provoke potent neurotoxic and tremorgenic 

symptoms in insects and mammals, at least partly due to their inhibition of potassium ion 

channels in the nervous system (Dowd et al. 1988; Uhlig et al. 2009; Imlach et al. 2011). In 

their native ecological contexts, IDTs defend the overwintering structures of the producing 

fungi, and serve as effector molecules for mutualistic interactions between these fungi and 

their plant hosts by deterring grazing by large animals and insects (Panaccione et al. 2006; di 

Menna et al. 2012; Thom et al. 2014). IDT toxicoses of livestock cause significant economic 

losses in agriculture (Botha et al. 1996; Cawdell-Smith et al. 2010; Philippe 2016). 

Conversely, IDTs have been considered for the development of pesticides or plant-protecting 

antifeedants, to be used as components of integrated pest management systems (Panaccione 

et al. 2014; Saikkonen et al. 2016). Due to their additional, potent and varied bioactivities, 

IDTs may also serve in the future as drug lead compounds for the development of human 

and veterinary medications.

IDTs are biosynthesized from geranylgeranyl diphosphate (GGPP) and an indole moiety that 

originates from a tryptophan precursor (Laws and Mantle 1989; Byrne et al. 2002). After the 

cloning of the paxilline biosynthetic gene cluster from Penicillium paxilli (Young et al. 

2001), the biosynthesis of all the major IDT subgroups were also elucidated from diverse 

filamentous fungi (Zhang et al. 2004; Young et al. 2006; Motoyama et al. 2012; Nicholson et 

al. 2015; Kozák et al. 2018). These biosynthetic gene clusters share a common, conserved 

set of core genes, and are supplemented with additional genes that encode enzymes for 

various tailoring reactions responsible for the idiosyncratic structural elements of the IDT 

subgroups and the individual IDT congeners (Zhang et al. 2004; Young et al. 2005; Young et 

al. 2006; Nicholson et al. 2009). In addition, most IDT biosynthetic enzymes show various 

levels of substrate and product flexibilities, with even the core set of genes differing in their 

precise characteristics. Together, these variations create a metabolic grid responsible for the 

remarkable structural diversity of IDTs produced by fungi.

Our knowledge on the regulation of IDT biosynthesis is still limited. Co-regulation of 

aflatrem production with sclerotia development has been demonstrated in A. flavus (Ehrlich 

and Mack 2014), while a wide spectrum of environmental conditions including temperature, 

light, various carbon and nitrogen sources were shown to influence penitrem production in P. 
crustosum (Kalinina et al. 2017). Nevertheless, a deeper understanding of mycotoxin 

production, including the regulation of the biosynthesis of tremorgenic IDTs will be crucial 

to combat the agricultural threats posed by these fungi (Uhlig et al. 2009; Moyano et al. 

2010; Lee et al. 2017). Moreover, further studies are necessary to estimate the real 

dimensions of the risks posed by these fungi and their harmful metabolites to consumers of 

agricultural products (Moldes-Anaya et al. 2012; Eriksen et al. 2013). In particular, the co-

occurrence and potential synergistic effects of IDTs with other mycotoxins in foods and 
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feeds warrants further investigations (EFSA Panel on Contaminants in the Food Chain 

(CONTAM) 2012).

Gaining a deeper insight into the evolution, organization and transcriptional regulation of 

IDT biosynthetic gene clusters may also provide us with valuable tools to control or even 

eliminate IDT production during industrial fermentations with fungal species such as 

Claviceps paspali, where the presence of these metabolites represents a safety risk (Kozák et 

al. 2018). Intriguingly, some paspaline-derived IDTs such as penitrem A may also be 

regarded as Janus-faced compounds with potential applications in anticancer 

chemotherapies, either as monotherapies or in combination with other antiproliferative drugs 

(Sallam et al. 2013a; Sallam et al. 2013b; Goda et al. 2018). Therefore, future metabolic 

engineering and fermentation optimization studies may need to target the improvement of 

the yields of these compounds under industrial fermentation conditions (Motoyama et al. 

2012; Kalinina et al. 2017). The construction of various fungal synthetic biology platforms 

for the heterologous production of IDTs with potential biomedical significance is also on the 

agenda (Tagami et al. 2014; Liu et al. 2015; Tang et al. 2015; Oikawa et al. 2016; Liu et al. 

2016).

To the best of our knowledge, this is the first comprehensive review that covers the genetic, 

biochemical, ecological, veterinary, medical and industrial aspects of the production of these 

important metabolites by fungi.

Detection and structural characterization of IDTs in biological samples

Although the connection between moldy food and some diseases such as ergotism was 

suspected for centuries, it was only in the 20th century that the occurrence of secondary 

metabolite mycotoxins in these foods was discovered to be the molecular basis for such 

illnesses (Uraguchi 1969). Recent developments of analytical techniques make it 

increasingly straightforward to detect, even in an untargeted fashion, a large variety of 

mycotoxins such as IDTs in complex matrices such as food and feed.

Paxilline and paspaline, the simplest IDT congeners, were first isolated half a century ago 

and characterized by elemental analysis and various spectroscopic methods such as infrared 

(IR), ultraviolet-visible (UV-Vis), and mass spectroscopy (MS) (Fehr and Acklin 1966; Cole 

et al. 1974). Although the first nuclear magnetic resonance (NMR) spectroscopy results 

about paspaline were published in 1977, the assignments of the signals had to be refined 

almost two decades later (Munday-Finch et al. 1996). Finally, the complete structures of 

these mycotoxins were elucidated in 1980 by X-ray crystallography (Springer and Clardy 

1980).

The discovery of novel IDT subclasses was a relatively slow process in the 1980s, mainly 

because of the lack of versatile analytical techniques. Immunochemical methods like ELISA 

were considered the most selective and sensitive analytical tools of the era. However, the 

development of these methods required the very molecule that needed to be analyzed, 

making these techniques unsuitable for discovery studies. Thin layer chromatography (TLC) 

served as the most important tool for both the isolation of unknown molecules and the 
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identification of known IDTs (El-Banna et al. 1987; Sanchis et al. 1988; Scuteri et al. 1992). 

In addition to TLC, high performance liquid chromatography (HPLC) became increasingly 

important in this decade for the analysis of organic compounds, including natural product 

mycotoxins (Maes et al. 1982; Frisvad 1987; Russell et al. 1989). By 1987 a standardized 

HPLC method was developed that allowed the detection of all the important groups of 

mycotoxins and many other fungal secondary metabolites, covering 182 compounds 

(Frisvad and Thrane 1987). However, the utility of HPLC separation combined with 

fluorescent detection is rather limited for paspaline-derived IDTs, since only the janthitrems 

exhibit significant fluorescence (Gallagher et al. 1980b; Lauren and Gallagher 1982). The 

most traditional mass spectrometric (MS) technique, electron ionization (EI) was also 

applied for the analysis of mycotoxins. However, this technique is best suited for volatile 

compounds (Fellows et al. 1981). Although X-ray crystallography provides detailed 

information about the structures of organic molecules, it has only been rarely applied to 

study IDTs (Gallagher et al. 1980a; Nozawa et al. 1987; Kawai and Nozawa 1989) since it 

requires special pretreatments and relatively larger amounts of the sample.

NMR spectroscopic techniques have gone through a remarkable development in the last few 

decades, resulting in applications such as 2D NMR spectroscopy (Aue et al. 1976) and 

magnetic resonance imaging (MRI) (Lauterbur 1973). Research towards the structural 

elucidation of novel IDTs benefited largely from the various 2D NMR techniques (De Jesus 

et al. 1981; Laakso et al. 1992; Wilkins et al. 1992; Belofsky et al. 1995; Munday-Finch et 

al. 1995). Although examples of HPLC-coupled NMR applications have been described 

(Sumarah et al. 2005), these methods have not gained widespread acceptance due to the high 

cost of the instruments and the lower sensitivity of detection as compared to MS.

The most versatile analytical method for the trace analysis of organic substances is mass 

spectrometry (MS). This is due to the high sensitivity of MS and its ability to provide 

structural information such as fragmentation patterns recorded in MS/MS experiments, and 

elemental composition determined via exact molecular mass measurement with high 

resolution MS instruments (Q-TOF MS, Orbitrap, etc.). Since the advent of liquid-phase MS 

interfaces, most importantly the electrospray ion sources, MS analysis can readily be 

coupled with HPLC allowing sensitive and selective analysis of complex mixtures by 

measuring directly the molecular mass (typically the mass/charge ratio [m/z] of protonated 

molecules), including those of new compounds (Naik et al. 1995). The capabilities of the 

liquid chromatography – mass spectrometry (LC-MS) technique are clearly demonstrated by 

the rapidly increasing number of target bacterial and fungal metabolites that can be analyzed 

in a single assay (Sulyok et al. 2006; Sulyok et al. 2007; Vishwanath et al. 2009; Malachova 

et al. 2014). In addition to multicomponent analysis, the most advanced high-resolution MS 

approaches allow researchers to perform untargeted LC-MS surveys, resulting in a complex 

dataset containing information about the molecular masses (normal MS spectra) and about 

the structures (fragmentation and isotopic patterns) represented in the analyte. The collected 

datasets can be retrospectively examined even years after the actual measurement, without 

the need to repeat the experiment (Andersen et al. 2016; Renaud and Sumarah 2016).

Kozák et al. Page 4

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biosynthesis of paspaline-derived IDTs in fungi

Biosynthesis of paspaline

Paspaline is the founding member of the paspaline-derived IDTs that feature an angular 

hexacyclic ring system consisting of a tetracyclic diterpene fused to an indole moiety (Fig. 

1). This scaffold is further elaborated by prenylation, oxidation, reduction, cyclization and 

chlorination in the various members of the group (Saikia et al. 2007; Tagami et al. 2013; Liu 

et al. 2016). Paspaline-derived IDTs have been classified in various ways, using historic and 

structural criteria. Parker et al. suggested nine subclasses: the penitrems, janthitrems, 

lolitrems, aflatrems, terpendoles, shearinines, sulpinines, paxilline and the paspaline/

paspalinine/paspalitrems group (Parker and Scott 2005). Another classification by Sings et 
al. divides IDTs into six structural groups: paspalanes, aflatremanes, penitremanes, 

janthitremanes, lolitremanes and nodulisporanes (Sings and Singh 2003). Nodulisporanes 

are not derived from paspaline, and lack the F ring of the paspaline skeleton, so they are not 

discussed in this review.

The cyclic diterpene moiety of paspaline is derived from geranylgeranyl diphosphate 

(GGPP), biosynthesized from farnesyl diphosphate by the GGPP synthase PaxG in P. paxilli 
and its orthologues in other IDT producers (Fig. 1) (Tagami et al. 2013). Deletion of paxG 
results in the complete elimination of the production of the whole spectrum of IDTs in P. 
paxilli (Young et al. 2001; Saikia and Scott 2009). Orthologues of paxG were detected in all 

characterized IDT gene clusters except that of the terpendole K producer Tolypocladium 
album (Motoyama et al. 2012).

The indole group of IDTs most likely derives from indole-3-glycerol phosphate (Fig. 1). 

Prenylation of C3 of the indole with the concomitant elimination of glyceraldehyde 3-

phosphate yields 3-geranylgeranyl indole (GGI), a common intermediate for all IDTs. This 

reaction is catalyzed by the prenyl transferase PaxC in P. paxilli and its orthologues in other 

fungi. Although the preferred substrate for prenylation is indole-3-glycerol phosphate, 

tryptophan was also accepted by recombinant PaxC during in vitro studies with the purified 

enzyme (Tagami et al. 2013). Epoxidation of GGI by PaxM, a FAD-dependent 

monooxygenase (or its orthologues) yields 10(11)-epoxygeranylgeranyl indole. Cyclization 

of this intermediate by PaxB or its orthologues affords emindole SB. Finally, another 

epoxidation-cyclization sequence, catalyzed again by the PaxM - PaxB pair and their 

orthologues in other fungi, yields paspaline through the formation of the F ring of the IDT 

skeleton (Tagami et al. 2013; Van de Bittner et al. 2018).

Generation of chemical diversity in the paspaline-derived IDT families

IDT biosynthesis diverges after paspaline, with further modifications of this common 

intermediate by various oxidations, reductions and prenylations leading to the amazing 

chemical diversity of the various IDT families (Fig. 2). The first divergent reaction is the 

oxidation of paspaline. On the first branch, TerQ-catalyzed hydroxylation of paspaline at 

C11 yields terpendole E in T. album (Motoyama et al. 2012). This intermediate is further 

oxidized by TerP to eliminate the pendant methyl group on C12, yielding 13-

desoxyterpendole I that features a C11(12) epoxide and a C10 alcohol (Motoyama et al. 
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2012). The C11(12) epoxide is also present in lolitrem B produced by Neotyphodium lolii, 
suggesting that the TerQ orthologue LtmQ also possesses C11 hydroxylation activity 

(Gallagher et al. 1981; Philippe 2016). Correspondingly, the terpendole E-like compound 

lolicine was isolated from the lolitrem producer N. lolii (Munday-Finch et al. 1998). Next, 

TerQ catalyzes another oxidation, this time the hydroxylation of C13 to form terpendole I. 

This intermediate is O-prenylated at C27 by TerF or its orthologues such as LtmF of N. lolii 
or Epichloë festucae. Next, oxidative acetal ring formation by the cytochrome P450 TerK or 

LtmK gives rise to terpendole C. Additional diprenylation at C20 and C21 by LtmE and 

oxidative ring closure by the cytochrome P450 LtmJ of N. lolii provide the lolitremane IDTs 

in N. lolii/E. festucae (Young et al. 2006; Saikia et al. 2012).

On the other branch diverging from paspaline (Fig. 2), the cytochrome P450 monooxygenase 

PaxP and its orthologues catalyze the oxidative elimination of the pendant methyl group 

connected to C12 and the formation of the C10 ketone to yield 13-desoxypaxilline via the 

intermediate β-PC-M6 (McMillan et al. 2003). From 13-desoxypaxilline, the pathway again 

bifurcates. PaxQ-catalyzed hydroxylation of C13 in 13-desoxypaxilline yields paxilline en 
route to the pentirem/jantithrem/sulpinine families of IDTs (McMillan et al. 2003; 

Nicholson et al. 2015). On the other branch, AtmQ of A. flavus and its orthologues such as 

IdtQ of C. paspali also hydroxylate C13, but they oxidize C7 as well to form a cyclic acetal 

with the C27 alcohol to afford paspalinine. The order of the C13 vs. C7 oxidations is still 

unclear and may even be dissimilar in different fungi (Nicholson et al. 2009; Kozák et al. 

2018). Thus, during the elucidation of the IDT product spectrum of C. paspali, paxilline and 

paspalinine were both detected in sclerotia extracts together with paspalicine, the 13-desoxy 

analogue of paspalinine. This indicates that IdtQ can accept 13-desoxypaxilline for either C7 

or C13 oxidation in this fungus (Uhlig et al. 2014). On the other hand, paspalicine could not 

be isolated during the heterologous production of aflatrems using AtmQ of A. flavus, 

suggesting that C13 hydroxylation of 13-desoxypaxilline may precede the formation of the 

cyclic acetal with that enzyme (Nicholson et al. 2009). In any case, formation of paspalinine 

opens the way towards the biosynthesis of the aflatrems, paspalitrems and shearinines. Thus, 

the substrate and product specificities of the TerQ/PaxQ/AtmQ-like and the TerP/PaxP/

AtmP-like cytochrome P450 enzymes in different fungi define the F ring architecture of the 

IDT skeleton, resulting in the terpendole/lolitrem, the penitrem/janthitrem/sulpinine, and the 

paspalitrem/aflatrem/shearinine subgroups of paspaline-derived IDTs.

Aflatrem, β-aflatrem, and the paspalitrems are the monoprenylated derivatives of paspalinine 

(Fig. 2). In the case of aflatrems, the dimethylallyl transferase AtmD catalyzes the γ-

selective prenylation of paspalinine at the C20 or the C21 positions to afford aflatrem A and 

β-aflatrem, respectively. Interestingly, AtmD also accepts paxilline and paspaline as 

substrates (Liu et al. 2013). While paxilline is prenylated at C20 or C21 just as in 

paspalinine, paspaline is modified at the C21 or C22 positions. For paspalitrems, the IdtF 

dimethylallyl transferase of C. paspali conducts an α-selective prenylation of paspalinine at 

the C21 or the C20 positions to yield paspalitrem A or paspalitrem C, respectively. 

Paspalitrem A is then further oxidized at C32 giving rise to paspalitrem B. For shearinines, 

the JanD dimethylallyl transferase from P. janthinellum conducts two consecutive α-

selective prenylations at C21 and C22 to yield shearinine K (Nicholson et al. 2015; Liu et al. 

2016). This intermediate undergoes a two-step oxidative cyclization sequence catalyzed by 
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the JanO FAD-dependent oxidase that yields a bicyclic ring system fused to the paspalinine 

core, affording shearinine A. Finally, an additional hydroxylation conducted by the 

cytochrome P450 JanJ gives rise to shearinine D.

At the paxilline branch of the biosynthetic pathway (Fig. 2), the biosynthesis of penitrems, 

the most elaborate paspaline-derived IDTs, requires 17 enzymes in P. simplicissimum. 

Paxilline is first reduced by PtmH at the C10 ketone to yield the corresponding alcohol, 

followed by α-selective prenylation at C20 by the dimethylallyl transferase PtmD. The 

prenylated analogue undergoes an acetylation-elimination sequence catalyzed by PtmV and 

PtmI to yield 20-prenylpenijanthine with a terminal olefin. The order of the PtmH-PtmD-

PtmVI reactions seems to be somewhat flexible (Oikawa et al. 2016). Biosynthesis of 

janthitrems may follow a similar sequence, with the exception that a diprenylase-oxidative 

cyclase pair orthologous to JanD-JanO in shearinine biosynthesis is involved in the 

formation of the bicyclic system fused to the paxilline ring A. Indeed, the P. paxilli gene 

cluster contains the JanD and JanO orthologues PaxD and PaxO, respectively. Paxilline is an 

excellent substrate for recombinant PaxD that produces 21,22-diprenylpaxilline. While PaxD 

and PaxO are silent (or at least very weakly expressed) under normal fermentation 

conditions thus leaving the fungus to produce paxilline as its major IDT product, the P. 
paxilli gene cluster may nevertheless encode the biosynthesis of a janthitrem congener (Liu 

et al. 2016). Similarly, sulpinine biosynthesis may follow a sequence analogous to that of 

PtmH-PtmD-PtmVI for penitrems, with the relevant dimethylallyl transferase catalyzing a 

γ-selective prenylation at C22 on ring A.

For penitrems, γ-hydroxylation of the prenyl side chain by PtmO prefaces a head-to-head 

coupling with dimethylallyl diphosphate during a prenylation-initiated cationic cyclization 

event catalyzed by the PtmE dimethylallyl transferase. Oxidative ring expansion by the 

PtmK cytochrome P450 yields the bicyclo[4,2,0]octane system, followed by the formation 

of the 8-membered oxocane cyclic ether bridging to C17, catalyzed by another cytochrome 

P450 (PtmU). Epoxide formation at C11(12) by PtmL, chlorination at C22, and 

hydroxylation of the bicyclooctane by PtmJ finally affords penitrem A (Liu et al. 2015).

It is important to note that many of the IDT biosynthetic enzymes described here display 

substrate and product flexibility, leading to a significant metabolic crosstalk among the 

pathways leading to the three main biogenetic subgroups of IDTs. Consequently, many fungi 

use a single set of enzymes that form a complex biosynthetic grid with considerable 

plasticity, thus producing multiple paspaline-derived metabolites that belong to more than 

one IDT chemical families. Similarly, the structural classification of paspaline-derived IDTs 

is also somewhat arbitrary and depends on the structural elements or scaffold tailoring 

events that are considered the most important by the authors. For example, janthithremanes 

are often understood to include the janthitrems (derived from paxilline) and the shearinines 

(originating from paspalinine).

IDT production in various fungi

To date, more than 50 fungal species have been demonstrated to produce paspaline-derived 

IDTs (Supplementary Table S1). The great majority of IDT producer fungi belong to only 

two ascomycetous classes in the Pezizomycotina subphylum: the Eurotiomycetes 
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(Aspergillus, Penicillium, Emericella and Eupenicillium species in the Aspergillaceae and 

Trichocomaceae families within the Eurotiales order) and the Sordariomycetes (Claviceps, 

Epichloë, Escovopsis, Neotyphodium, Periglandula and Tolypocladium species in the 

Clavicipitaceae, Hypocreaceae and Ophiocordycipitaceae families in the Hypocreales order).

In the order Eurotiales (class Eurotiomycetes), at least 24 Penicillium and Eupenicillium 
species have been shown to produce various paspaline-derived IDTs (Supplementary Table 

S1). The most common IDT in these fungi is penitrem A, a metabolite that is of paramount 

importance for the contamination of foodstuffs with mycotoxins. One of the most important 

model organisms used in IDT biosynthetic studies is the saprophytic species P. paxilli, which 

produces paxilline. A set of bioactive paxilline analogues were also isolated from 

Penicillium camemberti, a white mold that is widely used in cheese ripening.

Among the more than 10 Aspergillus and Emericella species that produce paspaline-derived 

IDTs, the notorious aflatoxin producer A. flavus is also capable of synthetizing aflatrem A 

and at least two additional aflatrem congeners. Aflatrem and paspaline were also detected in 

cultures of two other Aspergillus species, A. minisclerotigenes and A. parvisclerotigenus. 
Importantly, the koji mold Aspergillus. oryzae was shown to produce 13-desoxypaxilline, a 

common intermediate for aflatrem biosynthesis. Some other Aspergilli, including A. 
desertorum, A. foveolatus and A. striatus are verified paxilline producers while A. alliaceus 
synthesizes two paxilline-like IDTs in axenic cultures.

In the order Hypocreales (class Sordariomycetes), at least 13 species produce paspaline-

derived IDTs (Supplementary Table S1). In the family Clavicipitaceae, C. paspali and C. 
cynodontis yield paspalitrems while the well-known ergot alkaloid producer C. purpurea 
synthesizes only less complex IDTs such as paspaline. Epichloë gansuensis produces 

paxilline, while the IDT spectra of two additional clavicipitaceous fungi, N. lolii and E. 
festucae are rather different. These two fungi form IDTs with the C11(12) epoxide, giving 

rise to terpendoles and the more elaborate lolitrems. Meanwhile, Periglandula ipomoeae 
strains, symbionts of morning glory, also produce terpendole analogues such as terpendoles 

C, K, and E (Schardl et al. 2013; Lee et al. 2017; Gardner et al. 2018). Fungi in two other 

hypocrealean families also produce paspaline-derived IDTs. Thus, T. album (basionym 

Chaunopycnis alba; family Ophiocordycipitaceae) is another important terpendole producer, 

while Escovopsis weberi (family Hypocreaceae) produces shearinines.

Interestingly, the zygomycetous fungus Mucor irregularis has recently been shown to yield 

penitrems and the related rhizovarins. M. irregularis (family Mucoraceae, order Mucorales, 

phylum Mucoromycota) is the only currently known fungus outside the Ascomycota phylum 

that produces paspaline-derived IDTs (Gao et al. 2016).

Gene clusters for IDT biosynthesis

To date, ten gene clusters for the biosynthesis of the paspaline-derived IDTs have been 

identified (Fig. 3), including those for penitrems (P. crustosum and P. simplicissimum) (Liu 

et al. 2015; Nicholson et al. 2015), paxilline (P. paxilli) (Scott et al. 2013), shearinines (P. 
janthinellum) (Nicholson et al. 2015), aflatrems (A. flavus and A. oryzae) (Zhang et al. 

2004; Nicholson et al. 2009), paspalitrems (C. paspali) (Kozák et al. 2018), terpendoles (T. 

Kozák et al. Page 8

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



album) (Motoyama et al. 2012), and lolitrems (N. lolli and its anamorph E. festucae) (Young 

et al. 2006; Saikia et al. 2012). All these gene clusters contain orthologues of the paxG, 
paxM, paxC and paxB genes whose enzyme products are collectively responsible for the 

biosynthesis of paspaline as described in section 3.1 (Fig. 1, Supplementary Table S2). The 

only exception is the terpendole K gene cluster of C. alba that is missing a GGPP synthase 

gene dedicated to IDT biosynthesis, indicating that this precursor is supplied by the primary 

metabolic GGPP synthase of the strain (Motoyama et al. 2012).

In addition to the paxGMCB orthologues, all biosynthetic gene clusters for the paspaline-

derived IDTs elucidated so far also contain genes similar to paxP and paxQ (Supplementary 

Table S2). The encoded cytochrome P450 monooxygenases are responsible for the 

oxidations that channel paspaline towards the paxilline, paspalinine or terpendole E-type 

cores of the various paspaline-derived IDT families (Fig. 2). All biosynthetic gene clusters 

for paspaline-derived IDTs also feature additional genes encoding enzymes for the 

subsequent modification of the angled hexacyclic skeleton (Fig. 3, Supplementary Table S2).

The known biosynthetic gene clusters for the different paspaline-derived IDT families show 

little synteny. The only exception to date is the pair of clusters for paxilline and the 

shearinines (Fig. 3), where the order and orientation of the genes are the same, except for the 

absence of a janJ orthologue in the paxilline gene cluster (Liu et al. 2016). In contrast, 

clusters that are derived from closely related species that produce metabolites belonging to 

the same IDT family are highly syntenic. For example, A. flavus and A. oryzae RIB40 

contain aflatrem-type gene clusters with identical organizations and chromosomal locations, 

with the corresponding Atm enzymes of the two species showing at least 95% pairwise 

identities. Nevertheless, A. oryzae produces non-prenylated paspalenes due to a single 

nucleotide insertion into exon 7 that renders atmQ nonfunctional (Nicholson et al. 2009; 

Qiao et al. 2010; Rank et al. 2012).

Unusually for fungal secondary metabolite biosynthetic gene clusters, several of the IDT 

clusters seem to be distributed into multiple loci, although sequence closure of draft 

genomes may lead to the revision of this notion in some cases. Thus, the penitrem 

biosynthetic genes of P. simplicissimum, but not those of P. crustosum, are separated into 

two subclusters. The ptm2 and ptm1 subclusters of P. simplicissimum are syntenic with 

genes PC-23 - penO and penG - PC-05, respectively, within the penitrem cluster of P. 
crustosum. The aflatrem biosynthetic gene clusters of A. flavus and A. oryzae RIB40 are 

divided into two loci that reside on different chromosomes (the atm1 subcluster is located on 

chromosome 5, while atm2 is on chromosome 7) (Nicholson et al. 2009). The paspalitrem 

gene cluster also spans two separate contigs on the genome sequence assembly of C. paspali 
RRC-4128 (Schardl et al. 2013). These two contigs contain all the genes necessary for the 

biosynthesis of paspalitrems, except for the one that catalyzes C32 hydroxylation of 

paspalitrem A to yield the end product paspalitrem B (Kozák et al. 2018). Finally, the 11 

known genes for lolitrem biosynthesis are dispersed into three ltm subclusters in N. lolli and 

E. festucae. Subcluster 1 is separated from subcluster 2 by a 35-kb genomic region, while 

subcluster 3 is located at 16 kb from subcluster 2. The interspersed genomic regions are rich 

in AT repeats and retrotransposon elements, indicating that the composite ltm1–3 cluster 

resides in a rapidly evolving region of the genome, such as a chromosomal sub-telomeric 
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region. This capacity for rapid evolution is underlined by the observation that the ltm1–3 
composite cluster may have been duplicated in its entirety in N. lolii strain Lp19, while 

subcluster 3 could not be detected in the very closely related strain Lp1. In contrast, E. 
festuceae F11 contains a single copy of the ltm1-3 composite cluster (Young et al. 2006).

Regulation of IDT production

The regulation of IDT production has received surprisingly little attention up till now. Thus, 

no cluster-specific regulator has been validated in any IDT gene cluster so far. Although the 

penitrem gene clusters of P. simplicissimum and P. crustosum feature putative regulatory 

genes (ptmS and PC-06), the function of these genes has not been determined 

experimentally (Liu et al. 2015). Similarly, the integration of IDT biosynthesis with other 

metabolic and morphogenetic processes also remains opaque. In A flavus, abundant aflatrem 

production is associated with sclerotia formation (Ehrlich and Mack 2014) while reduced 

aflatrem production results from the deletion of the ndsC gene encoding a global regulator 

of secondary metabolism and asexual development (Gilbert et al. 2016).

While N. lolii and E. festucae produce lolitrems in planta only (Young et al. 2006), other 

IDT producers also biosynthesize these compounds in axenic cultures (Motoyama et al. 

2012; Nicholson et al. 2015; Kozák et al. 2018). A. oryzae produces the paxilline precursor 

13-desoxypaxilline under specific growth conditions only (Rank et al. 2012; Fountain et al. 

2016). In contrast, T. album produces large amounts of terpendoles in various media, 

suggesting that this biosynthetic pathway is not subject to a strict regulation in this strain 

(Motoyama et al. 2012). Similarly, P. crustosum strains isolated from different environments 

and substrates consistently produce penitrems (Frisvad and Filtenborg 1983; Yamaguchi et 

al. 1993; Sonjak et al. 2005). However, a variety of abiotic factors were still found to 

influence the production of these IDTs (Kalinina et al. 2017). Thus, cultivation in the dark at 

relatively low temperatures (22 °C); glucose or rhamnose as the carbon source; and 

supplementation of the medium with glutamate all increase penitrem production by P. 
crustosum. Interestingly, supplementation with tryptophan has the opposite effect in this 

fungus (Kalinina et al. 2017), in agreement with the notion that indole-3-glycerol phosphate 

and not tryptophan is the real precursor for IDT biosynthesis (Liu et al. 2015). In contrast, 

tryptophan serves as both a precursor and an inducer for ergot alkaloid biosynthesis in C. 
purpurea (Řeháček et al. 1971). In P. nigricans, penitrem production and sporulation are both 

induced by calcium chloride (Mantle et al. 1984), while CuSO4 increases penitrem 

production by P. crustosum (Kalinina et al. 2017).

Oxidative stress can also be an important factor for the regulation of tremorgenic IDT 

biosynthesis. Aflatrem biosynthesis is generally up-regulated in A. flavus by hydrogen 

peroxide, although different isolates react differently to varied concentrations of H2O2 

(Fountain et al. 2016). In contrast, H2O2 has a strong inhibitory effect on penitrem 

biosynthesis by P. crustosum.
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IDTs as threats to agriculture, public health, and the fermentation 

industries

Agricultural threats

Among the known IDTs, lolitrems and paspalitrems represent the most severe danger for 

livestock. These compounds cause a tremorgenic syndrome in grazing animals, referred to as 

“ryegrass stagger” in the case of lolitrem B ingestion (Fletcher and Harvey 1981; Gallagher 

et al. 1981), and “Paspalum stagger” or “Bermuda grass stagger” in the case of paspalitrem 

mycotoxicoses (Cole et al. 1977; Uhlig et al. 2009). Ryegrass stagger is typically caused by 

grazing on Lolium perenne (perennial ryegrass) infected by N. lolii (Gallagher et al. 1981), 

since lolitrem B is abundant in the N. lolii - L. perenne association (Philippe 2016). 

Ryegrass stagger is most frequently reported in New Zealand and Australia, and the affected 

animals include sheep, cattle and horses (di Menna et al. 2012). To manage ryegrass stagger, 

different endophyte strains with altered mycotoxin production spectra were isolated and 

tested. Amongst these, the endophytic fungus AR37 does not produce lolitrem B, but 

biosynthesizes epoxy-janthitrem in high concentrations. While epoxy-janthitrem is just as 

toxic to insects as lolitrem B, it does not cause a tremorgenic syndrome on grazing animals 

(Thom et al. 2013).

Outbreaks of Paspalum stagger is frequent in South Africa but case reports from the 

Americas, Europe, and New Zealand were also published (Mantle et al. 1978; Moyano et al. 

2010; Cawdell-Smith et al. 2010). C. paspali infecting Paspalum dilatatum (Dallis grass) and 

C. cynodontis infecting Cynodon dactylon (Bermuda grass) produce similar paspalitrem IDT 

profiles (Uhlig et al. 2009). Ingestion of sclerotia containing these toxins causes a 

tremorgenic syndrome with very similar symptoms to that of ryegrass stagger (Moyano et al. 

2010). Just as with lolitrem B intoxication, the affected animals usually recover rapidly after 

being removed from the infected pasture (Moyano et al. 2010; Cawdell-Smith et al. 2010).

Grazing on morning glories, most frequently on Ipomoea asarifolia and Ipomoea muelleri, 
may also cause a tremorgenic syndrome on livestock (Gardiner et al. 1965; Medeiros et al. 

2003; Dorling et al. 2004; Carvalho de Lucena et al. 2014). This toxicosis is also associated 

with the presence of IDTs (Lee et al. 2017), produced by seed-transmitted endophytic fungi, 

most likely P. ipomoeae (Schardl et al. 2013; Lee et al. 2017). The main IDT congeners 

isolated from endophyte-infected I. asarifolia and I. muelleri are terpendole K, 11-

hydroxy-12,13-epoxyterpendole K and 6,7-dehydroterpendole A (Lee et al. 2017).

A ryegrass stagger-like syndrome, “huecu’s disease” has been observed on sheep, horses, 

cattle and goats in Argentina. This is caused by the ingestion of the grass Poa huecu 
contaminated with penitrem A and B, produced by Penicillium species (Scuteri et al. 1992). 

Penitrem A may also contaminate the soil, and ingestion of such soil by grazing animals can 

also cause a tremorgenic syndrome (Patterson et al. 1979). However, most case reports of 

penitrem A intoxications involve the ingestion of moldy food by pets, most frequently dogs 

(Hayes et al. 1976; Richard et al. 1981; Hocking et al. 1988; Walter 2002). Symptoms on 

dogs include generalized convulsion, ataxia, vomiting, tremors, frequent urination and 

defecation, mydriasis (dilation of the pupil), polypnea (panting), and hyperthermia (Richard 
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and Arp 1979; Richard et al. 1981). Typically, the affected animals recover within a few 

weeks or months, but ataxia may still remain observable even years later in severe cases of 

intoxication (Eriksen et al. 2010).

Contamination of animal feedstuffs by spoilage fungi that produce mycotoxins, including 

IDTs such as penitrem A (Stoev et al. 2010), represents another worldwide threat to the 

livestock industry. Such problems are independent of the geographical location or the origin 

of the feed from industrial or family-owned farms (EFSA Panel on Contaminants in the 

Food Chain (CONTAM) 2012).

Public health threats

Amongst IDTs, the toxic effects of only penitrem A and its analogues have been studied in 

depth, mainly in mice (Eriksen et al. 2013). Valuable information on the adverse 

physiological effects of these compounds on mammals also came from case reports on 

poisoned dogs that consumed various moldy foods infected by P. crustosum (Eriksen et al. 

2010; Eriksen et al. 2013). Tremorgenic mycotoxicoses likely caused by penitrem A and/or 

other mycotoxins produced P. crustosum have only been reported very rarely in humans 

(Eriksen et al. 2013), and were connected to either the consumption of mold-contaminated 

food (Lewis et al. 2005) or drink (Cole et al. 1983), or resulted from exposure to moldy 

silage (Gordon 1993). It is important to note that food wastes from private households may 

contain high concentrations of tremorgenic mycotoxins, e.g. as high as 35–7,500 μg/kg of 

penitrem A (Rundberget et al. 2004)

The neurotoxic effects of penitrem A include tremors, convulsions, ataxia and nystagmus 

(involuntary eye movement) (Eriksen et al. 2013). In humans, symptoms affecting the 

gastrointestinal tract, such as nausea, vomiting, and bloody diarrhea have also been recorded 

(Cole et al. 1983). The toxicokinetic characteristics of this lipophilic molecule are relatively 

well-known and include (i) rapid absorption through biological membranes, (ii) rapid 

distribution within the body through the blood vessels to the liver, the kidneys and the 

central nervous system (penitrem A can penetrate the blood-brain barrier), (iii) metabolism 

in the liver to yield more hydrophilic compounds and (iv) excretion through the bile into the 

feces (Moldes-Anaya et al. 2009; Eriksen et al. 2010; Moldes-Anaya et al. 2012; Eriksen et 

al. 2013).

Penitrem A interferes with GABAergic neurotransmission in the central nervous system by 

inhibiting the GABA(A) receptors in the forebrain and in the cerebellum in a region-specific 

manner (Moldes-Anaya et al. 2011; Eriksen et al. 2013). In addition, this IDT is a potent 

antagonist of the high-conductance Ca2+-activated potassium channels (BK channels) in 

smooth muscles and peripheral tissues (Knaus et al. 1994; Eriksen et al. 2013). Importantly, 

lolitrem B and paxilline produced by N. lolii and E. festuce also inhibit these potassium 

channels, leading to ryegrass staggers in livestock (Dalziel et al. 2005; Imlach et al. 2008). 

Penitrem A-induced neurotoxicity may also be linked to the oxidative stress-inducing effect 

of this compound, as shown in cerebellar granule neurons in rats (Berntsen et al. 2017).

Additional harmful physiological effects of IDTs may include genotoxicity, as observed for 

paxillin in human lymphocytes (Sabater-Vilar et al. 2003). It is noteworthy that both P. 
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crustosum extracts and penitrem A showed considerable cytotoxicity in vitro against human 

lung cancer, human hepatoma carcinoma, murine fibroblast and murine neuroblastoma cell 

lines (Bunger 2004). The physiological effects of IDTs might be even more varied and 

severe because toxigenic fungi typically produce a wide spectrum of harmful secondary 

metabolites (Bunger 2004; Andersen and Frisvad 2004; Santini et al. 2014; Prencipe et al. 

2018). Unfortunately, the synergistic behavior of these compounds is a notoriously 

understudied area of mycotoxicology.

Paspalitrem IDTs are relatively rarely implicated in outbreaks of toxic syndromes in 

humans. One such case involved an outbreak of tremors in India in 1946. At that time, 

Paspalum scrobiculatum, a type of millet, was consumed in certain parts of India because of 

a shortage of rice. Tellingly, the paspalitrem producer C. paspali was isolated from the 

unwholesome grain (Aaronson 1988). Even today, another IDT producer, C. purpurea is 

often isolated from rye and barley, and paxilline can be detected in such specimen at the 

maximum concentration of 0.6 mg/kg (Bauer et al., 2017). C. purpurea sclerotia contain at 

least seven paspalenes, including paspaline (Uhlig et al. 2014). This raises the interesting 

possibility that these toxins may have played a role in the development of the feared 

symptoms of ergotism in the Middle Ages. Some authors, including Bauer and coworkers 

hypothesized that IDTs might have contributed to outbreaks of convulsive ergotism during 

history (Bauer et al. 2017).

Although the daily exposure of consumers to various IDTs is unknown, these toxic 

compounds have been detected in a number of food and drink products in highly variable 

concentrations, depending on the geographical location. Penitrem A and its producer, the 

food spoilage fungus P. crustosum have been detected in several agricultural products and 

foodstuff, such as beer, cheese, chestnut, meat products, vegetables, pudding, grape berries, 

honey, sausage, etc. (El-Banna and Leistner 1988; Overy et al. 2003; Sengun et al. 2008; 

Tancinova and Labuda 2009; Kacaniova et al. 2012; Santini et al. 2014; Camardo Leggieri et 

al. 2016; Olsen et al. 2017; Prencipe et al. 2018). Of course, penitrem A is not the only IDT 

that can be detected in contaminated foods. Paxilline and other IDTs were found in moldy 

tomatoes infected with Penicillium tularense (Andersen and Frisvad 2004). Lolitrem B and 

epoxy-janthitrem were observed in the fat and milk of growing and lactating animals that 

grazed on contaminated tall fescue (Miyazaki et al. 2004; Finch et al. 2012; Finch et al. 

2013; Shimada et al. 2013; Zbib et al. 2015). The maximum concentration of these IDTs in 

cow milk reached 5 ng/ml and 109 ng/ml for lolitrem B and epoxy-janthitrem, respectively 

(Finch et al. 2013). Miyazaki et al. (2004) measured 210 ppb lolitrem B in the perirenal fat 

of Japanese Black cattle feeding on contaminated ryegrass (Miyazaki et al. 2004). However, 

the concentrations of these IDTs decrease rapidly in vivo when the animals are removed 

from the contaminated pasture, thus reducing the prevalence of food containing these two 

mycotoxins and limiting the threat to human health (Miyazaki et al. 2004; Finch et al. 2013).

Today, highly sensitive HPLC-MS methods are available to facilitate the detection of 

mycotoxin contaminants in food and drink samples (Rundberget and Wilkins 2002). A 

recent survey (Kalinina et al. 2018) revealed that 10% of cheese samples taken from the 

European single market contained penitrem A at an average concentration of 28.4 μg/kg and 

with a maximum concentration of 429 μg/kg. Considering such observations, it would be 

Kozák et al. Page 13

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



important to devise standardized analytical protocols for tremorgenic IDT mycotoxins. Even 

more importantly, it would be highly desirable for national and international regulatory 

agencies to define the maximum legally permitted levels of tremorgenic IDTs in human food 

and animal feed, similar to legal limits established for other mycotoxins such as aflatoxin 

(Medeiros et al. 2012; Oliveira et al. 2014).

Threats for the fermentations industries

C. paspali is used to produce ergot alkaloids in the pharmaceutical industries for the 

manufacture of drugs against migraine and for the treatment of Parkinson’s disease. IDT 

biosynthesis by C. paspali during industrial fermentations or agricultural production on 

infected grasses represents both an economic and a safety problem for the manufacturers. 

Precursors and cofactors that may be utilized for ergot production are depleted by IDT 

biosynthesis, reducing productivity. At the same time, IDTs are hazardous impurities that 

must be removed from ergot alkaloid products and must also be safely disposed (Kozák et al. 

2018).

A. oryzae is widely used in biotechnology and the food industry. This fungus is the 

domesticated descendant of A. flavus. While the genotypes of A. oryzae and A. flavus are 

nearly identical, these fungi can still be distinguished by their morphological and 

physiological characteristics, and by their secondary metabolite profiles (Frisvad et al. 

2018). While A. oryzae does not produce aflatoxin (Barbesgaard et al. 1992; Tao and Chung 

2014), certain isolates of A. oryzae were demonstrated to produce tremorgenic paspaline-

type IDTs such as 13-desoxypaxilline (Qiao et al. 2010; Rank et al. 2012). Production of 

these IDTs may represent an overlooked risk factor for fermented food products.

A possible solution may be to eliminate the production of IDT mycotoxins during various 

fermentations, for example by inactivating key IDT biosynthetic genes. This was 

demonstrated by the knockout of the idtCBGF paspalitrem biosynthetic genes in the 

industrially important ergot producer C. paspali. This led to the complete abrogation of IDT 

biosynthesis during fermentations, while the production of ergot alkaloids remained 

undisturbed with this strain (Kozák et al. 2018).

Future perspectives

Potential medical applications

Paspaline-derived IDTs are not in current medical use. Nevertheless, these metabolites show 

potent and wide-ranging bioactivities and have been considered for pharmaceutical 

development over the years. It is noteworthy that terpendole congeners were isolated in a 

systematic screening for acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors of 

microbial origin (Huang et al. 1995). ACAT inhibitors are potential agents for the prevention 

of atherosclerosis (Lee et al. 1998). The most potent inhibitor is terpendole C (IC50: 2.1 μM) 

but terpendole D (IC50: 3.2 μM) was considered even more promising since that congener 

displayed relatively low cytotoxicity against J774 macrophages (Huang et al. 1995). After 

the discovery of two ACAT isozymes in mammals (Anderson et al. 1998; Cases et al. 1998), 

isozyme selectivity became a prerequisite for potential anti-atherosclerotic agents 
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(Giovannoni et al. 2003). Testing the selectivity of a number of microbial ACAT inhibitors 

revealed that terpendole C inhibits both ACAT isozymes, reducing the enthusiasm for the 

further clinical development of these IDTs (Ohshiro et al. 2007).

Terpendoles were re-discovered in a systematic screening for specific M phase cell cycle 

inhibitors where terpendole E was found to specifically inhibit the human kinesin Eg5 

(Nakazawa et al. 2003), a potential target for cancer therapy (Knight and Parrish 2008; Sarli 

and Giannis 2008). Terpendole E does not affect microtubules directly, but induces the 

formation of monopolar mitotic spindles in the M phase, similar to monastrol (Nakazawa et 

al. 2003; Tarui et al. 2014; Sheff et al. 2017). To increase the production of terpendole E that 

is an intermediate of terpendole K biosynthesis and is thus produced only in low amounts, 

the terP gene was inactivated in T. album leading to the accumulation of terpendole E 

(Motoyama et al. 2012). The same terP knockout strain also produces the novel shunt 

product 11-ketopaspaline (Tarui et al. 2014). Later studies revealed that terpendole E and 11-

ketopaspaline are both potent inhibitors of the microtubule-stimulated ATPase activity of 

Eg5. Importantly, these terpendoles not only inhibit the wild type Eg5, but retain excellent 

activity against Eg5 variants that are resistant to the known Eg5 inhibitors S-trityl-L-cysteine 

and GSK-1 (Tarui et al. 2014).

Penitrems show in vitro antiproliferative, anti-haptotactic (cell migration inhibitory) and 

anti-invasive activities against human breast cancer cell lines. Penitrem A induces G1 cell 

cycle arrest and up-regulates the arrest protein p27 (Goda et al. 2018). The documented 

synergistic effects of penitrem A treatment with anti-HER drugs may have a significant 

impact on future development of breast cancer chemotherapies (Goda et al. 2018). 

Interestingly, the early biosynthetic intermediates paspaline and emindole SB also show 

noticeable antiproliferative and antimigratory activities, with the anti-haptotactic activity of 

paspaline almost equipotent to that of the more elaborate congener penitrem A (Sallam et al. 

2013a; Sallam et al. 2013b). These notable activities of penitrem A are due, at least in part, 

to the inhibition of the Wnt/β-catenin pathway (Sallam et al. 2013a) that is a validated target 

of novel anticancer drugs (Lu et al. 2011). However, the BK channel (high-conductance 

Ca2+-activated potassium channel) inhibitory and tremorgenic activities of these IDTs 

present a formidable obstacle towards the development of penitrems as novel drugs (Sings 

and Singh 2003). Inhibition of the α-subunit of the BK channel interferes with 

neurotransmitter release mechanisms and neuroreceptors in the central and the peripheric 

nervous systems. To overcome these challenges, new penitrem analogues were synthesized. 

Some of these lack the BK channel inhibitory and tremorgenic activities while still repress 

β-catenin in human breast cancer cells (Sallam et al. 2013a). Another interesting approach is 

to mitigate the undesired effects of penitrems in a combination therapy with preventative 

agents such as astaxanthin or docosahexaenoic acid. Simultaneous application of penitrem A 

with these agents in rats significantly reduced toxicity and reversed the BK channel blockade 

associated with penitrem A alone (Goda et al. 2016).

While paspaline-derived IDTs are associated with tremorgenic activities, emindole SB-

derived IDTs such as nodulisporic acids display highly potent insecticidal activities without 

observable adverse effects in mammals (Shoop et al. 2001). Thus, non-tremorgenic IDT 
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analogues may find applications as pesticides in agriculture or even as anti-parasitic agents 

against insects feeding on humans.

Conversely, the potent BK channel inhibitory activity of penitrems may also be utilized in 

the future. The standard inhibitor for BK channels is iberiotoxin whose high price and 

membrane impermeability makes its use less than ideal for studies in organ models or whole 

animals. The higher membrane permeability, potency and efficacy of penitrem A may 

recommend this IDT as a good alternative to iberiotoxin for studying BK channels in vitro 
and in vivo (Stewart et al. 2012; Asano et al. 2012; Kyle et al. 2013; Needham et al. 2014).

Invasive fungal infections are an important medical problem, particularly in 

immunocompromised patients. However, treatment of invasive candidiasis is restricted to 

only a few drug families with a limited number of mechanisms of action (Tkacz and 

DiDomenico 2001). The toxicity of amphotericin B, and the emergence of resistance in the 

clinically relevant Candida albicans species against the azoles and the candins presents a 

clear demand for the development of new therapeutic strategies (Kathiravan et al. 2012). 

Importantly, shearinines D and E block the formation of biofilms by C. albicans (You et al. 

2013). Biofilm formation makes the treatment of fungal infections very problematic, because 

biofilms constitute a barrier that can prevent antifungal drugs from reaching the fungal cells 

(Douglas 2003; Nett et al. 2010; Nett et al. 2011). C. albicans treated with shearinine D 

forms an irregular, sparse layer instead of a well-developed biofilm. Co-application of 

shearinine D or E synergistically enhanced the potency of amphotericin B against clinical 

Candida isolates (You et al. 2013).

Systematic screening for natural compounds active against the influenza A virus subtype 

H1N1 led to the isolation and characterization of an array of IDT congeners from P. 
camemberti. Three novel and six known paspaline- and paxilline-derived IDT analogues 

showed significant antiviral activity (IC50: 17.7 – 73.3 μM) (Fan et al. 2013), raising hopes 

that novel antiviral agents may be developed from these IDTs in the future.

Industrial scale production of IDTs using filamentous fungi

The industrial-scale production of paspaline-derived IDTs for future medical and 

agricultural applications requires careful consideration of the potential producer strains. For 

example, P. paxilli has been extensively used to clarify the individual steps of IDT 

production (Young et al. 2001). However, the pharmaceutical industry has yet to invest in the 

strain development and fermentation process optimization of this strain. Similarly, N. lolii 
may be difficult to adopt for the large-scale production of secondary metabolites due to its 

fastidious growth habits, genetic instability, and its requirement for a plant host for IDT 

production (Wiewióra et al. 2015).

Only a few studies investigated the production of IDTs in laboratory scale fermentations. 

Thus, P. nigricans produced 60 mg/L penitrem in a 60 L stirred fermentor in 5 days (Mantle 

et al. 1984). Engineered C. alba accumulated 36 mg/L terpendole E, an intermediate of 

terpendole K biosynthesis, in a 30 L fermentor in 2 days (Motoyama et al. 2012). Kalinina 

and coworkers demonstrated that the spectrum of penitrems produced by P. crustosum can 

also be controlled by varying the chemical and physical conditions of the fermentation 
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(Kalinina et al. 2017). Encouragingly, C. paspali is currently used for ergot alkaloid 

production in the pharmaceutical industry. Although these fermentations have not been 

optimized for IDT production, the significant knowledge base available for the safe and 

economical industrial scale fermentation and the genetic manipulation of this fungus 

(Arcamone et al. 1960; Tudzynski et al. 2001; Kozák et al. 2018) may recommend C. paspali 
as a useful candidate to produce IDT congeners in the future.

Heterologous biosynthesis of IDTs

Domesticated microbial hosts for the heterologous expression of biosynthetic pathways are 

becoming increasingly important for the characterization of biosynthetic pathways and the 

clarification of reaction mechanisms. As a prominent example, the Oikawa group has been 

developing a heterologous production system for secondary metabolites. In this system, 

biosynthetic genes are cloned into multiple expression vectors and co-integrated into the 

genome of the domesticated filamentous fungus A. oryzae. In an influential set of 

publications, Oikawa and coworkers have used this expression system for the reconstitution 

of the biosynthesis of various IDTs to clarify the individual biosynthetic steps (Oikawa et al. 

2016). Thus, the biosynthesis of paspaline was reconstituted in 2012 using A. oryzae 
transformants producing the P. paxilli IDT biosynthetic enzymes PaxG, PaxC, PaxM and 

PaxB (Liu et al. 2015). Adding the paxP and paxQ genes yielded paxilline in A. oryzae. In 

2014, seven genes from the aflatrem biosynthetic locus of A. flavus were expressed in the A. 
oryzae host, leading to the heterologous production of aflatrem A and β-aflatrem in addition 

to paspaline and paspalinine (Tagami et al. 2014). In 2015, the same A. oryzae chassis was 

utilized to dissect the biosynthesis of penitrems by functionally analyzing 13 of the 17 genes 

encoded in the biosynthetic gene cluster of P. simplicissimum (Liu et al. 2015). The same A. 
oryzae heterologous expression system was also used to clarify the biosynthesis of 

shearinines from P. janthinellum (Liu et al. 2016).

Other hosts have also been used to express IDT biosynthetic gene clusters. For example, a 

versatile multigene expression system termed MIDAS was developed to express biosynthetic 

gene clusters in a P. paxilli strain with the entire paxilline biosynthetic cluster deleted (van 

Dolleweerd et al. 2018). This system was used to express key biosynthetic genes from 

Hypoxylon pulicicidum to produce nodulisporic acid intermediates and congeners (Van de 

Bittner et al. 2018). Although nodulisporic acid is not a paspaline-derived IDT and is thus 

not the subject of this review, the work still shows that strains derived from IDT producers 

can be useful hosts to produce other bioactive molecules. Meanwhile, nodulisporic acid 

derivatives are potent insecticides that lack observable adverse effects in mammals, 

including the tremorgenic activities associated with the paspaline-derived IDT core.

Combinatorial biosynthesis of novel, unnatural IDTs in synthetic biological platforms is 

another promising application. To design such a platform, the Tang group has used 

Saccharomyces cerevisiae as the chassis for the heterologous production of epoxy-

geranylgeranyl indole (Tang et al. 2015). Co-expression of various IDT cyclases, some with 

previously unknown product specificities yielded not only paspaline (1.5 mg/L), but also 

various seco-IDTs and aflavinine- or anominine-type Markovnikov-derived cyclic scaffolds. 

This work demonstrates that diversity-oriented combinatorial biosynthesis with enzymes 
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coopted from distinct and even orthogonal IDT biosynthetic pathways may be used to 

generate diverse, drug-like chemical matter towards the discovery of future medications. 

Presumably, such synthetic biological platforms will also be useful in the future for the 

large-scale and economical production of IDT congeners for medical or agricultural 

applications.

Supplementary Material
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Figure 1. Biosynthesis of paspaline in Penicillium paxilli.
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Figure 2. Biosynthesis of the three main subgroups of paspaline-derived indole-diterpenes.
Only the main diversity-generating biosynthetic steps and the corresponding enzymes are 

shown.
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Figure 3. IDT biosynthetic gene clusters.
Genes encoding enzymes for: paspaline biosynthesis (red); oxidation of the paspaline rings 

E and F (green); prenylation of C20, C21 or C22 of paspaline (blue); unknown membrane-

associated processes (yellow); and IDT group-specific tailoring reactions (black) are 

highlighted. See Supplementary Table S2 for protein similarities. Practically identical gene 

clusters for aflatrems in A. flavus and A. oryzae, and for lolitrems in N. lolii and E. festucae 
are represented by only one cluster each. *, End of the contig (P. crustosum).
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