Skip to main content
. 2019 Feb 8;7(1):e10788. doi: 10.2196/10788

Table 1.

Comparison of the study results at baseline.

Model Positive Negative Overall AUC-ROCa

Precision Recall F-score Precision Recall F-score Precision Recall F-score
SVMb+BOWc 0.848 0.883 0.865 0.878 0.841 0.859 0.862 0.862 0.862 0.921
SVM+BOW+UMLSd concept 0.891 0.887 0.889 0.870 0.886 0.878 0.886 0.886 0.886 0.934
Autoencoder 0.861 0.855 0.858 0.856 0.862 0.859 0.859 0.859 0.859 0.920
Autoencoder+pretrained word embedding 0.875 0.869 0.872 0.870 0.876 0.873 0.872 0.872 0.872 0.926
CNNe 0.908 0.877 0.892 0.879 0.910 0.894 0.893 0.893 0.893 0.938
CNN+pretrained word embedding 0.930 0.911 0.920 0.912 0.931 0.921 0.921 0.921 0.921 0.946
HCLAf 0.954 0.912 0.932 0.925 0.961 0.943 0.938 0.938 0.938 0.957
CNN for negation bleeding N/Ag N/A N/A 0.820 0.820 0.820 N/A N/A N/A N/A
HCLA for negation bleeding N/A N/A N/A 0.860 0.860 0.860 N/A N/A N/A N/A

aAUC-ROC: area under the receiver operating characteristic curve.

bSVM: support vector machines.

cBOW: bag of words.

dUMLS: unified medical language system.

eCNN: convolutional neural network.

fHCLA: hybrid convolutional neural network and long short-term memory autoencoder.

gN/A: not applicable.