Table 1.
Comparison of the study results at baseline.
Model | Positive | Negative | Overall | AUC-ROCa | ||||||
|
Precision | Recall | F-score | Precision | Recall | F-score | Precision | Recall | F-score |
|
SVMb+BOWc | 0.848 | 0.883 | 0.865 | 0.878 | 0.841 | 0.859 | 0.862 | 0.862 | 0.862 | 0.921 |
SVM+BOW+UMLSd concept | 0.891 | 0.887 | 0.889 | 0.870 | 0.886 | 0.878 | 0.886 | 0.886 | 0.886 | 0.934 |
Autoencoder | 0.861 | 0.855 | 0.858 | 0.856 | 0.862 | 0.859 | 0.859 | 0.859 | 0.859 | 0.920 |
Autoencoder+pretrained word embedding | 0.875 | 0.869 | 0.872 | 0.870 | 0.876 | 0.873 | 0.872 | 0.872 | 0.872 | 0.926 |
CNNe | 0.908 | 0.877 | 0.892 | 0.879 | 0.910 | 0.894 | 0.893 | 0.893 | 0.893 | 0.938 |
CNN+pretrained word embedding | 0.930 | 0.911 | 0.920 | 0.912 | 0.931 | 0.921 | 0.921 | 0.921 | 0.921 | 0.946 |
HCLAf | 0.954 | 0.912 | 0.932 | 0.925 | 0.961 | 0.943 | 0.938 | 0.938 | 0.938 | 0.957 |
CNN for negation bleeding | N/Ag | N/A | N/A | 0.820 | 0.820 | 0.820 | N/A | N/A | N/A | N/A |
HCLA for negation bleeding | N/A | N/A | N/A | 0.860 | 0.860 | 0.860 | N/A | N/A | N/A | N/A |
aAUC-ROC: area under the receiver operating characteristic curve.
bSVM: support vector machines.
cBOW: bag of words.
dUMLS: unified medical language system.
eCNN: convolutional neural network.
fHCLA: hybrid convolutional neural network and long short-term memory autoencoder.
gN/A: not applicable.