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An intact model for quantifying 
functional selectivity
Xiao Zhu   1, David B. Finlay   2, Michelle Glass   2 & Stephen B. Duffull1

A ligand that acts on a target receptor to activate particular multiple signalling pathways with activity 
that is distinct from other ligands is termed ligand bias. Quantification of ligand bias is based on 
applying the operational model to each pathway separately and subsequent calculation of the ligand 
bias metric (ΔΔlogR). This approach implies independence among different pathways and causes 
propagation of error in the calculation. Here, we propose a semi-mechanism-based model which 
allows for receptor selectivity across all the pathways simultaneously (termed the ‘intact operational 
model’). The power of the intact model for detecting ligand bias was evaluated via stochastic simulation 
estimation studies. It was also applied to two examples: (1) opposing effects of Gi/Gs signalling 
of α2-adrenergic receptors and (2) simultaneous measurement of arachidonic acid release and 
inositol phosphate accumulation following 5-HT2C receptor activation. The intact operational model 
demonstrated greater power to detect ligand bias in the simulation. In the applications, it provided 
better precision of estimation and identified biased ligands that were missed by analysis of traditional 
methods. Issues identified in both examples might lead to different interpretations of the data. The 
intact operational model may elucidate greater understanding of the underlying mechanisms of 
functional selectivity.

Different ligands can differentially activate multiple signalling pathways when coupled to a single receptor. This 
feature is termed functional selectivity1. This complex pharmacological process involves multiple biological steps, 
such as receptor binding and activation of a range of intracellular signalling pathways. Simplified models have 
been adopted to delineate this phenomenon, in which each pathway is considered independently2,3.

In current practice, the most commonly used simplified model is the operational model, proposed in 1983 
by Black and Leff4. In this approach, the operational model is applied separately to each pathway5. Since it is 
known that the pathways are linked biologically, this constitutes a simplification by assuming the pathways are 
independent. In modelling terms, this would be described as marginal and thus we denote this as ‘the marginal 
operational model’. When the operational model is applied in isolation, a composite parameter, R (the transduc-
tion coefficient; the ratio of the transducer ratio, τ, and functional affinity, KA), is obtained for quantifying the 
effect of a ligand on a single pathway. Ligand bias (the relative preference of a ligand for a particular pathway) is 
then computed in a post hoc analysis where a ligand’s transduction coefficient is normalised to that of a reference 
ligand in order to accommodate system and observational bias6. This yields the normalised transduction coeffi-
cient ΔlogR. This value is then further normalised such that a ligand’s transduction coefficient for one pathway is 
related to its ΔlogR for a second pathway. This second normalisation step provides a widely reported metric for 
ligand bias, ΔΔlogR. Calculating this metric for a given ligand in multiple pairwise pathway comparisons will 
formulate a signature profile of biases (preferences) across the range of pathways of interest, and these biases are 
often displayed as a radar plot7.

The use of the marginal operational model makes the assumption that each signalling pathway is independ-
ent. This precludes insights pertaining to functional selectivity from observed phenomena, such as the natural 
correlation of a ligand’s C50 values in different pathways. In addition, there is propagation of errors associated 
with the required post hoc parameter manipulation when the marginal operational model is used as the basis for 
determining ligand bias, due to the requirement for two successive normalisation steps.

In order to reflect the linkages between different signalling pathways, a mechanism-based three-state model 
has been introduced8. Within this model framework, equilibria are linked between different receptor conforma-
tional states and there is mutual depletion of these receptor states. This means that C50 values should be exactly the 

1Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand. 2Department of 
Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 
New Zealand. Correspondence and requests for materials should be addressed to X.Z. (email: derekzx@126.com)

Received: 18 May 2018

Accepted: 4 January 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-39000-z
http://orcid.org/0000-0003-3295-619X
http://orcid.org/0000-0002-3160-2931
http://orcid.org/0000-0002-5997-6898
mailto:derekzx@126.com


2Scientific Reports |          (2019) 9:2557  | https://doi.org/10.1038/s41598-019-39000-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

same for different signalling pathways. This strict constraint makes the three-state model less flexible and limits 
its applicability.

Here, we propose a simple extension of the operational model to allow its use across all pathways simultane-
ously and provide a direct estimate of ΔΔlogR. This model allows all pathways to be simultaneously modelled. 
Since we believe this provides mechanistic insight into what we consider to be an intact system, we denote this 
model as ‘the intact operational model’. This approach may shed light into the underlying mechanism of func-
tional selectivity and act as the first step in the development of a full mechanistic model of functional selectivity. 
In addition, by allowing data from different pathways to inform the common components of the intact model, 
then the parameters of this model (e.g. logR) should be more precisely estimated.

The aims of this study are (1) to describe the intact operation model, (2) to evaluate its performance compared 
to the commonly utilised marginal operational model via theoretical assessment (power analysis) and practical 
applications (two literature examples) and (3) to demonstrate how a go/no-go workflow decision for ligand bias 
experiments varies based on the choice of operational model.

The main experimental components of this paper are divided into three parts to reflect progressive flow in 
our study. In the first part, the derivation of the intact operational model and general aspects of the data analyses 
are provided as they relate to both theoretical evaluation and practical applications. In the second part, the newly 
proposed method is theoretically evaluated via stochastic simulation estimation studies. In the third part, the 
findings from theoretical evaluation are further evaluated via practical applications in two examples. We have 
kept notation here the same as the convention. We note that R is conventionally used to represent two separate 
entities, the receptor R (shown in schematics and mass balance equations) and the transduction coefficient. To 
differentiate these components, when the receptor R is unbound to a ligand, A, we add the subscript ‘ub’ (Rub), and 
when referring to the total receptor numbers we use Rt. The transduction coefficient is indexed (if required) by 
either a numeric value (if more than one ligand is present), or by the pathway signal (e.g. ‘i’ for inhibitory pathway 
and ‘s’ for stimulatory pathways).

Part I
Derivation of intact operational model.  Marginal operational model.  The marginal operational model 
is illustrated in Fig. 1. In this representation, the different receptor conformational states are assumed to be 
independent. Within this model framework, the general operational model (Eq. 1, the same as Eq. 5 in van der 
Westhuizen et al., 2014) can be separately applied to each signalling pathway to fit the data.

= +
−

+












+

⋅

( )
E Basal E Basal( )

1
(1)

m

A

n
1

10

A
logKA

logR
10

Here, Em is the system maximal response, Basal is the baseline response in the absence of ligand and n is the Hill 
slope factor. These three parameters are system parameters. The ligand-specific parameters are KA (the equilib-
rium dissociation constant), and R (the transduction coefficient, τ/KA). Conventionally, the parameters KA and R 
are transformed into logarithms (i.e., 10logKA and 10logR).

By definition, the ligand bias metric is calculated as the difference between transduction coefficients from two 
pathways for the test ligand normalised to those of the reference ligand (Eq. 2):

ΔΔ = − − −−logR logR logR logR logR( ) ( ) (2)REF REF
1 2 1 1 2 2

Here, the superscript letter ‘REF’ indicates reference ligand. A subscript number “1” indicates pathway 1 and “2” 
indicates pathway 2.

The estimated standard error (SE) for test ligand is calculated using Eq. 3 (assuming independence – which for 
the standard post hoc analysis is reasonable).

Figure 1.  The schematic plot of the marginal operational model and the intact operational model.
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Intact operational model.  The intact operational model is illustrated in Fig. 1. Here we see that equilibria are 
linked among different receptor conformational states and there is mutual depletion of these receptor states, 
though there may exist a theoretically unlimited number of active states. We only consider two active receptor 
conformations in the current study but this can be generalised to a greater number of states. The intact opera-
tional model (Eq. 4 for pathway 1 and Eq. 5 for pathway 2) is derived in detail in Appendix 1. Due to identifiability 
issues, it is not possible to estimate individual KA values given only functional assay data. Hence, the information 
for those values is integrated into ′KA (Eq. 6). Here, ′KA is proportional to the harmonic mean of individual KA 
values. Note that ′KA is introduced to improve model identifiability but this should not prevent the researchers 
from estimating the individual KA values when more information is at hand.
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Here, ′KA (Eq. 6) refers to the apparent equilibrium dissociation constant. R1 and R2 are the transduction coeffi-
cients (the ratio of transducer ratio and the equilibrium dissociation constant) for each of the two pathways.
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The intact operational model can be generalised to account for non-zero basal (Basal), non-unity slope factor (n), 
and estimable maximal system response (Em), which we refer to as the general intact operational model (Eq. 7 for 
pathway 1 and Eq. 8 for pathway 2, detailed in Appendix 2). For the purpose of modelling, the parameters ′KA, R1 
and R2 are transformed into logarithms (i.e., 

′
10logKA, 10logR1 and 10logR2).
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In order to jointly model all the functional assay data, Eqs 7 and 8 are combined into Eq. 9. Here, Ipath=1 and Ipath=2 
are indicator functions. Ipath=1 is equal to 1 for producing effect of pathway 1 and Ipath=2 is equal to 1 for producing 
effect of pathway 2.

In order to directly estimate ligand bias metric, ΔΔlogR1−2, a re-parameterisation is performed to explicitly 
incorporate ΔΔlogR1−2 as an estimated parameter into the model. From Eq. 2, logR2 is expressed as Eq. 10:

= − + − ΔΔ −logR logR logR logR logR (10)REF REF
2 1 1 2 1 2

Then, substituting Eq. 10 into Eq. 9 yields the intact operational model with ΔΔlogR1−2 as a directly estimated 
parameter (Eq. 11):
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Thus, ′logKA, logR REF
1 , logR REF

2 , logR1 and ΔΔlogR1−2 are the ligand specific parameters that are incorporated 
directly into the intact operational model. Hence, the ligand bias metric (ΔΔlogR1−2) can be estimated and the 
estimated standard error can be obtained from modelling output.

General aspects of data analysis.  Model analysis.  Parameter estimation was conducted using the soft-
ware NONMEM 7.3.0 (ICON Development Solutions, Hanover, MD, USA)9. Model development was managed 
using Perl-Speaks-NONMEM 4.5.0, Pirana 2.9.0 and Xpose 4.5.310. Due to the deterministic identifiability issue 
in the marginal operational model11, it was not possible to estimate logKA values of full agonists from direct fitting 
to concentration-response curves. We followed the convention to arbitrarily set logKA of the most efficacious 
ligand to 0 to circumvent this problem when it was necessary11. Model selection was informed by the minimum 
objective function value (MOFV)12. Model evaluation was based on the visual inspection of goodness of fit plots: 
(1) observed responses vs. predicted responses, (2) weighted residuals vs. predicted responses and (3) weighted 
residuals vs. ligand concentrations.

Test for ligand bias.  Statistical analysis was performed using a Wald test on the ligand bias metric ΔΔlogR. Since 
the statistical significance of ligand bias for each test ligand was screened individually, the data from the reference 
ligand was used multiple times for constructing the ligand bias metrics ΔΔlogR for each ligand. To avoid the 
issue with multiple comparisons (inflation of type I error), the Bonferroni correction13 was used where the level 
of significance was set to α/n, where α was the desired overall significance level (i.e., 0.05 in this study) and n was 
the number of hypothesis tested.

Part II
Theoretical evaluation of the intact model.  Since the intact operational model provides a more mech-
anism-based description of the biological system for functional selectivity, in current theoretical evaluation, we 
consider the intact operational model (Eq. 11) as the true model and then assess the influence of model mis-
specification (i.e., the marginal operational model) on the power of the ligand bias test via stochastic simulation 
estimation studies. In this circumstance we note that the intact operational model should not be inferior to the 
marginal operational model, rather, equivalent performance would favour the marginal operational model as a 
more parsimonious approach.

Power analysis process.  The power analysis is divided into two steps. In the first step, we correct for false positive 
findings by calibrating the statistical test to achieve the appropriate type I error rate of 0.05. In the second step, the 
power was calculated for different levels of ligand bias with an appropriately calibrated type I error rate.

	(1)	 Calibration of the criterion for type I error (α = 0.05) via non-parametric approach
Pseudo-experimental data were simulated from the true model (i.e., the intact operational model) under 
the null hypothesis (H0:ΔΔlogR1−2 = 0), based on the given parameter values and study design in Table 1. 
The parameter values for Table 1 were chosen to represent a biologically possible system5. Here we 
simulated 1000 virtual experiments and estimated the parameters in each. In each experiment, twelve 
concentration-response curves corresponding to a pair of reference and test ligands in two signalling 
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pathways (three replicates for every situation) were generated with random error. Then, the dataset 
generated from every simulation experiment was estimated with the candidate model. For each simulation 
experiment, we calculated the Wald statistic (the ratio of squared ΔΔlogR1−2 estimate and its variance, 

θ

θ

ΔΔ −

ΔΔ −

ˆ

ˆ( )se

logR

logR

1 2
2

2
1 2

). The 95th percentile from 1000 Wald statistics was used as the cut-off criterion for type I error 

(α) equal to 0.05.
	(2)	 Calculation of power curve

The pseudo-experimental data were simulated from the true model (i.e., the intact operational model) under 
alternative hypothesis (H0: ΔΔlogR1−2 ≠ 0), based on the given parameter values and study design in Table 2 (the 
same as Table 1, except that ΔΔlogR1−2 was different from zero). For each ΔΔlogR1−2 value, we conducted 1000 
simulation and estimation experiments. In each experiment, twelve concentration-response curves correspond-
ing to a pair of reference and test ligands in two signalling pathways (three replicates for every situation) were 
generated with random error. Then, the dataset generated from every simulation experiment was estimated with 
both candidate models (the marginal and intact operational models). For each simulation experiment, we 

Parameters Reference Test

Design

logA From −11 to −4, increase by 1

Pathway 1

Em1 100 100

Basal1 10 10

logR1 7 6

Pathway 2

Em2 100 100

Basal2 10 10

logR2 7 6
′logKA −5 −6

ΔΔlogR1−2 0

Random error

add.err1 5 5

prop.err1 10% 10%

add.err2 5 5

prop.err2 10% 10%

Table 1.  Parameter values and study design for the calibration of alpha criterion (α = 0.05).

Parameters Reference Test

Design

logA From −11 to −4, 
increase by 1

Pathway 1

Em1 100 100

Basal1 10 10

logR1 7 6.1, 6.2, 6.3, 6.4, 6.5, 
6.6, 6.8, 7.0

Pathway 2

Em2 100 100

Basal2 10 10

logR2 7 6
′logKA −5 −6

ΔΔlogR1−2
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.8, 1.0

Random error

add.err1 5 5

prop.err1 10% 10%

add.err2 5 5

prop.err2 10% 10%

Table 2.  Parameter values and study design for the calculation of power curve.
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. For each ΔΔlogR1−2 value, the power was calculated by taking the per-

centage of Wald statistics that were greater than the criterion for type I error equal to 0.05. Since, in this experi-
ment, ligand bias was present then the proportion of statistically significant runs is an empirical approximation to 
the true power.

For power analysis of the intact operational model, the intact operational model (Eq. 11) was the candidate 
model and θΔΔ −

ˆ
logR1 2

 and θΔΔ −
ˆ( )se logR1 2

 was directly obtained from the output of NONMEM. For power analysis 
of the marginal operational model, the marginal operational model (Eq. 1) was the candidate model and θΔΔ −

ˆ
logR1 2

 
and θΔΔ −

ˆ( )se logR1 2
 was calculated through post hoc analysis (Eqs 2 and 3).

Results.  The cut-off criterion for type I error equal to 0.05 was 5.53 for the intact operational model and 3.67 
for the marginal operational model. The theoretical criterion was 3.84. For intact operational model, there was a 
slight increase in the type I error rate. These cut-off criterion values were used in the power analysis for controlling 
of type I error. The power analysis results are presented in Fig. 2. It is seen that the intact operational model had 
greater power to detect ligand bias compared to the marginal operational model for all values of ΔΔlogR1−2. It 
was shown that ΔΔlogR1−2 had to be greater than 0.8 for the marginal operational model to achieve 80% power 
for the ligand bias, while, for the intact operational model, the requirement of ΔΔlogR1−2 was approximately 0.4.

Part III
Application of the intact operational model.  The performance of the intact operational model was 
evaluated using two examples from the literature. In both examples signalling responses were measured, simul-
taneously, a desirable but not necessary characteristic for application of the intact model (to reduce assay-specific 
effects). In the first example, calculation of logR for the marginal operational model does not support continued 
experiments since logR could not be precisely determined for the single ligand under the marginal operation 
model, whereas estimation was sufficiently precise under the intact model to support a full analysis. In the second 
example, we work through to calculation of ΔΔLogR and arrive at a refined (and different) conclusion from the 
intact operational model.

Example I: the opposing effects of Gi and Gs signalling.  Data description: In example I, data were extracted from 
the literature that described the opposing effects of Gi and Gs signalling pathways on α2-adrenergic receptor 
subtype C10 mediated adenylate cyclase activity in transfected Chinese hamster ovary (CHO) cells expressing 
different levels of receptors14. At low expression levels (1 pmol/mg), only the inhibitory effect of the Gi pathway 
was observed; at higher receptor levels (10 pmol/mg), an atypical biphasic response was observed due to stimu-
latory effect of Gs pathway.

Model analysis: Marginal operational model: In this example the two signalling pathways (Gi and Gs) resulted 
in a change in the same pharmacological response (cAMP). The marginal operational model was implemented as 
the sum of the general operational model (Eq. 1) for each pathway (Eq. 12 for low receptor expression level and 
Eq. 13 for high receptor expression level). With the assumption that each signalling pathway was independent, 
the marginal operational model was implemented without any constraint on the functional affinity in different 
pathways. Hence, KA could be different in Gi and Gs pathways, denoted as KA,i and KA,s.

Figure 2.  The power curve for the marginal operational model and the intact operational model. The orange 
line indicates the power curve for the marginal operational model and the blue line indicates the power curve 
for the intact operational model. The red dashed line indicates 80% power.
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The subscript ‘i’ and ‘s’ indicates the Gi and Gs pathways, respectively. The superscript ‘L’ and ‘H’ indicates the 
low receptor expression level and high receptor expression level, respectively. We note here that the basal level of 
activity is common to both pathways.

By definition of the transduction coefficient (R) and the transducer ratio (τ), it was demonstrated that the 
transduction coefficient was proportional to the total receptor density (Rt) (Eq. 14).
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Hence, the relationship between transduction coefficients in the Gi pathway at two receptor expression levels 
(1 pmol/mg and 10 pmol/mg) could be established (Eqs 15 and 16).
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Similarly, the relationship between transduction coefficients in the Gs pathway at two receptor expression 
levels (1 pmol/mg and 10 pmol/mg) was also established (Eq. 17).

= +logR logR 1 (17)s
H

s
L

Then, substituting Eqs 16 and 17 into Eq. 13 yields the equation for quantifying pharmacological response at 
high receptor level (Eq. 18).
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In this case, Eqs 12 and 18 were used to model the data from Example I, where; logKA,i, logKA,s, logRi
L and logRs

L 
were the drug specific parameters that would be directly estimated.

A preference of a ligand towards a particular pathway before normalisation to a reference ligand was termed 
the ligand preference profile. It could be regarded as an intermediate metric from the first normalisation process 
for calculating ligand bias metric (detailed in Appendix 3). Hence, the ligand preference profile between Gi and 
Gs signalling pathways was defined as Eq. 19:

= −logR logR logR (19)i s i
L

s
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:

For the marginal operational model, the ligand preference profile (logRi:s) was calculated using Eq. 19 and the 
estimated standard error (SE) was calculated using Eq. 20:

= +SE SE SE (20)logR logR logR( ) ( )
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2
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s
L:

Intact operational model: The intact operational model was implemented as Eq. 21 for low receptor level and 
Eq. 22 for high receptor level. Note here that the apparent equilibrium dissociation constant ( ′KA) was shared by 
Gi and Gs pathways.
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Based on the definition of ligand preference between Gi and Gs signalling pathways (Eq. 19), logRs
L are 

expressed as the difference of logRi
L and logRi:s (Eq. 23):

= −logR logR logR (23)s
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i s:

Substituting Eq. 23 into Eq. 17 yielded the expression of logRs
H (Eq. 24):

= − +logR logR logR 1 (24)s
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i s:

Then, substituting Eqs 16, 23 and 24 into Eqs 21 and 22 yielded the intact operational model with logRi:s as a 
directly estimated parameter (Eq. 25 for low receptor level and Eq. 26 for high receptor level).
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In this case, ′logKA, logRi
L and logRi:s were the ligand specific parameters. Hence, the profile metric (logRi:s) is 

estimated directly and the estimated standard error can be obtained from the NONMEM modelling output.

Results.  As illustrated in Fig. 3, the prediction from the intact operational model could reproduce the effect 
of the α2-adrenoceptor agonist UK-14304 on adenylate cyclase in transfected CHO cells, both qualitatively and 
quantitatively. This was confirmed by the model evaluation plots (Figures S1 and S2).

From Table 3, the estimated parameter values were generally comparable between the intact operational 
model and the marginal operational model. However, it was evident that the intact operational model rendered 
more precise parameter estimates than the marginal operational model. Some parameters (e.g., Em,s and n2) from 
the marginal operational model yielded poorly estimated parameters with relative standard errors of more than 
200%, indicating that the data (from a standard pharmacological experiment) was not sufficiently informative to 
allow precise estimation of these parameters. In particular, the ligand preference profile (logRi:s = 2.22), calculated 
via a post hoc analysis from the marginal operational model, was imprecise with relative standard error of 69%. 
Given this level of imprecision there would be little value in continuing with further comparator ligands since 
discrimination between ligands is unlikely to be fruitful. Hence, by testing only one ligand and analysing it in this 
way it is possible to make a no-go decision until an improved experimental set up could be created. In contrast, 
with the same profile directly estimated from the intact operational model was much more precise with the rela-
tive standard error of 6.7%. Hence, it remains possible to detect ligand bias in upcoming experiments and further 
refinement of the experiment would be unnecessary if the intact operational model is used.

Example II: simultaneous measurement of IP accumulation and AA release.  Data description: Data from the 
simultaneous measurement of phospholipase C (PLC)-mediated inositol phosphate (IP) accumulation and 
phospholipase A2 (PLA2)-mediated arachidonic acid (AA) release after the activation of 5-HT2C receptors in the 
CHO-1C19 cell were extracted from15.

Model analysis: For the marginal operational model, Eq. 1 was separately applied to each signalling pathway 
to fit the data. For the intact operational model, Eq. 11 was implemented to jointly model all the functional assay 
data. In order to circumvent the deterministic identifiability issue in marginal operational model, we followed the 
convention to arbitrarily set logKA

TFMPP
1  and logKA

BUF
2

11.
The high efficacy ligand in both pathways, bufotenin (BUF), was chosen as the reference ligand7. For the mar-

ginal operational model, the ligand bias metric (ΔΔlogR1−2) and the estimated standard error were calculated via 
post hoc analysis (Eqs 2 and 3). For the intact operational model, the ligand bias metric was directly estimated and 
the estimated standard error could be obtained from NONMEM modelling output.

Test for ligand bias: The null hypothesis for this test was that ΔΔlogR1−2 was equal to 0. Since there were four 
comparisons in this example, the α value was adjusted to 0.0125.

Results.  As shown in Fig. 4, the intact operational model captured the signalling profiles of the 5-HT2C receptor 
agonists on PLA2-mediated AA release and PLC-mediated IP accumulation in CHO-1C19 cells. This was con-
firmed by the model evaluation plots (Figs S3 and S4).
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From Table 4, the parameter estimates from the intact operational model were comparable to the marginal 
operational model. Since the logR could be precisely estimated in the marginal operational model, considered as 
a go from a go/no-go decision, we moved forward to the full ligand bias analysis. It was noted that the ligand bias 
metrics calculated via post hoc analyses from the marginal operational model were generally less precise than 
those directly estimated from the intact operational model. For instance, the relative standard error of ligand 

Figure 3.  The fitting result of the intact operational model for the effect of the α2-adrenoceptor agonist UK-
14304 on adenylate cyclase in transfected CHO cells expressing α2-C10 receptors at 1.0 and 10.0 pmol/mg. 
Note, Gi and Gs pathways are acting under both conditions, however the Gi pathway dominates at the low 
receptor expression and Gs pathway can eventually overcome this at high receptor expression. Left: at expression 
level of 1.0 pmol/mg, Gi-protein mediated inhibition of adenylate cyclase played a dominant role. Right: at 
expression level of 10 pmol/mg, a ‘U-shape’ response was observed due to activation of Gs-protein. The red dots 
are the data grabbed from the literature14. The black lines are the simulation profiles from the intact operational 
model.

Parameters

Intact operational 
model

Marginal operational 
model

Estimated [RSE%]

Basal 103 [2.9%] 103 [2.9%]

Em,i 49.2 [8.8%] 48.7 [16.2%]

ni 1.47 [48.2%] 1.44 [52.0%]

Em,s 59.2 [23.3%] 69.9 [212%]

ns 2.27 [28.7%] 2.54 [302%]
′logKA −5.32 [3.9%] —

logKA,i — 0 FIXa

logKA,s — −5.54 [57.6%]

logRi
L — 6.90 [1.7%]

logRs
L — 4.68 [32.5%]

logRi:s 2.28 [6.7%] 2.22 [68.7%]b

Table 3.  Comparison of the estimation results from the intact operational model and the marginal operational 
model for the effect of α2-adrenoceptor agonist UK-14304 on CHO cells with different expression levels of 
α2C10 receptor. RSE, relative standard error. A subscript letter ‘i’ indicates the Gi signalling pathway, ‘s’ indicates 
the Gs signalling pathway and ‘L’ indicates the lower receptor expression. a: α2-adrenoceptor agonist UK-14304 
appears to be full agonist of Gi pathways in both receptor expression levels (1 pmol/mg and 10 pmol/mg). Due 
to a deterministic identifiability issue of the marginal operational model, it is not possible to estimate logKA 
values for full agonists from direct fitting to concentration-response curve. Conventionally, logKA is arbitrarily 
fixed to 0 to solve this problem3. b: calculated from post hoc analysis.
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bias for QUI from the marginal operational model was almost 400%, much higher than that from the intact 
operational model (41%). For the test of ligand bias (Table 5), the results of two ligands (QUI, and TFMPP) 
were comparable from both methods and no statistically significant bias would be concluded for both QUI and 
TFMPP. However, the intact operational model was able to identify two biased ligands (DOI and LSD) that were 
not classified as biased ligands by the marginal operational model.

Discussion
In this work, an intact version of the operational model was proposed as a more complete representation of the 
biological system. The intact operational model follows the concept of functional selectivity by explicitly imple-
menting linked equilibria among different receptor conformational states. Hence, the apparent dissociation con-
stant ( ′KA) is the same among different signalling pathways to reflect the natural correlation of C50 among different 
pathways (Figure S5). The intact operational model allows for joint modelling of all data from different pathways 
and provides a direct estimate of ΔΔlogR, which avoids propagation of errors in the post hoc analysis. At a prac-
tical level this means the bias parameters (i.e. ΔΔlogR) are more precisely estimated for any given experimental 
design and the intact operational model has greater power (more sensitivity) to detect weak ligand bias that might 
otherwise be missed by the marginal operational model. This latter feature provides the potential for more 
in-depth inferences from experiments.

According to the power analysis evaluation, both marginal and intact operational model work well for highly 
biased ligands (ΔΔlogR > 1), with the power for ligand bias test exceeding 80%. However, only the intact opera-
tional model is able to detect less strongly biased ligands (ΔΔlogR < 0.8) with confidence (power exceeding 80%). 
The result from this theoretical evaluation is consistent with the finding from one previous study16. It is apparent 
that the marginal operational model fails to distinguish true ligand bias from ‘error’ with confidence, especially 
when the ligand bias is weak. Our work further supports this finding and provides statistical and mechanistic 
support for the intact model in detecting ligand bias.

The concept of approaching a pharmacology experiment within a go/no-go workflow framework was demon-
strated in current work. In Example I, it would be plausible to consider a no-go decision based on the fact that log-
Ri:s could not be precisely determined for the single ligand when using the marginal operational model and hence 
the future ability to demonstrate ligand bias would therefore be unlikely. In this case, it would be necessary for 
the investigator to reconsider the experimental conditions. However, application of the intact operational model 
to the same data yielded a precise estimate of the ligand preference profile logRi:s and hence would be anticipated 
to support further work to estimate full ligand bias (ΔΔlogR) from the current experimental set up. In Example 
II, the values of logR could be precisely estimated with the marginal operational model and hence a logical go 

Figure 4.  The fitting result of the intact operational model for the effect of the 5-HT2C receptor agonists on 
PLA2-mediated AA release (left) and PLC-mediated IP accumulation (right) in CHO-1C19 cells. All the 
responses have been normalized to 5-HT maximal response. The dots are the data grabbed from the literature15. 
The lines are the simulation profiles from the intact operational model. Here, different colours indicate different 
types of ligands. Red: Bufotenin. Blue: DOI, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Yellow: 
LSD, lysergic acid diethylamide. Green: Quipazine. Purple: TFMPP, 3-trifluoromethylphenyl-piperazine.
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decision would be made. We see however, in this example that even working through the full experiment the 
marginal operational model did not identify bias in some pathways when the intact operational model did.

Though the intact operational model is a more mechanism-based model framework for functional selectivity, 
it is not as flexible as the marginal operational model in curve fitting. In the operational model, for low efficacy 
agonists (i.e., as τ approaches 0), the C50 approximates KA (Eq. 27). As the values of KA are the same for different 
signalling pathways (all equal to ′KA) in the intact operational model, this precludes fitting concentration–
response curves of a ligand behaving as partial agonists in two pathways with very different C50 values which 
would require equally distinct KA

17. In addition, an exact numerical evaluation (detailed in Appendix 4) was 
performed in a case with a non-unity slope factor, showing that the difference between C50 values could not 
exceed (approximately) 100 fold. Such a change in C50 values is unlikely to occur biologically, but rather, when this 
is observed it likely reflects that the responses of different signalling pathways are commonly measured under 
different experimental conditions, which may break the natural linkage among different signalling pathways.

τ
=

+
→
τ→

C K K
1 1 (27)

A A
50

0

Another model for quantifying functional selectivity is Rajagopal’s model18–20. In Rajagopal’s model, the 
operational model is separately applied to each signalling pathway with the constraint that KA among different 

Parameter

Intact operational model Marginal operational model

Estimated [RSE%]

Basal1 1.79 [21.2%] 1.83 [22.6%]

Em1 102 [3.7%] 98 [3.3%]

n1 1.53 [5.0%] 1.55 [5.8%]

Basal2 0 FIXa 0 FIXa

Em2 126 [9.6%] 121 [5.6%]

n2 0.80 [6.2%] 0.78 [5.5%]

BUF DOI LSD QUI TFMPP BUF DOI LSD QUI TFMPP
′logKA −6.05 [1.2%] −6.46 [1.4%] −7.77 [0.9%] −5.24 [2.7%] −5.97 [3.2%] — — — — —

logKA1 — — — — — −6.02 [1.4%] −6.52 [1.0%] −7.81 [0.9%] −4.72 [12.1%] 0 FIXb

logKA2 — — — — — 0 FIXb −5.98 [2.8%] −7.66 [1.3%] −5.45 [1.3%] −5.86 [2.8%]

logR1 6.50 [0.5%] 6.65 [0.7%] 7.31 [1.0%] 5.89 [1.0%] 6.37 [0.4%] 6.51 [0.5%] 6.70 [0.6%] 7.37 [1.1%] 5.85 [0.8%] 6.39 [0.4%]

logR2 6.11 [2.2%] — — — — 6.14 [1.8%] 6.65 [1.2%] 7.28 [1.6%] 5.44 [1.8%] 5.85 [2.2%]

ΔΔlogR1−2 — −0.476 
[14.3%]

−0.393 
[14.4%] 0.167 [40.7%] 0.102 [131%] — −0.32 

[45.6%]c
−0.28 
[65.3%]c −0.04 [396%]c −0.17 [103%]c

Table 4.  Comparison of the estimation results from the intact and marginal operational models for the effect of 
the 5-HT2C receptor agonists on PLA2-mediated AA release and PLC-mediated IP accumulation in CHO-1C19 
cells with bufotenin as the reference ligand. RSE, relative standard error; CV, coefficient of variation; Add. 
error, additive error; BUF, bufotenin; DOI, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane; LSD, 
lysergic acid diethylamide; QUI, quipazine; TFMPP, 3-trifluoromethylphenyl-piperazine. A subscript number 
“1” indicates the IP accumulation pathway and “2” indicates the AA release pathway. a: The estimated basal 
effect of AA release pathway was not significantly different from 0. Therefore, it was fixed to 0 in the model 
refinement process to make the model more stable. b: TFMPP appears to be full agonist of IP accumulation 
pathway and bufotenin appears to be full agonist of AA release pathway. Due to the identifiability issue of the 
marginal operational model, it is not possible to estimate logKA values for full agonists from direct fitting to 
concentration-response curve from that pathway. Conventionally, logKA is arbitrarily fixed to 0 to solve this 
problem3. c: calculated from post hoc analyses

ΔΔlogR1−2

Intact operational model Marginal operational model

Estimated [RSE%] p-value
Estimated 
[RSE%] p-value

DOI −0.476 [14.3%] <0.0125 NS 0.028

LSD −0.393 [14.4%] <0.0125 NS 0.126

QUI NS 0.014 NS 0.800

TFMPP NS 0.447 NS 0.330

Table 5.  Test of ligand bias of 5-HT2C receptor agonists on PLA2-mediated AA release and PLC-mediated IP 
accumulation in CHO-1C19 cells with bufotenin as the reference. DOI, (±)-1-(2,5-dimethoxy-4-iodophenyl)-
2-aminopropane; LSD, lysergic acid diethylamide; QUI, quipazine; TFMPP, 3-trifluoromethylphenyl-
piperazine. A subscript number “1” indicates the IP accumulation pathway and “2” indicates the AA release 
pathway. NS indicates no statistically significant bias.
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pathways are all fixed to a previously estimated value from a separate binding assay. This model shares the same 
mathematical form with the intact operational model (detailed in Appendix 5). Hence, the intact operational 
model could be regarded as one possible biological interpretation for Rajagopal’s model. However, it is noted that 
in Rajagopal’s model, this shared functional affinity is fixed rather than determined by the data18. The intact oper-
ational model does not require this constraint. Whether functional affinity should be fixed to a measured value 
from another binding assay or estimated as part of the current experimental set up is out of the scope of current 
work. But it is worth noting that most binding assays are performed on cell membranes, while signalling assays 
are performed on whole cells and therefore may not be representative of each other. One possible strategy would 
be to use a fully Bayesian approach with informative priors on parameters that would have otherwise been fixed. 
More theoretical and practical evaluations are warranted to address this.

The three-state model is another mechanism-based model for quantifying function selectivity8,15. Similar to 
the intact operational model, the linked equilibria among different receptor conformation states and the mutual 
depletion of these receptor states are explicitly implemented in the three-state model. Within this model frame-
work, the EC50 values are the same for different signalling pathways, which makes it less flexible than the intact 
operational model. Moreover, the three-state model only accounts for the receptor binding and does not include 
signal transduction processes. Hence, it cannot explain the phenomenon often termed ‘receptor reserve’, and 
no ligand may behave as a full agonist in both pathways. Additionally, given only functional assay data, the 
three-state model is not structurally identifiable and only a simulation-based, heuristic search for parameter 
values is possible (see for example15), which limits its utility in quantifying functional selectivity. Contrary to the 
empirical basal effect in the intact operational model, the three-state model mechanistically incorporates consti-
tutive activity. In the future, it is desirable to combine these two model structures to render more insight into the 
underlying mechanism of functional selectivity.

As demonstrated in this work, the intact operational model works well when different signalling pathways are 
measured simultaneously. However, in practice, it is not uncommon that the responses from different signalling 
pathways are measured under quite different experimental conditions. The experimental conditions for the func-
tional assay to study one pathway may eliminate the responses from other pathways. Under this circumstance, 
the association between different active receptor states can be disentangled and the intact operational model can 
be reduced into the marginal operational model (Appendix 6). In this sense, the marginal operational model 
can be regarded as a special case of the intact operational model when the responses from different pathways are 
measured under different conditions. However, in order to gain the maximum mechanistic insight into functional 
selectivity by application of the intact operational model, it is desirable that the links between different signalling 
pathways are preserved by keeping experimental conditions as consistent as possible between assay types.

For the accessibility of the intact operational model, our primary goal was to implement it in GraphPad Prism 
(a standard software in the area of experimental pharmacology). However, due to the nature of the model this 
was not possible within Prism. In this work, we used a more general and flexible analysis platform, in this case 
NONMEM. Though NONMEM has been widely used in the area of pharmacometrics21, there are only few appli-
cations in analytical pharmacology22. There are other platforms like NONMEM offering flexibility in modelling, 
such as Monolix (developed by Lixoft) and Phoenix NLME (developed by Cetara), which could be used for anal-
ysis of this sort of data. (We provide the NONMEM estimation control streams as a Supplement).

In conclusion, the intact operational model can be applied to circumstances where the marginal operational 
model has been used. The intact operational model is more sensitive to identifying biased ligands (i.e. has greater 
power), and provides a more precise estimate of the operational model ligand bias metric (ΔΔlogR). The intact 
operational model may provide a valuable step to describe and improve understanding of the underlying mech-
anisms of functional selectivity.

Data Availability
All data analysed during this study are collected from published literatures.
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