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Breast cancer is the most common cancer detected in women and current screening methods for
the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites
. that provide information about health and disease which might be useful to develop a better
. screening method for breast cancer. The goal of this study was to classify mice with and without
: tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac
artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either
in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were
concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass
. spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed
. to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six
. VOGs classified mice with and without tumors with an area under the receiver operator characteristic
© (ROCAUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of
. mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs,
with a ROCAUC of 0.96 (95% confidence interval [0.75, 1.00]).

Breast cancer is the most commonly diagnosed cancer among all women worldwide, but there is no accurate
and non-invasive method to screen for breast cancer in patients before a confirmatory biopsy is performed’.
Implementing an accurate and non-invasive screening technique is important because the earlier that a cancer-
* ous tumor is found in the human body, the more efficient treatment will be?. The current non-invasive screening
. methods that are used to screen for breast cancer include mammography and ultrasounds, but these screening
: techniques are not sensitive or specific, which leads to many false positive results. Overall, these methods lead to
over-diagnosis and over-treatment®. Another non-invasive screening method that can be used to screen for breast
cancer is detecting hypermethylation of DNA in nipple aspirate fluid*, but sample collection poses a challenge.
Urine contains volatile organic compounds (VOCs) that are products of metabolic pathways and may serve as a
source of biomarkers for breast cancer>®. VOC biomarker discovery is promising because there are thousands of
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VOC:s that are present in urine, breath and blood samples that have the potential to be biomarkers for an array of
diseases”®. The detection of VOCs has been a recent alternative screening technique for many different diseases
that has been shown to be sensitive and specific. Analyzing urine samples for metabolic biomarkers is also rela-
tively inexpensive compared to other traditional techniques’. Implementing a non-invasive and accurate breast
cancer diagnostic technique based on sensing metabolic VOCs associated with the disease can lead to an increase
in early diagnosis’.

An alternative sample that could be collected to analyze VOCs as potential biomarkers for breast cancer is
biological breath!*-13. Phillips ef al. discovered a set of VOCs found in human breath that distinguished between
patients with and without breast cancer with 78.5% sensitivity and 84.8% specificity in their training data set'’.
Even though some cancer VOC biomarkers have been identified in human breath, analyzing urine can provide
better insight into metabolic biomarkers. For example, urine has relatively higher concentrations of metabolic
VOCs than breath, which makes them easier to detect'®. Analysis of cell line VOCs is another technique utilized
to discover biomarkers related to breast cancer®". Silva et al. (who previously analyzed human urine VOCs)™*
reported a set of VOCs that distinguish between breast cancer and healthy cultured cells. One-way ANOVA
initially identified VOCs statistically significantly different between healthy and breast cancer cell lines, and then
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were utilized to classify cell lines
using multiple compounds’®. Even though analyzing cell lines is an efficient strategy, these results may not be
translatable to human or even whole animal studies. Analyzing urine would provide biomarkers that change not
only because of transformation of tumor cells, but also changes in tumor local microenvironment. This property,
for example, may play a role in the transition of some adenocarcinomas from ductal carcinoma in situ (DCIS) to
invasive'®. This can be studied by identifying VOCs in mouse urine that are associated with tumors in the mam-
mary pad compared with the same tumors injected to the bone. The only publications that analyze mouse urine
to discover VOC biomarkers identified metabolic trends in lung cancer'”-".

Metabolic biomarkers, including VOC biomarkers, are generally reported as panels or signatures of com-
pounds rather than individual metabolites. A panel can better identify trends and multivariate analysis can be
cross validated for accuracy better than a single metabolite?. There are pitfalls, however, which can occur when
building a multivariate model. For linear models, there is the potential problem of multicollinearity*!, but all
models could be unstable or overfit*>?. Utilizing overfit models is problematic because the accuracy of classi-
fication will decrease when implemented on an independent data set. Data and function perturbation are two
techniques used to detect overfit models®.

Solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is widely
used for VOC biomarker discovery**?>. SPME utilizes a silica-based fiber to which the VOCs in the headspace of
the sample adsorb when the urine is heated and agitated. After incubating, the fiber is injected directly in to the
GC-MS system where the front inlet is kept at a relatively high temperature, and the VOCs thermally desorb off
the fiber and enter the chromatographic column where they can be separated and identified?. Analyzing mouse
urine via SPME coupled to GC-MS as a pilot study can provide information on urinary VOCs that classify breast
cancer from no cancer and metastasized breast cancer from localized. Also, discovering biomarkers in a simpli-
fied biological model where the conditions of the experiment can be controlled makes it easier to find endoge-
nous metabolic biomarkers. One problem which occurs when using GC-MS to analyze mouse urine is that the
urine contains major urinary proteins (MUPs) that have hydrophobic pockets where VOCs preferentially bind.
Therefore, the MUPs must be denatured so the VOCs can be released into the sample headspace and analyzed via
GC-MS?. Guanidine hydrochloride (GHCI) is a well-known reagent that both denatures the MUPs significantly
and increases the ionic strength of the sample solution which also increases the concentration of volatiles in the
headspace of the sample?®. Herein, mouse urine samples were analyzed via SPME coupled to GC-MS quadrupole
time-of-flight (QTOF) to differentiate two different locations of mammary tumors and samples without tumor
injection based solely on VOC composition.

Methods

Materials and Instrumentation.  All BALB/c female mice utilized during the study were purchased from
Harlan Laboratories, Indianapolis, IN, USA. 4T1.2 mammary tumor cells were attained from Dr. R. Anderson at
the Peter MacCallum Cancer Institute in Melborne, Australia. Two cm PolyDimethylMethylSiloxane/ CARboxen/
DiVinylBenzene (PDMS/CAR/DVB) SPME fibers manufactured by Supelco were purchased from Sigma Aldrich,
and 10 mL headspace vials as well as 18 mm magnetic lids with a screw thread cap from Restek. Eight Molar
Guanidine Hydrochloride (pH = 8.5) was purchased from Sigma Aldrich. An Agilent 7890 A GC system coupled
to an Agilent 7200 Accurate-Mass Quadrupole Time-of-Flight MS system with a front-end PAL autosampling
system (CTC Analytics) was utilized to incubate samples and separate/identify VOCs. The column employed
was an Agilent HP-5ms, 5% phenylmethyl siloxane GC column of 30 meters in length, 250 micrometer internal
diameter and 0.25 micrometer film thickness.

Mouse Urine Collection. Female BALB/c mice were kept in cages and fed the same diet to limit metabolic
variations due to nutrition. All of the procedures conducted during this experiment were approved by Indiana
University Animal Care and Use Committee. All experimental procedures followed the Guiding Principles in
the Care and Use of Animals that is supported by the American Physiological Society. 4T1.2 tumor cells were
cultured in Dulbecco’s Modified Eagle Media (DMEM). The BALB/c mice were injected in the mammary pad
with 4T1.2 mammary tumor cells to represent localized cancer. The same cells were injected in the iliac artery of
a different group of mice to model metastasized breast cancer. Mice not injected with any tumor cells served as
a control. Mice injected with mammary tumors in either location will be referred to as mice with breast cancer,
mice with mammary pad tumors as localized and mice with tumors injected in the iliac artery as metastasized
breast cancer. Injection into the iliac artery is an accepted model of metastasized cancer®. Bone is a common
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region where breast cancer metastasizes to because of the high affinity for bone that breast cancer cells exhibit®>!.
The localized and metastasized tumor models were previously used and justified in literature?.

Urine was collected 18 days after the mice were injected. No visual signs of injury due to injection were
observed when the urine was collected. Samples were collected (approximately 75 microliters) in two time peri-
ods, with the first time period collecting urine from control, mammary pad and metastasized cancer mice and
the second urine from control and metastasized cancer mice. Mice are moved to a cage where the floor has been
covered in fresh parafilm. Urine falls on the parafilm and is collected using pre-cleaned glass Pasteur pipettes
into pre-cleaned glass headspace vials which were put on dry ice immediately. All the mouse urine samples were
stored in a —80°C freezer in a 10 mL headspace vial before analysis. All urine was collected in the morning to
avoid and limit variation due to void times. One hour before agitation and extraction, eight M GHCIl was added in
a one to one ratio to denature the MUPs and increase the ionic strength of the sample solution.

SPME and GC-MS QTOF. The VOCs were captured by incubating a pre-conditioned SPME fiber in urine
headspace before analysis. SPME fibers were conditioned every day for ten minutes prior to the first run, and
for four minutes after each run. Mouse urine samples in headspace vials were agitated and heated to 60 °C for a
total of 30 minutes. Next, the SPME fiber was placed inside the headspace of vial through the septum for a total
of 30 minutes while the sample continued agitating and heating at 60 °C. After extraction, the SPME fiber was
injected into the inlet of the GC-MS QTOF at 250 °C while the mass transfer line was held at 230 °C. The oven
temperature program implemented consisted of holding the temperature at 40 °C for the first 2 minutes of the
chromatographic run. After, the temperature was ramped to 100°C at a rate of 8 °C/min, followed by a 15°C/min
ramp to 120°C, 8°C/min to 180°C, 15°C/min to 200 °C and finally an 8 °C/min ramp to 260 °C. Data was col-
lected utilizing Agilent Chemstation software. Parameters utilized for SPME coupled to GC-MS QTOF were
previously optimized, including: SPME fiber coating, agitation time, extraction time, agitation and extraction
temperature, and volume of sample. Due to the limited amount of urine collected from each mouse (<100 micro-
liters), only one injection into the GC-MS system was conducted per sample.

Reproducibility of extraction procedure was tested as follows. High-density polyethylene (HDPE) virgin pel-
lets generate a consistent and complex matrix of VOCs that does not degrade substantially over time. In order to
quantify reproducibility of the SPME extraction procedure, HDPE pellets were run on five consecutive days. The
relative standard deviation (RSD) of the total integrated signals was 1.17%. Six representative VOCs conserved
across samples (saturated and unsaturated hydrocarbons off-gassed by the HDPE pellets) were selected to observe
the reproducibility of the integrated signal over five consecutive days, and the RSD values were below 6% (range
of 1.1-5.5%) for each of the six volatiles.

Data Screening and Analysis. Mass Hunter Quantitative Profinder was utilized to spectrally align mul-
tiple chromatographic peaks obtained from all samples using similarities in experimental retention time and
mass spectrum. Profinder generates a matrix that includes all the retention times and integrated signals for every
VOC in each sample. The log2 of the integrated signal values were calculated to transform the data matrix to an
approximate Gaussian distribution®*-**. Compounds were filtered by requiring either a two-tail Student’s T-test
or Wilcoxon’s Rank sum test p-value < 0.1. While not all of these compounds have an alpha <0.05, they may
still have utility at constructing a multiparametric test. In addition, p-values obtained from univariate statistical
analysis were not corrected for multiple testing. Univariate methods were used to screen for VOCs that might
be useful for multivariate analysis, where statistical significance can be measured through model stability testing
including cross-validation, bootstrapping, and method perturbation. Multivariate tests can, if properly validated,
utilize univariate compounds with broader confidence intervals®®. Normality of the data was not tested, therefore,
both a parametric and non-parametric test were employed to find statistically significant features. Individual
VOC:s that had high within class variation (collected from the two different time periods described above) were
removed from the sample matrix as likely environmentally based differences. Hierarchical heatmaps were gen-
erated for both comparisons by z-scoring all log2 integrated signal values for all VOCs detected in every sample.
The hierarchical heatmap was generated using a Euclidean distance metric and average linkage to generate the
hierarchical tree (Matlab). VOCs are sorted in the hierarchical heatmap on the y-axis by similarities in concentra-
tion among the samples that were analyzed. PCA was used for visualization of patterns and outliers (no samples
removed as outliers). Iterative LDA*, a forward selection method in which features are selected for their ability to
discriminate between data sets??, was executed on a matrix composed of the compounds identified by univariate
analysis. The combination of VOCS that produced the highest area under the receiver operating characteristic
(ROC) curve generated via LDA were also tested via five-fold cross validation (Matlab) to test if the model is over-
fit (data perturbation)®. Five-fold cross validation was performed 500 times to produce an estimated ROC value.
A 95% confidence interval for the area under the ROC associated with five-fold cross validation was obtained
by bootstrapping the results 500 times with randomly selected samples®”. Function perturbation was performed
on the developed test matrix by implementing a logistic regression classification algorithm in Matlab to further
test if the models are overfit?>. In addition, the two test matrices of VOCs were tested for multicollinearity* by
performing linear regression in Matlab on the predictor and response variables. The Variable Inflation Factor
(VIF) was measured to assess the degree of multicollinearity in the two models (cancer/no cancer and localized/
metastatic). A VIF threshold of 10 demonstrates a strong correlation between predictor values®. Iterative LDA
was also performed on the same set of data to distinguish between all three classes of samples.

Identification of metabolites. All VOCs that were found as p < 0.1 via the Student’s T-test or Wilcoxon’s
Rank sum test in both data sets and had low within class variation were identified utilizing Mass Hunter
Quantitative Profinder, Mass Hunter Unknown Analysis and the NIST14 mass spectral library. NIST14 was
uploaded to Unknown Analysis, and sample chromatograms were deconvoluted and all the features were
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identified. The retention time and mass spectrum produced from Profinder were used to find the corresponding
feature in Unknown Analysis. If the retention time/mass spectrum matched, and there was a match factor higher
than 65, the compound was identified. To confirm that identification was correct, the non-polar retention index
(NPRI) from NIST was compared to the experimental NPRI calculated from the average retention time of the
feature. If the NIST and experimental NPRI values were within 100 units, the compound was deemed identified.
Pure chemical compounds were not purchased or analyzed by GC-MS QTOF to confirm the identification of
VOC biomarkers. The Human Metabolomic Database (HMDB) was utilized to identify compounds that were
endogenous to the human body, on the assumption that such metabolites were likely also endogenous to mice.
VOC:s that were not found on HMDB were included in the sample matrix: likely excreted compounds that were
not in HMDB were murine-specific and endogenous, bacterial in origin, or food source related.

Results

Urine Sample Collection. Urine was collected from 12 mice with no cancer, eight mice with mammary
pad cancer and 22 mice with metastasized cancer. Of the 42 mice, analysis was only performed on urine samples
from 36 mice because samples from six of the mice, there was less than 75 microliters present (11 no cancer, eight
localized and 17 metastasized mouse urine samples had enough urine for processing).

Univariate Statistical Analysis and Compound Identification. To answer the question of which
VOC:s have high discriminating power to distinguish between cancer/no cancer and localized/metastasized, all
36 samples were spectrally aligned utilizing Profinder. For cancer (n=25)/no cancer (n= 11), this alignment
produced 646 compounds detected in at least half of one of the two sample classes. For mammary pad (n=8)
and metastatic (n =17) samples, 601 compounds were present in at least half of one of the two classes. Univariate
statistical analysis showed that there were 226 features that could distinguish between mice with cancer and
no cancer (p-value < 0.1 by Student’s t-test or Wilcoxon Rank sum). On the other hand, only 125 compounds
were different between localized and metastasized breast cancer urine samples collected from the mice (p <0.1).
Figure 1 shows the volcano plots for the two sets. For both volcano plots, the VOCs that are highlighted and out-
lined in green have an absolute log 2-Fold Change value greater than one, and their p-value produced from the
Student’s T-test < 0.05. Metabolites that have a positive log 2-Fold Change value are up regulated in breast cancer
or metastatic cancer and metabolites with negative values are down regulated. In the cancer/no cancer volcano
plot, there are 17 metabolites that meet the required statistical criteria. Out of the 17 metabolites highlighted in
green, 14 VOCs are down regulated in breast cancer and there is a total of three VOCs which are up regulated. In
the volcano plot for VOCs classifying localized and metastasized cancer, there are 18 metabolites that meet the
statistical criteria; 13 of the 18 metabolites which meet the criteria are up regulated in metastasized breast cancer
and five are down regulated. In both volcano plots, six VOCs (three that are up regulated and three that are down
regulated) with the lowest p-values and highest absolute log 2-Fold Change values are labeled utilizing their
abbreviations which can be seen in Tables 1 and 2. Out of the VOC:s that are labeled in both plots, Benzaldehyde
(BNZA) is the only VOC that can be observed in both volcano plots. Of the 226 features that were univariately
different (p < 0.1) between mice with and without breast cancer, 43 VOCs (identified by mass spectrum) had low
within class variation (means of results from time period one and time period two comparable). Similarly, of the
125 VOC:s that univariately distinguished between mice with breast cancer in the mammary pad and metasta-
sized to the bone, 30 had low within class variation.

Table 1 shows all 43 features that univariately distinguish between mouse urine samples with and without
breast cancer (p-value < 0.1), along with their associated retention times (RT), p-values, the CAS # and if the
VOC is up or down regulated in breast cancer. Figure 2 illustrates a hierarchical heatmap of these 43 VOCs, where
green illustrates a low concentration, red represents a relatively high concentration and black represents mean
values (abbreviations used in Fig. 2 correspond to the full compound names in Table 1). For each VOC, there is
a clear difference in concentration between the two classes of samples, and most of the VOCs are down regulated
in mouse urine samples with breast cancer, and only six up regulated. Table 2 shows the 30 features differentiating
metastatic breast cancer from localized breast cancer, and Fig. 3 shows a hierarchical heatmap of these 30 VOCs.
From the identified VOCs for both comparisons (breast cancer/no cancer and localized breast cancer/metastatic),
there are 12 VOCs that can be observed in both sets of data. The 12 common VOCs found in both data sets are
bolded and can be observed in Tables 1 and 2.

Among these VOC biomarkers for both breast cancer and metastatic breast cancer, there is a wide range
of size, structure and functionality. There are both commonalities and very slight differences in structure and
function in these two different sets of potential metabolic biomarkers. Of the potential biomarkers for breast
cancer, aromatic VOCs were the most common feature and non-conjugated cyclic compounds were the second
most common structural feature. The third most frequently observed are ketones. VOCs that contain an ether
or ester functional group are the least observed. The potential biomarkers for metastasized breast cancer have a
similar distribution of functional groups. The three most frequently found structural features were again ketones,
non-conjugated cyclic VOCs and aromatics. The three least frequently observed functional groups in the local-
ized/metastasized data set are alcohols, esters and ethers. When compared to cancer/no cancer, sulfur-containing
VOCs were less frequently occurring in the localized/metastasized data set. Also, there was one VOC that con-
tained a chlorine atom in the cancer/no cancer set and there were none in the localized/metastasized group of
VOCs.

Multivariate statistical analysis. For both comparisons, PCA was executed utilizing all identified VOCs
observed in Tables 1 and 2 (Fig. 4). When applied to samples with and without breast cancer, the first two princi-
pal component axes observed in Fig. 4(a) accounted for 35% of variation that exists between samples (PC 1-27%,
PC 2-8%). When applied to the VOCs in the localized/metastasized data set, the first two principal components
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Figure 1. (a) Volcano plot where statistical significance via the Student’s T-test is plotted against log 2-Fold
Change between classes for metabolites present in at least half of one class, distinguishing between mouse
urine with and without cancer (5-OCT = 5-Octen-1-ol, BERG = Bergamotene, BNAT = Benzeneacetaldehyde,
BNZA =Benzaldehyde, THIO = Thiophene, 2-pentyl, FRNS = Farnesene), (b) Volcano plot in a similar
fashion produced to distinguish between mouse urine with localized and metastasized breast cancer

(MENA = Menadione, TRIM = 2,6,6-Trimethyl-2-cyclohexene-1,4-dione, 6-DMH = 6,6-Dimethylhepta-2,4-
diene, BNZE = Benzene, 4-ethenyl-1,2-dimethyl-, DLIM = D-Limonene).

present in Fig. 4(b) accounted for 47% of variation between samples (PC 1-36%, PC 2-11%). PCA was also
applied to the features that have potential discriminatory power to separate all three classes, and 20 VOCs with
relatively low p-values resulted in the first two principal component axes accounting for 42% of variation between
all samples (PC 1-31%, PC 2-11%) (Fig. 4(c)). All three representations show good distributions and an absence
of outliers in the data sets.

Iterative LDA was applied to find a small set of VOCs with high classification accuracy. Six VOCs (the cancer
panel) provided a perfect separation between all mice with and without breast cancer (Fig. 5(a) plots the sam-
ples along the principle linear discriminant axes, AUC = one on ROC curve not shown). The ROC curve for the
five-fold cross validation results discriminating between cancer and no cancer gave an estimated AUC of 0.98
(95% confidence interval [0.85, 1.00]). The six VOCs that comprise the cancer panel are listed at the top of Table 1
and have an asterisk to note they have been utilized for multivariate analysis. Interestingly, all features were down
regulated in the cancer samples and showed an absolute log 2-Fold Change more than 0.5 indicating a substantial
decrease in concentration of these VOCs in urine for mice with breast cancer. Multicollinearity of the cancer
panel was tested and found to be insignificant (VIF =2.5). The cancer panel was further analyzed for overfitting
by logistic regression. This test also showed perfect separation (AUC 5-fold cross validation =0.97 (95% confi-
dence interval [0.89, 1.00])).
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5-Octen-1-ol, (Z)-* 5-OCT 8.6 2.3E-4 1.4E-4 down 64275-73-6
Benzene, 4-ethenyl- 1,2-dimethyl-** BNZE 10.45 | 4.5E-4 6.3E-4 down 27831-13-6
Bicyclo[3.1.0] hexan-2-one, 3,3,6-trimethyl-** BCY3 8.87 | 0.003 7.6E-4 down 53966-40-8
Bicyclo[2.2.1]heptane, 7,7-dimethyl-2-methylene** BCY2 8.52 | 0.006 0.006 down 471-84-1
Pinocarvone** PINC 11.66 |0.017 0.002 down 30460-92-5
Benzyl methyl disulfide* BMDS 15.07 0.076 0.052 down 699-10-5
Benzene, 1-ethyl-4-methoxy-* BETH 11.07 | 3.2E-4 0.002 down 1515-95-3
Amantadine AMAN | 1261 0.001 0.008 down 768-94-5
Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- BEHX 16.45 | 0.002 0.019 down 644-30-4
Bergamotene BERG 16.56 0.002 0.002 down 17699-05-7
1,3,5-Undecatriene UNDE 11.9 0.002 3.7E-4 down 51447-08-6
Benzeneacetaldehyde* BNAT 9.61 | 0.006 9.4E-4 down 122-78-1
Sorbic acid vinyl ester SORB 8.56 | 0.008 8.8E-4 down 42739-26-4
4(1H)-Pyridone 4-PYR 8.43 0.010 0.019 up 108-96-3
(E)-a-Bisabolene CYCL 17.29 0.011 0.008 down 17627-44-0
Farnesene FRNS 16.76 0.013 0.026 up 502-61-4
Ethanone, 1-(1H-pyrrol-2-yl)- ETHP 9.93 0.015 0.013 down 1072-83-9
Himachalol HIMA 19.23 0.017 0.024 down 1891-45-8
2-Hexanone 2-HXO 4.43 0.017 0.009 down 591-78-6
Ethanone, 2-cyclohexyl-1-(1-methyl-1H-imidazol-4-yl)- ETCH 19.51 0.019 0.003 down 69393-35-7
(Z)-~-Bisabolene 1-MCY 16.94 0.021 0.005 down 495-62-5
1-(4-butoxy-2-methylphenyl)ethanone 4-BUT 19.42 0.021 0.004 down NA
Benzenemethanol, 4-trimethyl- BEME 11.97 ] 0.022 0.014 down 1197-01-9
Benzaldehyde, 4-ethyl- BENE 11.88 0.029 0.125 down 4748-78-1
Bisobolol BIBO 19.22 0.034 0.072 down 515-69-5
Benzene, n-butyl- BZNB 8.81 0.038 0.021 down 104-51-8
Benzene, [(methylsulfonyl)methyl]- BNMS 15.08 0.045 0.026 down 3112-90-1
Benzene, 1,3-diethyl-5-methyl- BNDI 12.75 | 0.050 0.050 up 2050-24-0
Formamide, N-phenyl- FORM 12.54 | 0.051 0.022 down 103-70-8
Benzaldehyde BNZA 7.88 | 0.063 0.018 up 100-52-7
2-Propanamine, 2-methyl 2-PRO 2.55 | 0.069 0.582 down 75-64-9
Cyclohexanol, 2,6-dimethyl- CHXO 9.99 | 0.069 0.302 down 5337-72-4
1,4-Pentadiene 1-PEN 1.62 0.081 0.018 down 591-93-5
D-Limonene DLIM 9.32 | 0.084 0.066 down 5989-27-5
Phenol, 2,4-dichloro- PHEN 11.7 0.092 0.108 down 120-83-2
2-Pentanone, 3-methyl- 2-PTM 3.78 ]0.097 0.070 down 565-61-7
Thiophene, 2-pentyl- THIO 11.59 | 0.139 0.061 up 4861-58-9
Benzene, 1-isothiocyanato-2-methyl- BISO 13.73 | 0.156 0.029 up 614-69-7
Hexadecane HXDC |19.31 |0.158 0.056 down 544-76-3
Benzene, 1-ethenyl-4-ethyl BNET 10.39 0.173 0.029 down 3454-07-7
3-Irone 3-BUT 19.05 0.210 0.094 down 79-70-9
Terpineol TERP 12.07 ] 0.226 0.043 down 98-55-5
(4+)-a-himachalene 1-BEN 16.82 0.259 0.042 down 3853-83-6

Table 1. List of the 43 VOCs that have a p-value less than 0.1 via the Student’s T-test or Wilcoxon’s Rank sum
test when classifying mice with no cancer and mice that have breast cancer. Features bolded are also found in
Table 2, VOCs that have an asterisk (*) were utilized for two class LDA, and VOCs with a cross (+) were utilized
for three class LDA. All VOCs in the table were utilized to discriminate between cancer/no cancer via PCA.

For the case of localized compared with metastasized breast cancer samples, iterative LDA was applied to the
30 features that were listed in Table 2. Again, six compounds (the metastatic panel) gave a perfect separation of
localized and metastasized mouse urine (Fig. 5(b)). Once again, five-fold cross validation was implemented and
with cross validation, the AUC was 0.96 (95% confidence interval [0.75, 1.00]). The hierarchical heatmap in Fig. 3
and Table 2 demonstrate that these six metabolic VOCs in the metastatic panel are evenly distributed between up
and down regulation in metastatic breast cancer. The VOCs are listed at the top of Table 2 and have an asterisk to
note they comprise the metastatic panel. Multicollinearity of the metastatic panel was insignificant (VIF=3.1).
Logistic regression was also applied on the metastatic panel of VOCs and AUC was 0.94 (95% confidence interval
[0.81, 1.00]). Finally, nine VOCs provided a perfect classification of all three sample classes via iterative LDA.
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RT T test Rank-sum
Name Abbrev. | (min) p-value p-value Regulation CAS #
Menadione** MENA 16.98 4.3E-4 7.1E-4 down 58-27-5
2,6-Dimethylhepta-2,4-diene** 6-DMH 5.53 0.012 5.3E-4 up 4634-87-1
1-Octen-3-one* 1-OCT 8.26 0.040 0.136 down 4312-99-6
2,6,6-Trimethyl-2-cyclohexene-1,4-dione* TRIM 11.32 0.050 0.009 down 1125-21-9
Bicyclo [2.2.1]heptane, 7,7-dimethyl-2-methylene®! | BCY2 8.52 0.069 0.072 up 471-84-1
2(3H)-Furanone, 5-hexyldihydro-* 1-FUR 16.21 0.221 0.096 up 706-14-9
Benzaldehyde BNZA 7.88 0.003 0.002 down 100-52-7
D-Limonene DLIM 9.32 0.005 0.018 up 5989-27-5
1,3,5-Undecatriene UNDE 11.9 0.007 0.007 up 51447-08-6
Benzene, 4-ethenyl- 1,2-dimethyl- BNZE 10.45 0.009 0.020 up 27831-13-6
2,6-Di-tert-butylbenzoquinone DTBQ 16.24 0.012 0.016 up 719-22-2
Hexadecane HXDC 19.31 0.018 0.003 up 544-76-3
5-methyl-2-propan-2-ylcyclohex-3-en-1-one 3-CON 13.99 0.037 0.037 down NA
4-Hexen-3-one, 4,5-dimethyl 4-HEX 8.57 0.042 0.044 up 17325-90-5
2-Propanamine, 2-methyl 2-PRO 2.55 0.050 0.044 down 75-64-9
1H-Indole, 6-methyl- 1-IND 12.73 0.052 0.052 down 3420-02-8
Ethyl (E)-4-ethoxy-2-oxobut-3-enoate ETOX 12.49 0.061 0.107 up NA
Caryophyllene CRYO 17.56 0.068 0.039 up 87-44-5
(E)-a-Bisabolene CYCL 17.29 0.070 0.097 up 17627-44-0
2-Hexenal, 2-ethyl- 2-HEX 6.82 0.072 0.086 up 645-62-5
3-Heptanone 3-HEP 6.34 0.081 0.033 up 106-35-4
1-Propanone, 2-methyl-1-(2-methylphenyl)- 1-PRO 13.85 0.083 0.082 up 2040-14-4
Farnesene FRNS 16.76 0.088 0.748 down 502-61-4
Benzeneacetaldehyde BNAT 9.61 0.088 0.190 down 122-78-1
Pinocarvone' PINC 11.66 0.092 0.132 down 30460-92-5
n-Tridecan-1-ol TRID 17.91 0.098 0.367 down 26248-42-0
2-Pentanone 2-PEN 2.8 0.099 0.025 up 107-87-9
Thiophene, 2-pentyl- THIO 11.59 0.197 0.058 up 4861-58-9
Quinoline, 1,2,3,4-tetrahydro- QUIN 13.19 0.326 0.051 down 635-46-1
2,4-Di-tert-butylphenol DTBP 16.8 0.030 0.018 up 128-39-2

Table 2. List of the 30 VOCs that have a p-value less than 0.1 via the Student’s T-test or Wilcoxon’s Rank sum
test when distinguishing between mice with localized and metastasized breast cancer. Features bolded are also
found in Table 1, VOCs that have an asterisk (*) were utilized for two class LDA, and VOCs with a cross (¥) were
utilized for three class LDA. All VOCs in the table were utilized to discriminate between localized/metastasized
via PCA.

Figure 5(c) plots the samples along the first three linear discriminant axes, and it can be observed there is a per-
fect classification of mice with no cancer, localized and metastasized breast cancer. However, this model showed
evidence of being somewhat overfit as five-fold cross validation produced an overall correct detection rate of only
83%. The nine metabolic features are listed in Tables 1 and 2 and have a cross to note they have been utilized for
multivariate analysis to distinguish between all three classes.

Discussion

Volcano plots, in which statistical significance via the Student’s T-test is plotted against log 2-Fold Change
between classes for all metabolites®*-*!, are useful for rapidly visualizing differences between up regulated and
down regulated metabolites: Fig. 1 shows many more VOCs down regulated in breast cancer samples and there
are more VOCs up regulated in metastasized breast cancer model relative to localized model, but to a lesser
degree. This indicates that there is a more even distribution of metabolites that are up and down regulated in urine
samples collected from mice with metastasized/localized breast cancer. This can be also seen in the hierarchical
heatmaps in Figs 2 and 3. Benzaldehyde (BNZA) is the only labeled VOC present in both volcano plots and was
observed to be up regulated in breast cancer and down regulated in metastatic breast cancer when compared to
localized.

Univariate statistical analysis did not yield any VOC that could discriminate perfectly between cancer and
no cancer samples or between metastatic and localized cancer. Therefore, multivariate analysis was utilized to
identify a set of VOCs that could classify breast cancer samples from samples collected from mice with no cancer
and metastatic samples from localized. PCA was implemented to visualize global patterns within the data set and
to observe if any samples are outliers. Figure 4 shows the PCA distinguishing cancer/no cancer, localized/metas-
tasized as well as localized/metastasized/no cancer, and there are no samples which are outliers. A supervised
statistical analysis technique was implemented to increase the sensitivity and specificity for both classifications, as
well as decrease the number of VOCs needed to separate sample classes via multivariate statistical analysis. LDA
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Figure 2. Hierarchical heatmap of the 43 VOCs (p-value < 0.1) different between mouse urine samples with
and without breast cancer. Full compound names which are associated with the illustrated abbreviation can be
observed in Table 1.

Localized Metastasized

Figure 3. Hierarchical heatmap of the 30 VOCs that are (p-value < 0.1) different between mouse urine samples
with localized breast cancer and metastasized breast cancer. Full compound names which are associated with
the illustrated abbreviation can be observed in Table 2.

produces linear combinations of log2 integrated signal values from multiple VOCs to discriminate between two
or more defined classes*>*. For each comparison, the top three features that could linearly discriminate between
the two classes with the highest sensitivity and specificity values were generated. Next, one of the top three fea-
tures were left out, and the next best three VOCs for classification were identified to produce a combination of
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Figure 4. PCA utilizing (a) 43 VOCs to discriminate between mouse urine with and without breast cancer,
(b) 30 VOC:s to discriminate between mouse urine that was collected from mice that had cancer injected in the
mammary pad (localized) and in the iliac artery (metastasized), (c) 20 VOCs to discriminate between mouse
urine that was collected from all three classes (localized, metastasized and no cancer).
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Figure 5. (a) LDA utilizing six VOCs to discriminate between mouse urine with and without breast cancer with
100% sensitivity and specificity, (b) LDA utilizing six different VOCs to discriminate between mouse urine that
was collected from mice that had cancer injected in the mammary pad (localized) and mice that had cancer cells
injected in the iliac artery (metastasized) with 100% sensitivity and specificity and (c) LDA using nine VOCs

to perfectly discriminate between mouse urine that was collected from all three classes (localized, metastasized
and no cancer).

four VOCs. A decision tree was utilized, where the best combinations were utilized to produce larger combina-
tions of VOC:s to further discriminate between sample classes for both comparisons. The decision tree was con-
structed until the result was inferior or perfect separation between classes was obtained.

The six compounds that distinguish both types of breast cancer from no cancer with 100% sensitivity and
specificity via LDA in Fig. 5(a) (the cancer panel) are all down regulated in samples with cancer, showing the
higher metabolic utilization of cancer compared to healthy mice. While an interesting finding, this result
could be difficult to translate to clinical research where typically one looks for biomarkers up regulated by dis-
ease. A different set of six VOCs discriminated between localized and metastasized breast cancer via LDA in
Fig. 5(b) (the metastatic panel) with three up regulated in metastatic and three up regulated in localized breast
cancer. These VOCs are likely related to changes of the tumor local microenvironment. Bicyclo[2.2.1]heptane,
7,7-dimethyl-2-methylene (BCY2) was the only VOC that was found in both sets of 6 metabolites (cancer/no
cancer and localized/metastasized). These two panels are not overfit because their average five-fold cross valida-
tion ROC values are relatively high (0.98 and 0.96 respectively) and when the Linear Discriminant function was
perturbed with a Logistic Regression algorithm classifier, the AUC was still high (AUCs of 0.97 and 0.94, respec-
tively)?2. Even though there was only one VOC used in both sets of metabolites used to discriminate between
cancer/no cancer and localized/metastasized, it displays there is possibly a set of VOCs that can be utilized to
classify both data sets. A set of nine VOCs from both sets of data (Tables 1 and 2) perfectly distinguished between
all three classes via LDA in Fig. 5(c).

There is a limited number of urinary biomarkers that were found in previous studies which analyzed VOCs
in breast cancer cell lines. The VOCs that were found both in this study in Tables 1 and 2 and in breast cancer cell
lines include: 3-heptanone, benzaldehyde, 2,4-di-tert-butylphenol and 2-pentanone. Other than the four VOCs
found in both mouse urine and cell lines, there are many VOCs that share common structures and functionalities.
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One example of this was that 4-methyl-2-heptanone was discovered to be a biomarker in breast cancer cell lines,
and 4,5-dimethyl-4-hexen-3-one was found to be a biomarker for breast cancer and metastatic breast cancer in
mouse urine®'*. Interestingly, the mouse urine contained more unsaturated compounds than the breast cancer
cell lines. Even though there were not many VOCs that were detected as potential biomarkers for breast cancer in
mouse urine that were also observed in breast cancer cell lines, it still gives confirmation that some of the VOCs
present in urine that change significantly are due to changes in the tumor itself. Since many metabolic VOC bio-
markers for metastatic breast cancer were not observed in cell lines, many biomarkers detected in mouse urine
may be changing concentration due to interactions of the tumor cells and the local microenvironment. There were
also a small set of potential urinary biomarkers for breast cancer found in this study that were found in biological
breath in humans with breast cancer!®!!. 1,4-pentadiene, D-limonene and 2,6 di-tert-butylbenzoquinone were
found in both human breath and mouse urine as potential biomarkers for breast cancer. Again, even though
there were a limited number of common VOCs, there were many similarities in structure between the sets of
VOCs. Many aromatic VOCs and ketones were found in biological breath and mouse urine to be potential volatile
markers of breast cancer'®~"%. Finally, it is noted that one study has reported VOCs from human urine, comparing
women with invasive breast cancer with controls (largely men) with no cancer'*. Their analysis utilized acidified
samples which highlight different VOC types than pH neutral or basic samples!®, and they analyzed only invasive
cancer, so their results and ours would not be expected to be the same.

Many of the potential biomarkers for breast cancer are involved in the biosynthesis of terpenoids; these VOCs
include bicyclo[2.2.1]heptane, 7,7-dimethyl-2-methylene, farnesene, caryophyllene, D-limonene, pinocarvone,
himachalol, himachalene, bisabolol, bisabolene and other VOCs in Table 1. Terpenes and terpenoids have an anti-
oxidant and therapeutic effect on cancerous tumor cells*, which is fascinating because they were largely depleted
in the samples with cancer. This study employed a simplified model for comparing localized and metastatic breast
cancer in which the same tumor cells are injected into different sites (mammary pad versus iliac artery). The
first result was that a panel of 6 VOCs can be used to classify whether mice had either form of cancer: the test
gave a perfect separation using either of two classification models, LDA or logistic regression, with high values
for cross validation/CI testing. Further, the study identified a separate metastatic panel that was able to classify
tumor location perfectly via LDA or logistic regression. This study shows that not only do VOCs change due to an
alteration in metabolism (cancer/no cancer model), but it also shows unique VOCs released by specific tumor -
microenvironment interactions (localized/metastasized model). This study demonstrates the potential of volatile
metabolomics to identify biological markers tied to breast cancer. One limitation is the study was carried outin a
controlled environment on immune-compromised mice. While greater metabolic heterogeneity will be present
in human samples, the same or similar biomarkers likely can be used to better explore and understand tumor/
microenvironment interactions in humans. Similar metabolic biomarkers found in human urine can inspire the
development of an inexpensive, accurate and noninvasive biological assay for breast cancer.

Data Availability
The authors provide no restriction on the availability of methods, protocols, instrumentation and data utilized in
the following article. All data will be available from the corresponding author by request.
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