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Abstract: Dynamic behaviors of the three-dimensional re-entrant auxetic cellular structure have
been investigated by performing beam-based crushing simulation. Detailed deformation process
subjected to various crushing velocities has been described, where three specific crushing modes
have been identified with respect to the crushing velocity and the relative density. The crushing
strength of the 3D re-entrant auxetic structure reveals to increase with increasing crushing velocity
and relative density. Moreover, an analytical formula of dynamic plateau stress has been deduced,
which has been validated to present theoretical predictions agreeing well with simulation results. By
establishing an analytical model, the role of relative density on the energy absorption capacity of the
3D re-entrant auxetic structure has been further studied. The results indicate that the specific plastic
energy dissipation is increased by increasing the relative density, while the normalized plastic energy
dissipation has an opposite sensitivity to the relative density when the crushing velocity exceeds the
critical transition velocity. The study in this work can provide insights into the dynamic property of
the 3D re-entrant auxetic structure and provides an extensive reference for the crushing resistance
design of the auxetic structure.

Keywords: 3D auxetic structure; crushing mode; dynamic plateau stress; energy absorption; finite
element simulation

1. Introduction

Auxetic cellular structures have attracted great attention since, unlike conventional honeycomb,
they expand laterally when stretched and contract laterally when compressed, featuring a negative
Poisson’s ratio (NPR). The termed ‘auxetic effect’ brings comprehensive improvements of mechanical
properties, like increased stiffness, high shear modulus, indentation resistance and energy absorbing
performance, to the cellular structure. These fascinating properties all contribute to augmenting
their applications in automotive, packaging and structural protection [1–3]. In recent years,
increasing interests have been devoted in this field and the research results can be summarized
to cover the topology design, property investigation, rapid prototyping and utilization of the auxetic
structures [4–8].

Due to superior performance in dissipating energy, auxetic cellular structures can work as a better
alternative in the design of sandwich structure and vehicle crash box, which illustrates the significance
of dynamic crushing analysis of auxetic structures [9,10]. To investigate the dynamic properties of
auxetic cellular structures, a few studies of theoretical models and experiments have been conducted
and some remarkable conclusions have been demonstrated. Grujicic et al. [11] have investigated
the dynamic response of the auxetic sandwich structures by using a multiphysics computational

Materials 2019, 12, 460; doi:10.3390/ma12030460 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/12/3/460?type=check_update&version=1
http://dx.doi.org/10.3390/ma12030460
http://www.mdpi.com/journal/materials


Materials 2019, 12, 460 2 of 15

approach. The major deformation modes of the structures subjected to blast loading have been d in
the paper. The performance of an auxetic re-entrant honeycomb-cored sandwich panels under close-in
blast loadings has been compared with that of the conventional steel honeycomb panels of the same
size [12]. Both the simulations and tests validated the substantial contribution of auxetic characteristics
in improving the force mitigation and blast-resistance performances of auxetic sandwich panels. The
auxetic core microstructure has significant influence in the crushing resistance, as the collapse of
auxetic cell is highly related to the crushing strength of cellular structure [13]. The enhancement of
the dynamic responses and blast resistance of the sandwich structures with auxetic re-entrant cell
honeycomb cores under blast loading has also been concluded in these studies [14]. To further explore
the dynamic property of the auxetic honeycomb subject to large deformation, Wangyu Liu et al. [15]
studied the characteristics of the peculiar crushing patterns and the energy absorption performances of
the re-entrant hexagonal honeycomb. Their studies pointed out that the auxetic effects determines the
impact response of the re-entrant honeycomb by affecting the crushing pattern. A similar conclusion
was also reported by Xiuhui Hou et al. [16], who attributed the superior impact resistance of auxetic
honeycombs to the auxetic effect induced in the re-entrant topology.

However, it can be concluded from the reviews that most recent research has focused on
the two-dimensional honeycombs. Two-dimensional auxetic honeycomb possesses NPR only in
two in-plane orthogonal directions (the out-of-plane does not exhibit auxetic behavior), while
three-dimensional (3D) auxetic cellular structure can easily achieve isotropic NPR in three principle
directions. Considering the poor predictability of virtual crushing directions, 3D auxetic cellular
structure may be more suitable in many application scenarios, thus deserving in-depth investigation.

In this paper, a three-dimensional auxetic cellular structure consisting of re-entrant hexagonal cells,
which is illustrated in Figure 1, has been modeled and analyzed in the dynamic crushing mechanics.
As a typical NPR configuration, this design was originally proposed by Evans [17] and has been
numerically and empirically studied by other researchers [18–21]. Though these studies are limited in
analytically modeling and elastic analysis, some conclusions can be seriously referred when extending
the research towards dynamic crushing domain. With numerical simulations, the dynamic crushing
analysis of the 3D re-entrant cellular structure has been conducted in the variable strain rates ranging
from 5 s−1 to 120 s−1. The dynamic behaviors of the auxetic structure, including the crushing modes,
the crushing strength and the energy absorption capacity, have been further investigated with respect
to the crushing velocity and the structure relative density.Materials 2019, 12, x FOR PEER REVIEW 3 of 15 
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velocity 𝑣 varies from 2 m/s to 50 m/s in this study. All the nodes at the bottom boundary have been 
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Figure 1. (a) 3D re-entrant auxetic cellular structure; (b) Representative volume element (RVE);
(c) Geometrical features of the RVE.

2. Geometry and Modeling

2.1. Geometry

Figure 1a depicts the employed 3D re-entrant auxetic cellular structure, which is arrayed by
repeating the representative volume element (RVE) shown in Figure 1b in all three principle directions.
As can be seen from Figure 1b, the RVE can be described with a pair of orthogonally arranged re-entrant
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hexagons, which consist of several vertical and inclined struts. By referring to the previous publications,
the struts are assumed to have the identical square-shape cross-sections. Figure 1c illustrates the whole
view of the geometrical parameters for characterizing the RVE. The lengths of the inclined struts and
vertical struts are defined as L and H, respectively. The thickness of the strut cross-section is defined as
t. The re-entrant angle between the vertical and inclined struts is defined as θ. Therefore, the geometry
of the RVE can be determined independently with four parameters namely L, H, t and θ. Noting that
to ensure re-entrant configuration, a geometric constraint H > 2L cos θ should be satisfied in initial
design. Considering the symmetry of the 3D structure, it is apparent that the mechanical properties
along the x and y directions are of the same.

The materials of the struts may be varied to achieve different properties. As a preferred
embodiment, they are assumed to have the same material in this study. Then, as shown in Figure 1,
the relative density of the 3D re-entrant auxetic structure, ρR, that is, the ratio between ρ0 the effective
density of cellular structure and ρs the density of strut material, can be obtained by dividing the volume
occupied by all the struts and the total volume. The volume occupied by all the struts is specified as
Vs = 2Ht2/2 + 4Ht2/2 + 8Lt2. The total volume is calculated as V0 = (2L sin θ + 2t)2·(2H − 2L cos θ).
Combining the independent parameters defined above, the relative density ρR is therefore described as:

ρR =
ρ0

ρs
=

Vs

V0
=

(8L + 3H + 2t)t2

(2L sin θ + 2t)2(2H − 2L cos θ + t)
(1)

2.2. Description of Finite Element Modeling

In this section, a full size finite element (FE) model of 3D re-entrant auxetic cellular structure for
dynamic crushing simulation has been built using Abaqus®, as shown in Figure 2a. The 3D re-entrant
auxetic structure adopted for simulation have been given with 12 × 9 × 6 representative cells (twelve
unit cells in x-direction, nine unit cells in y-direction and six unit cells in z-direction). The geometrical
parameters of the 3D specimens in crushing analysis are set as L = 20 mm, H = 30 mm, θ = 60◦ and
t varies from 1 mm to 4 mm, featuring a variable relative density closely between 1% and 10%. The
dimensions of whole model are then given as 416 mm by 360 mm by 208 mm in Figure 2a.

In meshing of the model, by referring to the publication [22], the two-node beam element
BEAM188 has been used to mesh the struts of the structure as this element type can ensure high
accuracy at a low computational cost. As demonstrated in the paper [22], this element type is suitable
to simulate the linear small-deflection and non-linear large-deformation of the strut, which both occur
in dynamic crushing. Figure 2a also shows an example of the FE beam model of a half unit cell. As
can be observed from the figure, the mesh model is constructed based on the design scheme shown in
Figure 1c (red dash), as the schematic lines of beam element are directly assigned along the central axes
of the struts. And all the corners of struts are defined as default nodes before meshing. As a preferred
material for additive manufacturing, PA6 has been adopted as the matrix material of strut and been
assumed to be a rate-independent elastic-perfectly plastic model with mass density ρs = 1.14 g/cm3,
Young’s modulus Es = 2.32 GPa, yield stress σy = 115 MPa and Poisson’s ratio νs = 0.34 [23].

The detailed boundary conditions for crushing simulations are depicted in Figure 2b. To simulate
the dynamic crushing process, a rigid-wall has been modeled to impact the upper cells of the specimen
with a constant velocity, vc, along the y-direction, as shown in Figure 2b. The crushing velocity vc

varies from 2 m/s to 50 m/s in this study. All the nodes at the bottom boundary have been fixed along
the y-direction as uy = 0. To fix the model, a central node at the bottom boundary has been fixed by
constraining all degrees of freedom. Nodes at the lateral boundaries have been set with the coupled
boundaries so as to avoid the influence of boundary effect [24]. An automatic single contact algorithm
in Abaqus® has been adopted to model the contact between surfaces with a friction coefficient of 0.35.
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Figure 2. The numerical simulation model (12 × 11 × 6 type): (a) Overview of the mesh model; (b) The
boundary conditions when crushing along the y direction.

A mesh sensitivity investigation has been carried out to determine the proper mesh arrangement.
The basic element size in meshing the strut varies from 4 mm to 10 mm for different model complexities.
The different models are investigated under crushing at a constant velocity vc of 30 m/s. The
convergence of the simulations is depicted using crushing reaction force in Figure 3a and hourglass
error in Figure 3b.
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Abaqus explicit analysis performed in the present study uses hourglass control mode. Once the
artificial strain energy is greater than approximately 5% of the total energy, that is, hourglass error
exceeds 5%, hourglassing could be a problem and should be further analyzed by refining mesh [25]. It
can be concluded from Figure 3 that the hourglass error of meshing with basic element size of 6 mm
can be limited in 5% (in Figure 3b) and is able to achieve a similar result compared with the other
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refined models (in Figure 3a). Thus, combining the accuracy and computational cost, the basic element
size in meshing the model has been set as 6 mm for all simulation in the present work.

3. Dynamic Crushing Modes

As indicated in previous publications [26–28], the crushing modes for regular hexagonal
honeycombs with same relative density are highly dependent on the crushing velocity. Inspired
by this work, keeping a constant ρR = 1%, dynamic crushing simulation of the 3D re-entrant auxetic
cellular structure has been performed under a wide range of crushing velocity vc varying from 2 m/s
to 50 m/s. By defining the y-directional strain rate as the ratio of vc to the height of the structure hy, the
strain rate varies approximately from 5 s−1 to 120 s−1 in this study. Figures 4–7 depict the deformation
processes of the auxetic structures subjected to dynamic crushing along the y-direction. As seen from
the simulation results, similar to the studies for regular hexagonal honeycombs [26], three specific
crushing modes have also been observed from the numerical simulations for auxetic structures, namely
quasi-static, transition and dynamic mode. But due to the auxetic effect, these specific crushing modes
all exhibit different deformation shapes compared to the crushing patterns for regular hexagonal
honeycombs reported as ‘X,’ ‘V’ and ‘I’ types [26]. Figures 4–6 show the deformation processes under
the crushing velocities of 5, 15 and 50 m/s, representing the three specific crushing modes, respectively.
Each process recorded is given with six typical deformation stages with the longitudinal εy= 0.05, 0.1,
0.2, 0.3, 0.4 and 0.5.

As shown in Figure 4, when the auxetic structure is crushed under a low velocity (vc = 5 m/s),
localized deformation occurs as the cells collapse layer by layer and obvious contraction is observed
along the lateral plane. The first collapse band is initiated randomly at the 5th layer. As the crushing
continues, the cells near the proximal end gradually pile up towards the collapse band, forming a
densification core. Until all the cells above the collapse band densified, the densification core keeps
spreading towards the distal end. No ‘X’ or ‘V’ type modes as for regular hexagonal honeycombs
are observed in crushing case for the auxetic structure. Since the lateral contraction around the
densification core is larger than those at the proximal and distal ends, the compressed structure shows
a necking shape, which is seen as the diagnostic feature of quasi-static mode. Moreover, simulations
for low-velocity cases show an instability in the growing of densification core, as shown in Figure 4.
The possible cause for this phenomenon can be attributed to the reduction of cross-section area in
densification core, leading to a dislocation between the densified layers.
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Figure 4. Deformation process of the 3D re-entrant auxetic structure under the crushing velocity
vc = 5 m/s.

When the crushing velocity is increased (vc = 15 m/s in Figure 5), the auxetic structure deforms in
the same way as in the low-velocity crushing cases through accumulation of collapse layers into the
densification core. But as can be seen from the figure, there is an obvious difference that the initial
collapse band is generated in the layer close to the proximal end. Additionally, the lateral contractions
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at the proximal and distal ends almost occur simultaneously. As the crushing continues, the growing
of the densification core at the upper structure and the contraction of the both ends are the major
deformation pattern for the auxetic structure, featuring a spindle shape for the transition mode.

When the auxetic structure is subjected to a high-velocity crushing (vc = 50 m/s in Figure 6), a
shockwave like crushing front is generated at the proximal end only and then spreads towards the
distal end, which is similar to the deformation pattern for regular hexagonal honeycombs in dynamic
mode. Upon crushed, the cells near the proximal end rapidly collapse into a densification core and a
localized contraction is also expected around the densification core, exhibiting a top-shrinking shape as
a whole. In this crushing mode, no obvious collapse and contraction are observed near the distal end.
This might be because that most of the crushing energy is absorbed through plastic collapse of cells in
the densification core. Hence, the stress waves travelled to the distal ends are not intense enough to
collapse the cells at this area [29]. This phenomenon can be further investigated by integrating with
the crushing strength analysis given below.

The detailed crushing processes for auxetic structures with respect to the analyzed range of
crushing velocities are shown in Figure 7, which clearly illustrates the gradual transition among three
specific crushing modes. As described above, the main differences among the three crushing modes lie
in the location of initial collapse band (marked in Figure 7 with red box) and the growth process of
densification core. In addition to the crushing velocity, the crushing modes of auxetic structures are
highly affected by the relative density. Therefore, auxetic structures with variable relative densities
have been modeled by changing the thickness of strut and used to perform crushing simulations with
respect to different crushing velocities.
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Figure 7. Deformation processes of the3D re-entrant auxetic structure (ρR = 1%) under different
crushing velocities.

In Figure 8, the corresponding crushing mode for each simulation case has been identified with a
solid marker, forming a mode classification map for the 3D re-entrant auxetic structure. As depicted
in the figure with the dashed lines, an approximately linear relativity can be recorded between the
critical transition velocity, vt and the relative density, showing an increase of vt with increasing ρR.
This can be understood by referring to the shock propagation research of cellular system, where there
is a widely accepted one-dimensional shock theory using rigid, perfectly plastic, locking (R-PP-L)
idealization model, revealing the dependence of critical velocity on the density of the structure [30–32].
By employing this theory, a similar conclusion for the regular hexagonal honeycomb has been drawn in
previous studies [26,27] and the transition velocity among different modes has been further expressed
intuitively [28,31].
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The markers are the simulation results showing different crushing modes. The dashed lines represent
the linear fits of boundaries associated with the transition among three specific crushing modes.
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4. Dynamic Crushing Strength

To further investigate the dynamic response of auxetic structure, the crushing stresses of auxetic
structure (ρR = 1%) produced at the proximal and distal ends under different crushing velocities are
given in Figure 9a,b with respect to compression strain. All the nominal stress-strain curves show an
overall piecewise characteristic during crushing, featuring with the ephemeral elasticity, long plateau
and final densification periods. Another characteristic is that the stress-strain curves are observed with
high oscillations. The possible cause can be attributed to the localization as the cells collapse layer by
layer, resulting in a sudden drop of the stress when an adjacent layer of cells starts to collapse. Thus,
the fluctuations in curves are therefore expected, especially in the dynamic crushing mode (vc = 50
m/s).
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Figure 9. Dynamic crushing strength of the 3D re-entrant auxetic structure: (a) Crushing stresses
at the proximal end; (b) Crushing stresses at the distal end; (c) Dynamic densification strains εD

under different crushing velocities; (d) Crushing stresses (proximal end) of structures with different
relative densities.

As the crushing velocity increases, the crushing stress at the proximal end increases remarkably,
while the stress at the distal end has less dependence on the crushing velocity. Additionally, the
crushing stress at the proximal end is higher than that at the distal end. Since the rate-independent
elastic-perfectly plastic model has been adopted and the effect of strain-rate is ignored in this study, the
reason for the enhanced strength can be reasonably attributed to the change of deformation mode of
struts as discussed above. The above two claims indicate that the analyzed re-entrant auxetic structure
has great potential in protecting the contacted part at the distal end.

Densification strain is defined as a strain at which densification begins. Another trend in
Figure 9a,b is observed that the stress-strain curves at both ends show a lengthened plateau with
increasing the crushing velocity, increasing the strain at which the final densification period starts,
which indicates an crushing velocity dependent densification strain in auxetic cellular structures. By
referring to the publication [33], the dynamic densification strain εD is defined as the intersection of the
tangents to the plateau and densification regimes in this study and the value is then determined
numerically from the obtained stress-strain curves within FE simulation. Figure 9c depicts the
dynamic densification strains εD with respect to different crushing velocities. Obviously, the dynamic
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densification strain increases gradually with increasing the crushing velocity and converges to a peak
value when the velocity reaches around 35 m/s, showing an increase of about 10% compared with that
for the quasi-static case. In this study, the dynamic plateau stress is defined as the average value of
compression stresses for a compressive strain of between the 0.5% strain and the dynamic densification
strain εD [30]. Since in the R-PP-L idealization model [31,32], the densification strain is adopted as
a rate-independent value when formulating the explicit form of dynamic plateau stress. The trend
revealed in Figure 9c indicates an amendment needed to determine the dynamic plateau stress with
rate sensitivity being considered, which is further discussed in the next section.

Further effect of the relative density has been analyzed, as shown in Figure 9d. As the crushing
strength with high strain rate is of high interest in crashworthiness design, the density related research
at the proximal end is performed within the dynamic crushing mode, where the auxetic structures
with different relative densities are crushed with the same velocity, vc = 50 m/s. From the shown
stress-strain curves, the peak stress and plateau stress increase with the relative density. As the
variation of relative density in this study is achieved by varying the strut thickness, the thickened
strut can present a higher resistance to collapse loading, increasing the crushing strength of cellular
structure. Although a long plateau with high stress level can guarantee a satisfactory energy absorption
performance, the increased relative density simultaneously generates a higher peak stress, which is
not appropriate in crashworthiness design. Thus, the function-oriented design for auxetic structure
deserves a more detailed guideline, not merely increasing the relative density and this is not included
in the present study.

As analyzed above, the theoretical prediction of dynamic plateau stress is highly related to the
crushing velocity and relative density. Ideally, in the shock theory proposed by Reid, assuming the
cellular structure as the R-PP-L model, the dynamic plateau stress σD, at the proximal end is given in a
general form as in Reference [30]:

σD = σ0 +
ρ0v2

c
εD

(2)

where σ0 is defined as the quasi-static plateau stress, εD is the densification strain, ρ0 is the effective
density of cellular structure and vc represents the crushing velocity. For the quasi-static plateau stress
σ0 and the densification strain εD, Gibson and Ashby [34] formulated them as a function of the relative
density ρ0/ρs and the yield stress of strut material σy as below:

σ0 = C
(

ρ0

ρs

)2
σy (3)

εD = 1 − γ
ρ0

ρs
(4)

where ρs is the density of strut material and C and γ are dimensionless constants. The marks shown in
Figure 10 are the simulation results of quasi-static plateau stress σ0 and densification strain εD for the
structures with different relative densities. By employing Equations (3) and (4), two fitting curves have
been drawn on basis of the discrete marks, where the dimensionless constants of equations are derived
as: C = 1.83 and γ = 0.85. The simulation results for dynamic plateau stress of auxetic structures
with different combinations of crushing velocities and relative density are listed in Table 1, where
the theoretical predictions using the Equations (2)–(4) are also listed as a contrast. As shown in the
table, with increasing crushing velocity, an increasing overestimation amounting to about 13% has
been observed for the theoretical results above the simulation results. The deviation can be reasonably
attributed to the constant assumption of εD in the R-PP-L model, which is actually a rate-dependent
coefficient [35]. Thus, to improve the prediction accuracy of the theoretical model, a modification has
been performed within the empirical formula of dynamic plateau stress.
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Figure 10. The quasi-static plateau stress σ0 and the densification strain εD with respect to
relative density.

Table 1. Dynamic plateau stress σD from numerical simulation and theoretical prediction using
Equations (2)–(4).

Relative Density ρR Crushing Velocity vc (m/s)
Dynamic Plateau Stress σD (MPa)

Theoretical Simulation Deviation (%)

0.01

5 0.081 0.080 1.11
15 0.145 0.142 2.03
30 0.337 0.311 8.36
50 0.804 0.733 9.66
70 1.708 1.521 12.31

0.03

5 0.731 0.715 2.26
15 0.718 0.692 3.81
30 1.286 1.216 5.77
50 2.294 2.127 7.86
70 4.015 3.611 11.20

0.08

5 4.431 4.291 3.26
15 4.616 4.398 4.96
30 5.058 4.713 7.32
50 6.716 6.112 9.88
70 8.608 7.612 13.08

As revealed in Figure 9c, the dynamic densification strain can be related to the crushing velocity
and thus a piecewise-defined function has been formulated herein by two sub-functions, a linear
function fitting for all values of vc less than the wave trapping speed vw [30] and a constant function
fitting for the values of vc greater than or equal to vw. The formulated piecewise-defined function is
given as:

εD =


(

0.1 vc
vw

+ 1
)(

1 − γ
ρ0
ρs

)
0 < vc < vw

1.1
(

1 − γ
ρ0
ρs

)
vc ≥ vw

(5)

Substituting Equations (3) and (5) into Equation (2), the dynamic plateau stress σD considering
rate-dependent εD is given as:

σD =


C
(

ρ0
ρs

)2
σy +

ρ0v2
c

(0.1 vc
vw +1)

(
1−γ

ρ0
ρs

) 0 < vc < vw

C
(

ρ0
ρs

)2
σy +

ρ0v2
c

1.1
(

1−γ
ρ0
ρs

) vc ≥ vw

(6)

Figure 11 shows the comparison between the simulation results and the theoretical predictions
calculated following Equation (6) as for dynamic plateau stress σD. As clearly shown in the figure,
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for the given range of relative densities and velocities, the theoretical model with Equation (6) agrees
well with the FE model with a maximum deviation of 4.5%. Considering the slight error due to the
approximate expression of εD, the comparison has validated the correlations given in Equation (6).
Therefore, the modified formula of dynamic plateau stress σD provides a good guidance for predicting
crushing strength of auxetic structure in crashworthiness design.
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Equation (6).

5. Energy Absorption Capacity

To explore the effects of crushing velocity and relative density on the energy absorption capacity
of the re-entrant auxetic structure (ρR = 8%), the plastic energy dissipated Up during the crushing
process has been monitored and plotted against the overall compression strain, as shown in Figure 12.
The frictional dissipated energy U f due to friction between the contacted struts has also been plotted
in the figure.
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Figure 12. (a) Plastic energy dissipation Up versus the crushing strain ε; (b) Frictional energy dissipation
U f versus the crushing strain ε.

As can be seen, the frictional dissipated energy accounts for a small proportion of total internal
energy and the major energy absorption mechanism is dominated by the plastic bending and axial
compression of struts [36]. The plotted curves show that all the plastic energy dissipations under
different crushing velocities feature an almost linearly increasing trend with the increase of compression
strain. In addition, the plastic energy dissipation in the same compression strain increases remarkably
as the crushing velocity increases, especially for higher velocities. This might be because of the
increased crushing strength of structure under high crushing velocity.

To evaluate the energy absorption efficiency from a standardized perspective, two indices have
been defined by involving the quality of structure and the quasi-static dissipation energy, giving
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the specific plastic energy dissipation Us
p and the normalized plastic energy dissipation Up [37],

respectively. They are given herein as

Us
p =

Up

m
(7)

and

Up =
Up

σyc Ahz
(8)

respectively, where m = ρ0V0 = ρ0 Ahz is the mass of cellular structure, A is the effective cross-section
area, hz is the effective height along crushing direction and σyc is the effective yield strength of
cellular structure and can be calculated as σyc = 0.5ρ2

Rσy. According to the shock wave theory, for the
continuum-based R-PP-L model, the plastic energy dissipation can be explicitly written as

Up = σ0εD +
1
2

ρ0v2
c (9)

Applying the rate-dependent εD function in Equations (6)–(9) gives

Up =

 C
(

ρ0
ρs

)2
σy

(
0.1 vc

vw
+ 1
)(

1 − γ
ρ0
ρs

)
+ 1

2 ρ0v2
c 0 < vc < vw

1.1C
(

ρ0
ρs

)2
σy

(
1 − γ

ρ0
ρs

)
+ 1

2 ρ0v2
c vc ≥ vw

(10)

Substituting Equation (10) into Equations (7) and (8), the theoretical predictions of Us
p and Up can

thus be obtained.
By adopting the above model, the theoretical predictions of the specific plastic energy dissipation

Us
p and the normalized plastic energy dissipation Up at densification crushing are presented in

Figure 13 with respect to the normalized crushing velocity parameter V = vc/vw, respectively. To
compare with the theoretical predictions, the two energy absorption indices calculated directly from
the crushing simulations within the analyzed velocity and density range have also been presented in
Figure 13. The comparison between the predictions and the FE results shows a satisfactory agreement,
validating the effectiveness of theoretical model.
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It is also found from Figure 13a that, for the analyzed relative density range, a consistent trend can
be summarized from the curves as the specific plastic energy dissipation of higher relative density is
obviously larger than that of lower relative density. Given the lightweight as design consideration, this
conclusion can be an important reference in the engineering application of auxetic cellular structures.
Differing from the specific plastic energy dissipation, when crushing at low velocities, the normalized
plastic energy dissipation increases as the relative density is increased (Figure 13b). While at high
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crushing velocities, the structure relative density possesses negative effect on the capacity of energy
absorption, demonstrating a shifting point at the intersection of the curves. So under high-velocity
crushing, lower relative density results in higher normalized plastic energy dissipation during the
crushing process and exhibits a higher rate of increase in energy dissipation capacity with an increasing
crushing velocity. The shifting point for the proportional relation between the crushing velocity and the
relative density is observed to be around V = 1, which actually represents the critical transition velocity
between the transition mode and the dynamic mode. The results suggest that the crush hardening effect
is more prominent for cellular structure with lower relative density under high-velocity crushing. To
further validate the theoretical model, extensive experiments are suggested, which will be conducted
in future work.

6. Conclusions

In the present work, a three-dimensional auxetic cellular structure consisting of re-entrant
hexagonal cells has been proposed. A beam-based finite element method has been utilized to
investigate the dynamic behaviors of the 3D re-entrant auxetic structure under direct crushing. Insights
into the influence of crushing velocity and relative density on the crushing mode, crushing strength
and energy absorption have been presented.

The detailed deformation process of the 3D re-entrant auxetic structure under the crushing
velocity ranging from 2 m/s to 50 m/s has been described with the features of local densification and
lateral contraction due to auxetic effect and three specific crushing modes have been observed, namely
quasi-static, transition and dynamic mode. Further, the dependence of the crushing velocity and the
relative density on the crushing mode has been identified, forming a mode classification map for the
3D re-entrant auxetic structure. The crushing strength of the 3D re-entrant auxetic structure reveals to
increase with the increase in crushing velocity and relative density. Moreover, an analytical formula
of dynamic plateau stress has been deduced by introducing the rate-dependent densification strain,
which proves to present theoretical predictions agreeing well with simulation results. By establishing
an analytical model, we have also studied the role of relative density on the energy absorption capacity
of the 3D re-entrant auxetic structure with respect to crushing velocity. The theoretical and simulation
results both show that the specific plastic energy dissipation of the structure increases consistently with
the increase in the relative density, while the normalized plastic energy dissipation has an opposite
sensitivity to the relative density when the crushing velocity exceeds the critical transition velocity.

The results in this work can be a preliminary complement to the dynamic analysis of the 3D
re-entrant auxetic structure and provides an extensive reference for the crushing resistance design of the
auxetic structure. Future work will focus on the experimental validation of the results and considering
more factors in mechanical analysis such as the size effect and the matrix material properties.
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