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Abstract
As one of the three proteinogenic aromatic amino acids, l-phenylalanine is widely applied in the food, chemical and pharma-
ceutical industries, especially in production of the low-calorie sweetener aspartame. Microbial production of l-phenylalanine 
has become attractive as it possesses the advantages of environmental friendliness, low cost, and feedstock renewability. With 
the progress of metabolic engineering, systems biology and synthetic biology, production of l-phenylalanine from glucose 
in Escherichia coli with relatively high titer has been achieved by improving the intracellular levels of precursors, alleviating 
transcriptional repression and feedback inhibition of key enzymes, increasing the export of l-phenylalanine, engineering 
of global regulators, and overexpression of rate-limiting enzymes. In this review, successful metabolic engineering strate-
gies for increasing l-phenylalanine accumulation from glucose in E. coli are described. In addition, perspectives for further 
improvement of production of l-phenylalanine are discussed.
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Introduction

As one of the three proteinogenic aromatic amino acids, 
l-phenylalanine is widely used in food additives, animal 
feed, infusion fluids, or as a building block for drug syn-
thesis. As it can be used in the biosynthesis of the low-cal-
orie sweetener aspartame, demand for l-phenylalanine has 
increased worldwide (Sprenger 2007b). Because of its com-
mercial importance and wide application, increasing atten-
tion has been paid to l-phenylalanine production. Chemical 
synthesis uses nonrenewable toxic materials and generates 
racemic mixtures of d- and l-phenylalanine, which is unde-
sirable (Otrokhov et al. 2013). Accordingly, direct micro-
bial fermentation from low cost raw materials has become 
more favorable than other strategies (Rodriguez et al. 2014). 
Escherichia coli, a model organism with the advantages of a 
clear genetic background, simple genetic manipulation and 
fast growth in cheap media, is widely used for the produc-
tion of l-phenylalanine and other aromatic compounds (Gu 
et al. 2012, 2016; Liu et al. 2015). However, in wild strains 

of E. coli, titer of l-phenylalanine is limited by strong and 
complex regulation of the biosynthesis pathway.

Previous l-phenylalanine producers were mainly obtained 
by classical mutagenesis and screening procedures. To 
obtain l-phenylalanine producers, structural analogues 
fluorophenylalanine or chlorophenylalanine was firstly sup-
plemented into the medium. And then, mutant strains with 
resistant against the antimetabolites will exhibit restored 
growth and can easily be selected (De Boer and Dijkhui-
zen 1990). Through DNA sequencing, it was found that the 
mutant strains usually possessed altered allosteric binding 
sites of key enzymes (Ikeda 2006). However, unexpected 
mutations will be inevitably generated in the process of clas-
sical mutagenesis, which may affect further improvement of 
the mutant strain (Dong et al. 2011). Accordingly, rational 
engineering technologies have been used to achieve dele-
tion, overexpression, and genomic integration of target genes 
to improve l-phenylalanine production in E. coli strains 
(Table 1).

In E. coli, two precursors of the l-phenylalanine biosyn-
thesis pathway are phosphoenolpyruvate (PEP) and eryth-
rose 4-phosphate (E4P). As the three aromatic amino acids 
share the same biosynthesis pathway from 3-deoxy-d-ara-
bino-heptulosonate 7-phosphate (DAHP) to chorismate, 
the overall l-phenylalanine biosynthesis pathway is often 
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divided into the common pathway and the specific l-pheny-
lalanine pathway that branches at the point of chorismate. 
As shown in Fig. 1, three DAHP synthase isoenzymes-AroF, 
AroG and AroH-are responsible for the first and rate limited 
step in the l-phenylalanine biosynthesis pathway (Umbarger 
1978). AroG contributes about 80% of the overall DAHP 
activity, while the contributions of AroF and AroH to the 
total DAHP activity are only about 15% and 5%, respec-
tively (Herrmann and Weaver 1999). Another rate-limit-
ing enzyme in the l-phenylalanine pathway is chorismate 
mutase-prephenate dehydrogenase (CM-PDT), encoded by 
pheA, which is feedback inhibited by allosteric binding of 
l-phenylalanine. Notably, the last step in the formation of 
l-phenylalanine is a transamination reaction of phenylpyru-
vate with glutamate as the amino donor, and this step can be 
catalyzed by TyrB, AspC and IlvE.

Regulation of l‑phenylalanine biosynthesis 
in E. coli

In E. coli, TyrR and TrpR are the main transcriptional 
regulators of genes in the l-phenylalanine biosynthesis 
pathway (Wallace and Pittard 1969). Transcription of 
aroF, aroL, and tyrB is repressed by TyrR (Pittard and 
Davidson 1991; Wilson et al. 1994). TrpR can repress the 
transcription of aroH, aroL, and also its own expression 
(Gunsalus and Yanofsky 1980). To increase the accumula-
tion of l-phenylalanine, tyrR and trpR are often inactivated 
simultaneously or individually.

In addition, l-phenylalanine production is also lim-
ited by feedback inhibition of enzymes in E. coli such 
as DAHP synthases and CM-PDT. The three DAHP syn-
thase isozymes are feedback inhibited by l-phenylalanine, 
l-tyrosine and l-tryptophan, respectively, but CM-PDT 

Table 1   Comparison of l-phenylalanine production in different recombinant strains of E. coli 

N not reported

Strain Relevant characteristics Titer (g/L) Conversion 
rate (mol/
mol)

Produc-
tivity 
(g/L/h)

Culture methods References

WSH-Z06 (pAP-B03) E. coli K-12 with l-tyros-
ine auxotrophic

35.38 26% N 3-L fed-batch fermentation Haiyan et al. (2010)

HD-A2 Multiple random mutagen-
esis of E. coli W3110 
and overexpressing 
aroFWT, pheAFBR and 
aroA

62.47 25.74% N 5-L fed-batch fermentation Ding et al. (2016)

BR-42 (pAP-B03) Multiple random mutagen-
esis of E. coli WSH-Z06 
and overexpressing 
aroFWT and pheAFBR

57.63 26.4% 1.153 3-L fed-batch fermentation Zhou et al. (2011)

Xllp21 W3110-derived l-tyrosine 
auxotrophic with overex-
pressed aroFWT, aroD, 
and pheAFBR, inactivated 
tyrR, and genomic inte-
grated galP and glk

72.9 28.3% N 5-L fed-batch fermentation Liu et al. (2018)

W3110 (pNpheABK15) W3110 with overexpressed 
pheAFBR, ydiB, aroK and 
aroG15

23.8 16.8% 0.073 15-L fed-batch fermenta-
tion

Liu et al. (2013)

pR15BABKG WSH-Z06△crr with 
overexpressed pheA, 
aroG15, ydiB, aroK, tyrB 
and yddG

47 27.5% N 5-L fed-batch fermentation Liu et al. (2013)

W3110-4 (pF20) W3110 (△pheA△tyrA 
△aroF) with overex-
pressed aroFFBR and 
pheAFBR

32 N N 300-L fed-batch fermenta-
tion

Gerigk et al. (2002b)

E. coli aroF-wt w3110 Fnr+ (△pheA△tyrA 
△aroF)/pJF119EH-
aroFWT-pheAFBR-aroLWT

35 N N 20-L fed-batch fermenta-
tion

Gerigk et al. (2002a)



3 Biotech (2019) 9:85	

1 3

Page 3 of 7  85

is only sensitive to the concentration of l-phenylalanine 
(Ikeda 2006). In addition, shikimate dehydrogenase, 
encoded by aroE, is feedback inhibited by shikimate. This 
is the only enzyme in the aromatic amino acid biosynthesis 
pathways of E. coli that is subject to feedback inhibition 
by an intermediate rather than an end-product (Sprenger 
2007a).

In E. coli, the expression of pheA (encoding CM-PDT) 
is also regulated by an attenuation mechanism. When high 
concentrations of l-phenylalanine are present in the medium, 
the ribosomes can successfully translate the leader peptide 
sequence by enough charged tRNAPhe, in turn preventing the 
formation of the second stem and loop and allowing forma-
tion of the third structure. As a result, transcription by RNA 
polymerase will be terminated. It was reported that 75% 
of the transcription of the pheA leader region was stalled 

when rich medium was applied for the cultivation of E. coli 
(Gavini and Davidson 1991).

Metabolic engineering for l‑phenylalanine 
production in E. coli

Improving the intracellular levels of precursors 
of l‑phenylalanine

To increase the intracellular concentration of E4P, transke-
tolase (encoded by tktA) and transaldolase (encoded by talB) 
are often selected as engineering targets (Zhao and Winkler 
1994). In addition, it was reported that inactivation of phos-
phoglucose isomerase was also advantageous for the supply 
of E4P by blocking glycolysis (Mascarenhas et al. 1991). By 
using glycerol instead of glucose as carbon source, the car-
bon flow directed into the pentose phosphate pathway can be 
obviously increased (Khamduang et al. 2009; Thongchuang 
et al. 2012).

When one glucose molecule is assimilated into E. coli 
cells by the phosphoenolpyruvate:carbohydrate phospho-
transferase system (PTS), one molecule of PEP will be con-
sumed (Gosset 2005; Postma and Lengeler 1985). It was 
reported that about 50% of the intracellular PEP is consumed 
by the PTS system, while only 1.5% of PEP is directed 
into aromatic amino acid biosynthesis (Flores et al. 2002; 
Sprenger 2007b). Accordingly, the PTS is often selected as 
the first engineering target to increase the PEP level. How-
ever, the growth of mutant strains with deficiency of PTS 
components is often impaired due to limitations on the trans-
port of glucose. To solve this problem, adaptive evolution 
processes can be employed to improve the growth of PTS-
defect strains on glucose, and versatile mutant strains with 
recovered growth on glucose were obtained, such as PB12 
(Flores et al. 1996). It was found that this strain directs more 
PEP into the aromatic synthesis pathway than other strains 
(Flores et al. 2002), and it can be used to produce various 
aromatic compounds by further genetic modifications (Car-
mona et al. 2015; Escalante et al. 2010). Another optional 
strategy is replacement of the PTS by the glucose facilitator 
and glucokinase from Zymomonas mobilis, or the galactose 
permease and glucokinase from E. coli (Balderas-Hernandez 
et al. 2009; Yi et al. 2002).

Apart from engineering the PTS, decreasing the carbon 
flux from PEP into the tricarboxylic acid cycle was also 
necessary to further increase the PEP pool, including inac-
tivation of pyruvate kinase PykF (Meza et al. 2012; Sabido 
et al. 2014) and phosphoenolpyruvate carboxylase Ppc, and 
improving the expression of PEP synthetase PpsA to recycle 
pyruvate to PEP (Patnaik and Liao 1994; Yi et al. 2002).

Fig. 1   The l-phenylalanine biosynthesis pathway in Escherichia coli 
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Engineering of global regulators

CsrA is a regulatory protein of carbohydrate metabolism 
and can also regulate the intracellular PEP titer. It was 
reported that the titer of PEP could be increased by dele-
tion of csrA or increasing the expression of negative regu-
latory RNA of csrA encoded by csrB (Tatarko and Romeo 
2001; Yakandawala et al. 2008). Engineering of csrB and/
or csrA combined with tktA overexpression was more effec-
tive than traditional strategies in enhancing l-phenylalanine 
production (Yakandawala et al. 2008). In addition, Fis, a 
nucleoid-associated protein, was found to be abundant dur-
ing the exponential phase and decreased obviously in the 
stationary phase. Perhaps Fis is needed for transcription 
of growth related genes, and overexpression of Fis can put 
the host into a more metabolically active state (Tyagi et al. 
2017). To test this hypothesis, the fis gene was overexpressed 
in recombinant strain WF123456 and the l-phenylalanine 
titer was indeed increased 1.2-fold compared with the con-
trol (Tyagi et al. 2017). In addition, Ojima et al. found that 
excess expression of yggG, encoding a stress-responsive 
gene, could repress the secretion of acetate, which may be 
of benefit for production of l-phenylalanine in E. coli (Ojima 
et al. 2009). Accordingly, they introduced yggG into an 
l-phenylalanine producer (E. coli AJ12741) with feedback-
resistant AroG; the recombinant strain could produce 6.4 g/L 
l-phenylalanine, 73% higher than the original strain in batch 
fermentation.

Overcoming transcriptional repression, feedback 
inhibition and attenuation of key enzymes

As DAHP synthase controls the amount of carbon flow 
into the l-phenylalanine biosynthesis pathway (Ogino et al. 
1982), the removal of feedback inhibition of DAHP syn-
thase isoenzymes may be helpful to increase l-phenylalanine 
yield. With the progress of structural analysis, the crucial 
amino acid residues of DAHP synthase isoenzymes have 
been identified. As a result, various feedback-resistant 

enzymes, such as AroG(Leu76Val), AroF(Pro148Leu), 
and AroF(Gln152Ile) have been obtained (Ger et al. 1994; 
Kikuchi et al. 1997), and some of them are summarized in 
Table 2.

Interestingly, it was found that wild-type aroF could 
achieve even higher final l-phenylalanine titers (34 g/L) 
than the aroFFBR-containing strain (28 g/L) due to the higher 
activity of wild-type AroF (Gerigk et al. 2002a). In 2004, 
another group also constructed a recombinant E. coli strain 
containing aroFWT and pheAFBR inserted in an IPTG-induc-
ible plasmid for l-phenylalanine production (Takors 2004). 
By overexpression of pheAFBR and aroFWT in l-tyrosine 
auxotrophic E. coli strain WSH-Z06, the l-phenylalanine 
titer reached 35.38 g/L in a 3-L fermentor, 2.81-fold higher 
than that of the parental strain (Haiyan et al. 2010). These 
examples imply that wild-type DAHP synthases can also be 
employed for l-phenylalanine production.

In E. coli, ydiB, encoding bifunctional enzyme shiki-
mate dehydrogenase/quinate dehydrogenase, can transform 
3-dehydroshikimate to shikimate like AroE. It was reported 
that ydiB-overexpressing strains could achieve a higher 
l-phenylalanine titer than aroE (Lutke-Eversloh and Stepha-
nopoulos 2008), indicating this strategy could overcome the 
feedback regulation of aroE. In addition, aroL was reported 
as the preferred shikimate kinase for increasing l-phenyla-
lanine yield because of its lower Km. However, the activity 
of AroL is partly inhibited at high substrate concentration, 
while AroK works well in the same conditions (Oldiges et al. 
2004). Accordingly, overexpression of aroK in E. coli will 
produce more l-phenylalanine than overexpression of aroL.

For CM-PDT, three mutants with substitution or an 
in-frame deletion located within codons 304–310 of the 
pheA gene were obtained. The mutated enzymes exhibited 
both high enzymatic activity and almost complete resist-
ance to feedback inhibition when 200 mM l-phenylala-
nine was present (Nelms et al. 1992). In addition, PheA 
containing residues 1–285 and residues 1–300 retained 
full mutase and dehydratase activity and showed no feed-
back inhibition (Zhang et al. 1998). In 2004, through two 

Table 2   Summary of 
deregulated key enzymes in 
l-phenylalanine biosynthesis 
pathway of E. coli 

Enzyme Mutant sites References

AroG D146 N, M147I Ding et al. (2014)
AroG S180F Ger et al. (1994)
AroG L76V Kikuchi et al. (1997)
AroH P18L, V147M, G149D, G149C, A177T Ray et al. (1988)
AroF Deletion of I11 Zhao et al. (2011)
AroF P148L Weaver and Herrmann (1990)
AroF N8K Jossek et al. (2001)
PheA Deletion of T304 and Q306 Nelms et al. (1992)
PheA Deletion of 301–386 amino acids residues Zhang et al. (1998)
PheA N5S, L8P, D54N, L55M, S235A Baez-Viveros et al. (2004)
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protein-evolutionary cycles of CM-PDT, two mutant genes, 
pheAev1 and pheAev2, were obtained. Recombinant strain 
PB12 with overexpressed tktA, aroGFBR and pheAev2 could 
produce 0.33 g l-phenylalanine per gram of glucose, corre-
sponding to 60% of the maximum theoretical yield (0.55 g/g) 
(Baez-Viveros et al. 2004).

Other engineering targets for l‑phenylalanine 
production

The dissolved oxygen (DO) in culture is considered an 
important factor for bacterial growth and l-phenylalanine 
productivity. To increase the DO level, co-expression of a 
hemoglobin gene from Vitreoscilla with aroF and pheAFBR 
was performed in E. coli CICC10245, which led to 21.9% 
more biomass and 16.6% more l-phenylalanine production, 
while only approximately 5% more glucose was consumed 
(Wu et al. 2018).

Another strategy to relieve the feedback inhibition of 
key enzymes is reduction of intracellular accumulation of 
l-phenylalanine. In E. coli, the protein YddG is responsi-
ble for the export of aromatic amino acids. It was reported 
that E. coli strains overexpressing yddG accumulated less 
l-phenylalanine within the cell and exported l-phenylalanine 
threefold faster than the control (Doroshenko et al. 2007).

In brief, to construct an l-phenylalanine producer from 
wild E. coli strains, the following engineering targets can 
be considered: repressor proteins TyrR and TrpR; feedback 
regulation of aroG, aroE and pheA; the intracellular levels of 
PEP and E4P; the l-phenylalanine transport system YddG; 
and the global regulators CsrA, CsrB, Fis and YggG.

Conclusions and perspectives

With the disadvantages of being labor-intensive, time-
consuming, and producing undefined mutations, classical 
mutagenesis and screening have been replaced by rational 
metabolic engineering strategies in the construction of 
l-phenylalanine producing strains (Dong et al. 2011). How-
ever, only a few recombinant strains achieve a relatively sat-
isfactory titer of l-phenylalanine. Further improvements can 
be expected by investigating novel engineering targets. An 
insight into intracellular flux distribution during l-phenyla-
lanine production was obtained by flux variability analysis. 
According to the results, malic enzyme knockout mutants 
were constructed and exhibited well process performances 
in l-phenylalanine production (Michael et al. 2014).

As synthetic biology develops, more and more tools can 
be applied to the generation of large diversified libraries 
and high-throughput screening processes. In 2016, a mtr 
promoter-based biosensor was constructed and employed 
in FACS high-throughput screening of an E. coli MG1655 

mutant library (Mahr et al. 2016). The best mutant could 
produce 4.3-fold l-phenylalanine levels compared with the 
wild-type strain. This suggests that a combination strategy 
can be implemented to obtain an improved l-phenylalanine 
producer. Firstly, random mutation and high-throughput 
screening can be carried out to obtain a base strain with 
deregulated feedback inhibition and transcriptional repres-
sion, and then whole genome sequencing implemented to 
verify which genes are affected. Next, defined metabolic 
engineering strategies focusing on traditional targets can 
be performed. Third, unwanted mutations generated in the 
random mutagenesis can be removed. By combining random 
mutation, rational engineering, and high-throughput screen-
ing methods, a recombinant strain with higher l-phenylala-
nine production may be generated.
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