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Abstract

Statistical shape modeling is an important tool to characterize variation in anatomical morphology. 

Typical shapes of interest are measured using 3D imaging and a subsequent pipeline of 

registration, segmentation, and some extraction of shape features or projections onto some lower-

dimensional shape space, which facilitates subsequent statistical analysis. Many methods for 

constructing compact shape representations have been proposed, but are often impractical due to 

the sequence of image preprocessing operations, which involve significant parameter tuning, 

manual delineation, and/or quality control by the users. We propose DeepSSM: a deep learning 

approach to extract a low-dimensional shape representation directly from 3D images, requiring 

virtually no parameter tuning or user assistance. DeepSSM uses a convolutional neural network 

(CNN) that simultaneously localizes the biological structure of interest, establishes 

correspondences, and projects these points onto a low-dimensional shape representation in the 

form of PCA loadings within a point distribution model. To overcome the challenge of the limited 

availability of training images with dense correspondences, we present a novel data augmentation 

procedure that uses existing correspondences on a relatively small set of processed images with 

shape statistics to create plausible training samples with known shape parameters. In this way, we 

leverage the limited CT/MRI scans (40-50) into thousands of images needed to train a deep neural 

net. After the training, the CNN automatically produces accurate low-dimensional shape 

representations for unseen images. We validate DeepSSM for three different applications 

pertaining to modeling pediatric cranial CT for characterization of metopic craniosynostosis, 

femur CT scans identifying morphologic deformities of the hip due to femoroacetabular 

impingement, and left atrium MRI scans for atrial fibrillation recurrence prediction.

1 Introduction

Since the pioneering work of D’Arcy Thompson [30], statistical shape models (SSM), also 

called morphological analysis, have evolved into an important tool in medical and biological 

sciences. A classical approach to comprehend a large collection of 2D or 3D shapes is via 

landmark points, often corresponding to distinct anatomical features. More recently, shape 

analysis for medical images is conducted with dense sets of correspondences that are placed 

automatically to capture the statistics of a population of shapes [28,8,9] or by quantifying 

the differences in coordinate transformations that align populations of 3D images [4]. The 
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applications of these statistical shape methods are diverse, finding uses in orthopedics [16], 

neuroscience [13], and cardiology [12].

The goals of these kinds of analyses vary. In some cases, the analysis may be toward a 

clinical diagnosis, a task that might lend itself to a detection or classification strategy, which 

may bypass the need for any explicit quantification of shape. However, in many cases the 

goals include more open-ended questions, such as the formulation or testing of hypotheses 

or understanding/communicating pathological morphologies. Furthermore, training a state-

of-the-art classifier for a specific disease would typically require (on the order of) thousands 

of samples/images for training, which becomes a significant burden for many clinical or 

biological applications, especially those involving human subjects.

Therefore, in this paper we address the problem of generating a rich set of shape descriptors 

in the form of PCA loadings on a shape space and an associated set of dense (i.e., thousands) 

correspondence points. The goal is to design a system that bypasses the typical pipeline of 

segmenting and/or registering images/shapes and the associated optimization (and associated 

parameter tuning)—and instead produces shape information directly from images via a deep 

(convolutional) neural network. This shape information can then be used to study 

pathologies, perform diagnoses, and/or visualize or study properties of populations or 

individuals.

Another contribution of this paper is the overall system architecture (and the demonstration 

of its efficacy on cranial, left atria and femur morphologies), which provides a blueprint for 

building other systems that could be built/trained to perform image-to-shape analyses with 

relative ease. Another contribution is the particular strategy we have used for training, which 

relies on a conventional shape analysis on a relatively small set of images to produce a very 

large training/validation data set, sufficient to train a convolutional neural network (CNN).

2 Related Work

The proposed system learns the projection of images onto a shape space, which is built using 

correspondences between surfaces. Explicit correspondences between surfaces have been 

done using geometric parameterizations [27,10] as well as functional maps [23]. In this 

work, we rely on a discrete, dense set of samples, whose positions are optimized across a 

population to reduce the statistical complexity of the resulting model. The resulting point 

sets can be then turned into a low-dimensional shape representation by principal component 

analysis (PCA), as in the method of point distribution models (PDMs) [15]. For this 

optimization of correspondences, we use the open-source ShapeWorks software [8,7], which 

requires extensive pre-processing of input 3D images including: registration, segmentation, 

anti-aliasing (including a topology-preserving smoothing) and conversion to a signed 

distance transform. These image processing steps require well-tuned parameters, which, in 

practice, precludes a fully automatic analysis of unseen scans.

Also related is the work on atlas building and computational anatomy using methods of 

deformable registration (e.g., diffeomorphisms derived from flows) [4]. Here, we pursue the 

correspondence-based approach because many applications benefit from explicit 
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correspondences, exact matching of surfaces, and modes of variation and shape differences 

that can be easily computed and visualized for the surfaces under study (e.g., [32]). While 

DeepSSM may be relevant for such registration-based methods, such an approach would 

likely build on the many proposed neural-net solutions to image registration [26].

DeepSSM builds on various works that have applied convolution neural networks (CNNs) to 

3D images [19]. More recently, deep learning is being generalized to mesh-based 

representations, with applications e.g., in shape retrieval [31]. While much has been done in 

detection [33], classification [20], and segmentation (e.g., pixel classification) [3,24], more 

directly relevant is the work on regression from 3D images. For instance, in [18] they regress 

the orientation and position of the heart from 2D ultrasound. Another recent work [22] 

demonstrates the efficacy of PCA loadings in regressing for landmark position, being used 

for ultrasound segmentation task. DeepSSM extends this idea to 3D volumes and an 

extensive evaluation using it is performed on different datasets. DeepSSM proposes a novel 

data-augmentation scheme to counter limited-data availability in medical imaging 

applications. Furthermore, we employ the use of existing shape modeling tools to generate 

point distribution model and leverage the shape statistics for direct prediction of general 

shape parameters using CNN.

3 Methods

DeepSSM, unlike standard statistical shape modeling methods, is not a generative 

framework. It focuses on minimal pre-processing and direct computation of shape 

descriptors from raw images of anatomy that can be further used for shape analysis 

applications; some of which are described in the results section. Figure 1 illustrates the 

training and usage of DeepSSM. In this section, we outline the data augmentation procedure, 

the CNN architecture and the learning protocols.

3.1 Training Data Augmentation.

We start with a dataset with about 40-50 data samples, which are either CT or MRI images. 

These images are rigidly registered and downsampled to make the CNN training times 

manageable on current hardware, while still allowing for morphology characterization. 

Because a set of 40-50 data samples is not large enough for CNN training, we propose a new 

data augmentation method. First, we construct a statistical shape model from surfaces 

extracted from the original data. We place a dense set of 3D correspondence points on each 

of the shapes using ShapeWorks software [8,7], even though any method of producing a 

PDM is applicable. We reduce this high dimensional PDM to M dimensions using PCA, 

producing M–dimensional “loading vectors”, where M between 10-15 is usually sufficient to 

capture 99% of the data variability. This corresponds to a multivariate (M–dimensional) 

Gaussian distribution, 𝒩 μ, Σ . To generate a new synthetic image, we first draw a random 

sample s ∈ ℝM from the 𝒩 μ, Σ  distribution. This random sample s corresponds to a 

statistically plausible shape. To obtain a realistic 3D image associated with s, we find the 

closest example (denoted n) from input images. For this shape n, we already have a set of 

correspondences, Cn and an associated image, In. We use the correspondences Cn ↔ Cs to 

construct a thin-plate spline (TPS) warp [6] of In to obtain a synthetic image Is, which has 
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the intensity profile of In but the cranial shape s. The amount of TPS deformation is typically 

small, and using this method, we can generate thousands of new images that are consistent 

with the PCA space and intensity characteristics of the original dataset (see Figure 2). We 

also employ an add-reject strategy to prevent extreme outliers from being created. In 

particular, we find the nearest neighbour of each generated sample from the original shapes 

and we reject the sample if the Euclidean distance between the two shapes exceeds a 

specified threshold.

3.2 Network Architecture.

We use a CNN architecture with five convolution layers followed by two fully connected 

layers to produce the output regression coefficients, see Figure 3. The input to our network is 

a 3D image and the output is a set of ordered PCA loadings with respect to the shape space 

constructed in Section 3.1. We found that in our setting, parametric ReLU [17] outperforms 

the traditional ReLU as a nonlinear activation function. We also perform batch normalization 

for all convolution layers. The weights of the network are initialized by Xavier initialization 

[14].

3.3 Learning Protocol.

We use 4000-5000 training data points and 1000-2000 validation images generated as 

described in Section 3.1. We use TensorFlow [1] for constructing and training DeepSSM 

with a training batch size 10, which results in optimal saturation of the GPU (NVIDIA-Tesla 

K40c). The loss function is defined by taking 𝕃2 norm between the actual PCA loadings and 

the network output, and Adagrad [11] is used for optimization. We use average root mean 

square error per epoch to evaluate convergence. We observed empirically that, in all datasets, 

this error becomes level after 50 epochs staying in range between 1.9 – 2.5. Based on these 

observations we train our network for 60 epochs.

4 Results and Discussion

We apply DeepSSM on three different datasets pertaining to three different applications: (i) 

Pediatric cranial CT scans (ages : 5-15 months) for metopic craniosynostosis 

characterization, (ii) Left Atrium MRI data for prediction for the atrial fibrillation 

recurrence, and, (iii) Femur CT Data for the characterization of morphologic deformities of 

the hip due to femoroacetabular impingement. For each application, we divide the data into 

two categories, one which is used to generate the original PDM to be used for data 

augmentation, and the other data is completely quarantined and will be used to check the 

generalizablity of DeepSSM, we will refer to this data as “unseen” data. We would like to 

stress that the unseen data is not part of the original data used for data augmentation or the 

PDM formation making it completely isolated. Further, we divide the data used for getting 

the PDM and it’s accompanying augmented data into standard training, validation, and 

testing datasets. Another aspect to note is we perform a rigid ICP pre-alignment of all the 

images before computing it’s PDM. It is important to note that DeepSSM is not an approach 

to discriminate between normal and pathological morphology, but an approach for 

reconstruction of shape representation from images that enables shape population statistics.
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4.1 Metopic Craniosynostosis.

Metopic craniosynostosis is a morphological disorder of cranium in infants caused by 

premature fusion of the metopic suture, see Figure 5(metopic head). The characterization of 

the severity of the condition is hypothesized to be dependent on the deviation of skull shape 

from a normal phenotypical pediatric skull morphology. We aim to use DeepSSM to 

characterize this deviation. We use a dataset of 74 cranial CT scans of children with age 

between 5 to 15 months with 58 representing normal phenotypical skull morphology and 16 

with metopic craniosynostosis, i.e., pathological skull deformities. 50 normative CT scans 

from the dataset were used in constructing our point distribution model, where each shape is 

represented by 1024 3D points; the vector of all these points is projected onto a 15-

dimensional PCA subspace. We use this PDM to augment the data and train DeepSSM. We 

use the PCA loading predictions from a trained DeepSSM to reconstruct the 1024 

correspondences and compare it with the original correspondences for obtaining the training, 

testing, and validation losses. To evaluate the accuracy of DeepSSM in predicting 

correspondences for unseen data, we use the remaining 8 CT scans of normal pediatric head 

shapes and 16 CT scans of children diagnosed with metopic craniosynostosis. We extract the 

outer skull surface from the unseen CT scans from a user-aided segmentation and render it 

as a triangle mesh using marching cubes. To account for an unknown coordinate system used 

in the unseen CT scan, we rigidly register this mesh to the 1024 3D correspondence points 

produced by DeepSSM from the raw CT scan. We then project these registered points to the 

surface of the mesh, these projection distances forms the error for evaluation on unseen data. 

The box plot representing the per-point per-shape Euclidean distance error, correspondence 

difference error for training, validation and testing data and the point to mesh projection 

error for the unseen cases, is shown in Figure 4(a). We observe that even though there is 

significant variability in skull shapes, the average error (across both data inclusive and 

exclusive to the data augmentation method) does not exceed 1mm. Our original CT scans 

were 1mm isotropic and they were downsampled by a factor of 4 making the voxel size to be 

4mm, which means that DeepSSM predicts the correspondences with subvoxel accuracy. It 

is encouraging that even though our initial shape space was constructed for only normal 

head shapes, DeepSSM generalizes well also to skulls with abnormal morphology resulting 

from metopic craniosynostosis. Next, we use this to explore an example application of 

automatic characterization of metopic craniosynostosis. We take 16 CT scans of pediatric 

patients diagnosed with metopic craniosynostosis and processed through DeepSSM, which 

produces their PCA loadings in the normative skull-shape space. We hypothesize that the 

skull shapes affected by metopic craniosynostosis will be statistically different from normal 

skull shapes. We compute the Mahalanobis distance between each of our head shapes (both 

normal and metopic ones) and our normative statistical shape model 𝒩 μ, Σ . The histograms 

of these Mahalanobis distances for our datasets are shown in Figure 5. We can see that the 

histograms of training, validation, and testing images are closely overlapping, which is not 

surprising because these data sets correspond to normal phenotypical shape variations. 

However, the histogram of the metopic skull shapes indicates much larger Mahalanobis 

distance on average (yellow bars; the bars are wider and longer because no data 

augmentation was performed on the metopic craniosynostosis CT scans, and we have just 16 

scans). The histograms of metopic-craniosynostosis and normal-skulls do overlap to some 

extent; this is indicative of mild cases of metopic craniosynostosis, which do not differ 
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significantly from normal population and often do not require surgical intervention (unlike 

severe cases where surgery is often recommended [21]).

4.2 Cam-type femoroacetabular impingement (cam-FAI).

cam-FAI is a primary cause of hip osteoarthritis and is characterized by an abnormal bone 

growth of the femoral head (see Figure 6). Statistical shape modeling could quantify 

anatomical variation in normal/FAI hips, thus providing an objective method to characterize 

cam-lesion and an anatomical map to guide surgical correction [2]. We follow a very similar 

approach to that described in the Section 4.1. Our dataset comprises of 67 CT scans with 57 

femurs of normal patients and 10 pathological femurs. We start with 50 CT scans of femurs 

of normal patients which forms our control group. We reflect all the femurs to a consistent 

frame and then rigidly register them to a reference, the reflection is necessary as our data 

consists of both left and right femur bones. We use this set of 50 CT scans to form the PDM 

of 1024 3D correspondences, followed by its subsequent data augmentation. We again use 

15 PCA loadings which captures ~ 99% of shape variability, and we train the DeepSSM to 

regress for these PCA loadings for 45 epochs. We use PCA loading predictions from the 

trained network to reconstruct the 1024 correspondences and compare it with the original 

correspondences. The box plot representing the Euclidean distance error (in mm) per-point 

per-shape is shown in Figure 4(b). For the unseen data (data which have no initial PDM on 

them), the error is again computed using the projection distance of the predicted 

correspondence from the original mesh. The femurs are also downsampled from 1mm 

isotropic voxel spacing by a factor of 4, making the voxel spacing 4mm. Our unseen data 

consists of the remaining 7 normal CT scans of femurs and 10 pathological femurs, We 

generate the correspondences from the PCA loading predicted by the DeepSSM and again 

evaluate the accuracy of the predictions using the maximal projected distance to the original 

mesh. The surface-to-surface distances for the unseen as well as seen scans are shown in 

Figure 7. We want to evaluate the sensitivity of DeepSSM in predicting the subtle 

dysmorphology in the femoral head. As such, we compute the mean and standard deviation 

of the errors (i.e., surface to surface distances) for unseen normal and unseen pathological 

femurs and show them as a heatmap on a mean femur mesh. This is shown on the right in 

Figure 7. A critical observation to note is that in Figure 7[B], which is the mean error of the 

unseen pathological scans, the orange rectangle highlights the region of interest in 

characterization of the cam lesion. We observe that in this region, DeepSSM —trained only 

on normal femurs— results in a reconstruction error with sub-voxel accuracy, which is not 

as accurate as some other (irrelevant to surgical treatment) regions of morphology. Aspect 

being stressed here is that pathological variation is not being captured by the training data, 

and hence the loss in reconstruction accuracy on pathologic cases. In particular, the network 

is learning a prior based on how a standard femur shape should look like and, it being 

trained on data augmented using a normative shape space, the pathological mode is not 

represented. Due to constraints in the data, we refrained from jointly modeling the initial 

PDM, which is essential if the pathological mode is to be captured using DeepSSM.

4.3 Atrial Fibrillation.

Left atrium (LA) shape has been shown to be an independent predictor of recurrence after 

atrial fibrillation (AF) ablation [29]. Our dataset contains 100 MRIs of left atrium of paitents 
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with AF. We start from 75 MRI scans from teh original dataset, and use them to form the 

initial PDM with 1024 points. We use 10 PCA components to capture 90% of shape 

variability and use our data augmentation and train DeepSSM for 50 epochs. We use PCA 

loading predictions from the trained network to reconstruct the 1024 correspondences and 

compare it with the original correspondences. The box plot representing the Euclidean 

distance error (in mm) per-point per-shape is shown in Figure 4(c). The remaining 25 forms 

the unseen data (data which have no initial PDM on them), the error is again computed using 

the projection distance of the predicted correspondence from the original mesh. The MRI are 

downsampled from 1mm isotropic voxel spacing with a factor of 2 which leads to 2mm 

voxel spacing. We can see that DeepSSM performs poorly as compared to the other two 

applications on the unseen data. The reason for this is the huge variability in the intensity 

profile of the left atrium MRI, this is shown in Figure 8. We linearly scale the intensity range 

between 0-255 for training DeepSSM, but other then this there is no intensity equalization/

correction is performed. It’s encouraging that DeepSSM can still achieve an on average sub-

voxel accuracy, and with smart subset selection, we believe the accuracy will increase 

substantially. Also in this analysis, we only use 10 PCA modes because, empirical 

observation of the other modes shows that they correspond to variations in the pulmonary 

veins, which is not important in AF recurrence prediction [5], this also translates in the most 

error being concentrated in the pulmonary veins region Figure 8(leftmost). Furthermore, we 

want to see that how does DeepSSM work in predicting AF recurrence. We use the PCA 

loadings from the original PDM on the data and use them to perform multi-layer perceptron 

(MLP) regression against the AF recurrence data. We use this trained MLP and perform the 

same prediction, but now using the input data as the PCA loadings predicted using 

DeepSSM. We observe that the predicted recurrence probability using the PCA loadings 

from PDM and from DeepSSM are statistically same by T-Test with a confidence of 79.6%. 

The recurrence probability difference from both inputs can be seen in Figure 8. We also 

perform a two one-sided test (TOST) [25] for equivalence, we find that the recurrence 

prediction by DeepSSM and PDM PCA loadings are equivalent with a confidence of 88% 

with the mean difference bounds of ±0.1.

5 Conclusion

DeepSSM provides a complete framework to extract low-dimensional shape representation 

directly from a shape population represented by 3D images. It provides a novel method to 

augment data from a small subset of images, and it’s subsequent training. In contrast to 

previous methods which achieve similar functionality via a sequence of image processing 

operations and involve significant parameter tuning and/or user assistance, DeepSSM 

directly consumes raw images and produces a sub-voxel accurate shape model, with 

virtually no user intervention required for pre-processing the images unlike other shape 

modeling methods. We believe this functionality may enable new clinical applications in the 

future. We evaluate DeepSSM on both MRI as well as CT modalities, being applied to three 

different applications indicating that the framework is applicable to any collection of shapes. 

Our preliminary analysis showing the efficacy of DeepSSM in pathology characterization 

for femoral heads and metopic craniosynostosis, even if it’s trained on normal morphology, 

and opens up pathways to more detailed clinical analysis with DeepSSM on joint shape 

Bhalodia et al. Page 7

Shape Med Imaging (2018). Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models. We hope that automatic shape assessment methods will contribute to new 

computerized clinical tools and objective metrics, ultimately translating to improved 

standards of medical care accessible to everyone.
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Fig. 1. 
Illustration of how DeepSSM is trained and used for getting shape descriptors for shape 

analysis directly from images.
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Fig.2. 
Top: Shapes given by the original input CT scans (red dots) are augmented by sampling in 

the PDM shape space, from a normal distribution. Bottom-right: The resulting 

correspondences are used to transform original images of nearby samples (with a TPS warp) 

to create new images with known shape parameters.
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Fig. 3. 
The architecture of the CNN network.
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Fig. 4. Shape reconstruction errors in mm.
Each boxplot shows the error per-point per-shape in each category, for training, testing, and 

validation datasets. As ground truth correspondences are available, the error is simple 

Euclidean distance (in mm). For the unseen normal (unseen-N) and unseen pathological 

(unseen-P), the error is the minimum projection distance of the predicted point to original 

surface mesh (again in mm). (a) Metopic Craniosynostosis data, (b) Femur data, and (c) Left 

Atrium data.
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Fig. 5. 
(Left) CT scan of a normal head. (Middle) CT scan of a head shape affected by metopic 

craniosynostosis. (Right) The histograms of Mahalanobis distance for training, validation 

and testing datasets and the metopic-heads dataset (yellow bars, no data augmentation was 

performed).
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Fig. 6. 
(a) Schematics of cam-FAI. Normal femur (b) compared to a cam femur (c); circles show 

location of deformity. (d) cam FAI patient post-surgery. Surgical treatment aims to remove 

bony deformities.
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Fig. 7. 
The left two rows represent the images (seen normal femur, unseen normal femur and 

unseen pathological femur) and the corresponding shape reconstruction error (Hausdorff 

distance in mm) interpolated as a heatmap on the original meshes. On the right: [A] mean 

error of unseen normal femurs overlayed on mean shape, [B] mean error of unseen 

pathological femurs overlayed on mean shape, [C] standard deviation of error of unseen 

normal femurs overlayed on mean shape, [D] standard deciation of error of unseen 

pathological femurs overlayed on mean shape
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Fig. 8. 
Bottom row represent representative sample of different image types in our database, going 

from worst to best (left to right). Top row represent shape derived from corresponding image 

using the proposed method, with a distance map overlay from particle modeling shape 

reconstruction. (Right) S: Seen Data U: Unseen Data : Boxplot for AF recurrence 

probability difference using PCA loadings using the PDM directly and those estimated by 

DeepSSM
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