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ABSTRACT Genomic selection is revolutionizing plant breeding. However, still lacking are better statistical
models for ordinal phenotypes to improve the accuracy of the selection of candidate genotypes. For this
reason, in this paper we explore the genomic based prediction performance of two popular machine
learning methods: the Multi Layer Perceptron (MLP) and support vector machine (SVM) methods vs. the
Bayesian threshold genomic best linear unbiased prediction (TGBLUP) model. We used the percentage of
cases correctly classified (PCCC) as a metric to measure the prediction performance, and seven real data
sets to evaluate the prediction accuracy, and found that the best predictions (in four out of the seven data
sets) in terms of PCCC occurred under the TGLBUP model, while the worst occurred under the SVM
method. Also, in general we found no statistical differences between using 1, 2 and 3 layers under the
MLP models, which means that many times the conventional neuronal network model with only one layer is
enough. However, although even that the TGBLUP model was better, we found that the predictions of MLP
and SVM were very competitive with the advantage that the SVM was the most efficient in terms of the
computational time required.
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Plant breeding is a key scientific area for increasing the food production
required to feed the people of our planet. The key step in plant breeding is
selection, and conventional breeding is based on phenotypic selection.

Breeders choose good offspring using their experience and the observed
phenotypes of crops, so as to achieve genetic improvement of target traits
(Wang et al. 2018). Thanks to this area (and related areas of science), the
genetic gain nowadays has reached a near-linear increase of 1% in grain
yield yearly (Oury et al. 2012; Fischer et al. 2014). However, a linear
increase of at least 2% is required to cope with the 2% yearly increase
in the world population, which relies heavily on wheat products as a
source of food (FAO, 2011). For this reason, genomic selection (GS) is
now being implemented in many plant breeding programs around the
world. GS consists of genotyping (markers) and phenotyping individuals
in the reference (training) population and, with the help of statistical
models, predicting the phenotypes or breeding values of the candidates
for selection in the testing (evaluation) population that only were geno-
typed. GS is revolutionizing plant breeding because it is not limited to
traits determined by a few major genes and allows using a statistical
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model to establish the associations betweenmarkers and phenotypes and
also to make predictions of unphenotyped individuals that help do a
more comprehensive and reliable selection of candidate individuals. In
this way, it is essential for accelerating genetic progress in crop breeding.

Evidence that GS has the potential to revolutionize plant breeding
continues to grow. For example, Bernardo and Yu (2007) and Heffner
et al. (2010) found evidence of the higher genetic gain of GS compared
to marker-assisted selection. Also, Albrecht et al. (2011) found that GS
is superior in terms of genetic gain compared to conventional pedigree
breeding. Kadam et al. (2016) and Beukert et al. (2017) showed that GS
is even more efficient that conventional breeding when applied to
hybrid crop breeding, because hybrid genotypes can be inferred from
their inbred parents, leading to lower genotyping costs (Wang et al.
2018). Even in prolific species where not somuch gain is expected when
implementing GS, Cleveland and Hickey (2013) and Lillehammer et al.
(2013) showed that GS can be cost-effective in pig breeding and esti-
mated an increase in genetic progress of about 10% when using GS to
breed pigs inNorway’s national program. For these reasons, GS hasmet
with a lot of enthusiasm and, since GS has the potential to predict the
breeding values of selection candidates at birth more accurately than
the classic pedigree index, some breeding companies are re-designing
their breeding programs. Consequently, animals (or plants) can be
selected at an early age; in some cases, this is expected to double the
rate of genetic improvement per year.

Currently, GS is a potent, attractive and valuable plant breeding
approach. This method will be integrated into many practical breeding
programs in the near future with further advances and thematuring of its
theory (Nakaya and Isobe 2012). However, one of the key elements for
increasing the power and efficiency of GS are the statistical models that
are used for predicting the phenotypes or breeding values of individual
candidates for selection. For this reason, there is currently an extensive
area of research aimed at improving existing models and developing new
models in order to increase the precision of candidate selection using GS.

However, this task is challenging since specificmodels areneeded for
each type of response variable (phenotype). In two recent pioneer
articles, Montesinos-López et al. (2018a, b) evaluated the prediction
performance of univariate and multivariate neural network deep learn-
ing models for continuous response variables. In general, much more
research had been done for quantitative (continuous) traits than for
ordinal, binary and count traits. Categorical scores for disease suscep-
tibility or resistance often are recorded in plant breeding. For example
ordinal traits are very common in plant breeding programs for mea-
suring disease incidence and severity, for sensory evaluation, such as
perceived quality of a product (e.g., taste, smell, color, decay), and plant
development (e.g., developmental stages, maturity). These types of data
are often partially subjective since the scale indicates only relative order
and not absolute amounts; therefore the intervals between successive
categories might not be the same (Simko and Piepho 2011).

Montesinos-López et al. (2015a) introduced genomic models for
analyzing ordinal characters and to assess the genomic based for or-
dered categorical phenotypes using a threshold model that is the coun-
terpart of the Genomic Best Linear Unbiased Predictor (i.e., TGBLUP).
The threshold model TGBLUP relates hypothetical underlying scale to
the outward categorical response and it was extended to account for
genomic · environment interactions. The models that included G·E
achieved up to 14% more gains in prediction accuracy as compared
with the main effect models. Montesinos-López et al. (2015b) imple-
mented Bayesian logistic ordinal regression in the context of genomic-
enabled prediction using the Pólya-Gamma data augmentation approach
that produces a Gibbs sampler with similar full conditional distributions
of the Bayesian probit ordinal regression.

MachineLearning (ML)methodshavebeenproposed in theacademic
literatureasalternatives tostatisticalmethods forpredictingphenotypesor
breeding values in the context of GS. ML has gained considerable
prominence over the last decade fueled by a number of high profile
applications in Autonomous Vehicles, intelligent robots, image and
speech recognition, automatic translations, medical and law usage, as
well as forbeatingchampions ingames likechess, Jeopardy,GOandpoker
(Makridakis et al. 2018). ML also has high profile applications in bi-
ological science research (genomics, proteomics or metabolomics) to
extract features, functions, structure and molecular dynamics from raw
biological sequence data (e.g., DNA, RNA, and amino acids). Alipanahi
et al. (2015) used deep learning to predict DNA- and RNA-binding
proteins. Zhang et al. (2016) developed a deep neural network framework
to model structural features of restricted Boltzmann machines. Pan and
Shen (2017) proposed a hybrid convolutional neural network-deep belief
networkmodel to predict restricted Boltzmannmachine interaction sites
and motifs on RNAs. Quang et al. (2015) proposed a deep neural net-
work model to annotate and identify pathogenicity in genetic variants.

For stem rust in wheat, Ornella et al. (2012) analyzed and compared
the performance of Bayesian Lasso, ridge regression, and support vector
machine. Bayesian Lasso and ridge regression had slightly superior
prediction accuracy than support vector regression.

Ornella et al. (2014) evaluated six regression models, Bayesian Lasso,
ridge regression, random forest regression, Reproducing Kernel Hilbert
space, and two support vector regression in several wheat rust data bases;
the authors found that random forest regression and Reproducing Kernel
Hilbert Space were the best models. Recently, in a very comprehensive
review, González-Camacho et al. (2018), presented and discussed several
ML methods applied in genomic selection to predict rust resistance in
wheat as well as classifications and regression methods. These authors
compared results from linear models with those fromML, random forest,
support vector machine (SVM) and radial basis function neural network
and they found that in general the SVMwith linear kernel was the best in
terms of genomic based prediction performance (González-Camacho
et al. 2018).

As stated above,MLmethods are applied inmany domains of science
and technology. However, it is still not clear if ML methods outperform
conventional statistical models in terms of prediction performance, since
there is only weak empirical evidence of the relative performance of ML
methods. Most of the time, ML methods are supported by few real data
sets, which raises questions about the statistical significance of the results
and their generalization (Makridakis et al. 2018). No benchmarks are
used to compare the accuracy of ML methods vs. alternative ones
(Makridakis et al. 2018). For this reason, it is of paramount importance
to objectively evaluate the relative performance of ML methods in terms
of prediction performance as compared to the conventional GSmodels in
order to improve prediction accuracy and the selection of candidate
genotypes early in time. For these reasons, in this paper we compare
the conventional GS model TGBLUP with two popular models of the
machine learning domain –MLP and SVMmodels2 with the goal of
exploring its prediction accuracy and practical implementation in the
GS context for ordinal traits. We compare the prediction performance
of the three models with seven real data sets and cross-validation,
using the percentage of cases correctly classified (PCCC) as a metric.

MATERIAL AND METHODS

Implemented models

Bayesian threshold genomic best linear unbiased prediction
(TGBLUP): We used yij to represent the ordinal response, that belong
to exactly one of the C mutually exclusive categories, of the jth line in
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the ith environment with i ¼ 1; :::; I; j ¼ 1; 2; :::; J and we propose
the following C2 1 linear predictors to fully specified the model
related to the C response probabilities that takes into account the
genotype  ·   environment (G ·E) interaction term:

hijð1Þ ¼ F21
�
pijð1Þ

�
¼ g1 2 Ei 2 gj 2 gEij (1)

hijð2Þ ¼ F21
�
pijð1Þ þ pijð2Þ

�
¼ g2 2 Ei 2 gj 2 gEij (2)

:::

hijðC21Þ ¼ F21
�
pijð1Þ þ :::þ pijðC21Þ

�
¼ gC21 2 Ei 2 gj 2 gEij

(3)

wherehijðcÞ denotes the cth predictor (c ¼ 1; 2; :::;C2 1Þ for thefixed and
random effects combination, pijðcÞ represents the probability in en-
vironment i, line j in category c; and gc is the threshold (intercept)
for the cth predictor. Ei represents environment i and is assumed fixed,
gj is the marker effect of genotype j, and gEij is the G· E interaction
term. Distributions: yijð1Þ; yijð2Þ; :::; yijðCÞjEi; gj; gEij �Multinomial
ðpijð1Þ;pijð2Þ; :::;pijðCÞÞ. Only C2 1 link functions and cummulative
probabilities are needed (estimated) since the cumulative prob-
ability of the last category C is 1 and having the first C2 1
probabilities we can obtain the probability of the last category.
b1 ¼ ðg1; :::; gJÞT � Nð0;G1s

2
gÞ, where G1 is the Genomic Relation-

ship Matrix (GRM) that is calculated as G1 ¼ WWT

m (as proposed by
VanRaden 2008), where W is a matrix of scaled markers alleles of
dimension J ·m, s2

g is the genotypic variance and m denotes the
number of markers. The G1 matrix is a covariance matrix that
contains the similarity between individuals based on marker infor-
mation, rather than the expected similarity based on pedigree.
b2 ¼ ðgE11; :::; gEIJÞT � Nð0;G2s

2
gEÞ, where G2 is computed as

G2 ¼ II5G1 of order IJxIJ and 5 denotes the Kronecker product,
II means that we assume independence between environments
(Montesinos-López et al. 2015a,b) and s2

gE is the variance corre-
sponding to the G · E interaction term. G1 and G2 were assumed
known. Link function: cumulative probit: F(.) is the cumulative
distribution function of a standard normal distribution (probit link)
and F21 its corresponsing inverse. For this model, the inverse
link is as follows: pijð1Þ ¼ Fðhijð1ÞÞ; pijð1Þ þ pijð2Þ ¼ Fðhijð2ÞÞ; :::;
pijð1Þ þ pijð2Þ þ :::þ pijðC21Þ ¼ FðhijðC21ÞÞ. Once we have estimates
of Fðhijð1ÞÞ; Fðhijð2ÞÞ; :::; FðhijðC21ÞÞ; we can estimate pijð2Þ ¼
Fðhijð2ÞÞ2Fðhijð1ÞÞ, pijð3Þ ¼ Fðhijð3ÞÞ2Fðhijð2ÞÞ; :::; pijðCÞ ¼ 12
FðhijðC21ÞÞ (Montesinos-López et al., 2015a). This threshold model
assumes that the process that gives rise to the observed categories is
an underlying continuous variable with a normal distribution
lij ¼ Ei þ gj þ gEij þ eij; where lij are called “liabilities,” eij � Nð0; 1Þ
(e.g., Gianola, 1982, and Sorensen et al. 1995) and the ordinal categor-
ical phenotypes with C categories are generated from the underlying
phenotypic values, lij, as yij ¼ 1 if 2N, lij , g1; yij ¼ 2 if
g1 , lij , g2; ....; yij ¼ C if gC21 , lij ,N. The implementation
of the TGBLUP model was done in the BGLR package of de los
Campos and Pérez-Rodríguez (2014) in the R statistical software
(R Core Team 2018).

Multi Layer Perceptron (MLP) for ordinal data: The architecture
of thedeep learningmethodwe implemented is depicted inFigure 1; this
architecture is called densely connected network or feedforward
neural network, since it consists of an input layer, an output layer

(for univariate-trait modeling) and multiple hidden layers between
the input and output layers. There are many other deep learning
architectures (convolutional networks, recurrent networks, etc.),
which can be found in Gulli and Sujit (2017), Angermueller et al.
(2016) and Chollet and Allaire (2017).

The architecture shown in Figure 1 was applied to seven ordinal real
data sets with 1, 2 and 3 hidden layers and number of neurons (from
10 to 500 with increases of 20). The input variables of the MLP model
(x ¼ fxipg; i = 1,2,..,n; p = 1,2,..,N1) given in Figure 1 are the result of
concatenating the information on environments, the information on
markers through the Cholesky decomposition of the genomic relation-
ship matrix and the information on the genotype · environment in-
teraction (G· E). Via weights, the input variables (xip) and the units
(neurons) of the hidden layers are connected. The information to the
neurons in the first hidden layer is simply passed by the input variables.
In the first hidden layer, the net input into the jth hidden unit is

h1j ¼
PN1

p¼1
wð1Þ
jp xp þ bð1Þj , whereN1 is the total number of input variables,

wð1Þ
jp is the weight of input unit p to hidden unit j in the first hidden

layer, xp is the value of the pth input variable and b
ð1Þ
j is a bias specific to

each neuron in layer 1. Then an activation function is applied to the net
input of the jth hidden unit in the first hidden layer and outputs
V1j ¼ g1ðh1jÞ for j ¼ 1; :::; N2. Similarly, the net input that neuron

k in the second hidden layer receives is h2k ¼
PN2

j¼1
wð2Þ
kj V1j þ bð2Þk , where

N2 is the total number of input neurons that come from hidden layer
1 to neuron k; wð2Þ

kj is the weight from unit j of layer 1 that goes to unit k
in hidden layer 2, V1j is the value of the output of unit j in layer 1 and
bð2Þk is a bias specific term to neuron k in layer 2. Then an activation
function is applied to the net input of the kth hidden unit in the second
hidden layer and outputsV2k ¼ g2ðh2kÞ for k ¼ 1; :::;M. Similarly, the

unique output unit receives a net input of h3 ¼
PM
k¼1

wð3Þ
k V2k þ bð3Þ,

where M is the number of hidden units from hidden layer 2, and

wð3Þ
k is the weight from hidden unit k in layer 2 to the unique output.

Finally, the prediction of individuals for the unique trait is obtained as:
ŷ ¼ g3ðh3Þ. It is important to point out that we used the sigmoid and
softmax activation functions in the output layer (g3Þ when the response
variables were binary and ordinal respectively, since we are working with
binary or ordinal phenotypes. However, for the hidden activations func-
tions we implemented the rectified linear activation unit (RELU) function.

The successful implementation of the MLP model depends on
appropriately selecting the following hyperparameters: (1) number of
units (U), (2) number of layers, (3) number of epochs (E), (4) type of
regularization method and (5) type of activation function. An epoch
means one pass (forward and backward) of the full training set through
the neural network. Regarding the number of units, we used between
10 to 500 units with increases of 20, and with regard to the number of
layers we used 1, 2 and 3; we used from 1 to 100 epochs, and the type of
regularization we chose was dropout regularization for training the
models (Gulli and Sujit 2017; Chollet and Allaire 2017; Srivastava
et al. 2014). For more details on model selection in MLP models,
we suggest reading the papers by Montesinos-López et al. (2018a,
b), where the authors evaluate the prediction performance of uni-
variate and multivariate deep learning models for continuous re-
sponse variables. All MLP models were implemented in the keras
package (Chollet and Allaire 2017) in the open-source software R
(R Core Team 2018).

Support vector machine: Support Vector Machine is one of the most
popular and efficientmachine learning algorithms, whichwas proposed
to the computer science community in the 1990s by Vapnik (1995) and
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usedmostly for classification problems. Its versatility and the fact that it
performs well in the presence of a large number of predictors, even with
a small number of cases, makes SVM very appealing for tackling a wide
range of problems such as speech recognition, text categorization, im-
age recognition, face detection, faulty card detection, junk mail classi-
fication, credit rating analysis, and cancer and diabetes classification,
among others (Attewell et al. 2015; Byun and Lee 2002). Briefly, SVM is
the solution to the optimization problem:

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
b0;  b11;  b12;...;  bp1;  bp2;  e1;...;  en

 M (4)

subject  to 
Xp
j¼1

X2
k¼1

b2
jk ¼ 1; (5)

yi

0
@b0 þ

Xp
j¼1

bj1xij þ
Xp
j¼1

bj2x
2
ij

1
A$ Mð12 eiÞ; (6)

ei $ 0;
Xn
i¼1

ei #T; (7)

where b0;   b11;   b12; :::;   bp1;   bp2 are the coefficients of the maximum
margin hyperplane. A hyperplane is a subspace whose dimension is
one less than that of its original space. For a space in 3-dimensions its
hyperplanes has 2-dimensions, while for a space in 2-dimensions, its
hyperplanes is a line (one dimension). T is a non-negative tuning
parameter that determines the number and severity of the violations
to the margin (and to the hyperplane) that we will tolerate and is seen
as the total amount of errors allowed since it is the bound of the sum
of ei9s. For T close to zero, the soft-margin SVM allows very little
error and is similar to the hard-margin classifier (James et al. 2013).
The larger T is, the more error is allowed, which in turn allows for
wider margins. In practice, T is treated as a tuning parameter that is
generally chosen via cross-validation. M is the width of the margin
and we seek tomake this quantity as large as possible. In (7), e1; :::;   en
are slack (error) variables that allow individual observations to be
on the wrong side of the margin or the hyperplane. The slack
variable ei tells us where the ith observation is located, relative
to the hyperplane and relative to the margin. If ei=0, then the ith
observation is on the correct side of the margin, If ei.0, then
the ith observation is on the wrong side of the margin, and we

say that the ith observation has violated the margin. If ei.1, then
it is on the wrong side of the hyperplane. Once we have solved
(4)–(7), we classify a test observation x� by simply determining
on which side of the hyperplane it lies. That is, we classify the
test observation in the training/testing sets based on the sign of
f ðx�Þ = b0 þ b1x

�
1 þ b2x

�
2 þ :::þ bpx

�
p ; if f ðx�Þ,0, then the obser-

vation is assigned to the class corresponding to -1, but if f ðx�Þ.0,
then the observation is assigned to the class corresponding to 1 (James
et al. 2013). We chose f ðxÞ as a nonlinear function of x and imple-
mented the radial kernel. This type of kernel is a nonlinear func-
tion of x, but with fewer parameters than quadratic, cubic, or
higher order expansion of x. The SVM with radial kernel

[Kðxi; xi9Þ ¼ expð2g
Pp
j¼1

ðxij 2 xi9jÞÞ  with  g   a  positive  constant  ðJames

et   al:; 2013Þ� was implemented with the R package e1071 in the R
statistical software (R Core Team 2018). Also, due to the fact that
we work with binary (K = 2 classes) and ordinal (K . 2 classes)
data for the ordinal response variables we implemented the one-
vs.-one classification approach that construct KðK2 1Þ=2 binary
SVMs each of which compare a pair of classes. Each SVM com-
pare the kth class coded as +1, to the k9th class, coded as -1.
At prediction time, a voting scheme is applied: all KðK2 1Þ=2
binary SVMs are applied to an unseen sample and the class that

Figure 1 Example of a feedforward neural network with
eight input variables (x1,..,x8), one output variable (y1)
and two hidden layers with three neurons each. The
input variables correspond to information of environments,
genotypes and genotype·environment interaction. The
marker information is included in the genotype and gen-
otype·environment interaction through the Cholesky de-
composition of the genomic relationship matrix. The
output variable is the ordinal response variable that we
are interested to predict.

n Table 1 Environments evaluated in data sets 1, 2, 3 and 4.
Environments in data set 1 are Bed5IR (bed planting and
5 Irrigation levels), EHT (early heat stress), Flat5I (flat plating
system and 5 irrigation levels), LTH (late heat stress).
Environments in data set 2 are Bed2IR (bed planting and
2 Irrigation levels), Bed5IR (bed planting and 5 Irrigation
levels), EHT (early heat stress), Flat5IR (flat plating system and
5 irrigation level), LTH (late heat stress). Environments in data
set 3 are Bed2IR (bed planting and 2 Irrigation levels), Bed5IR (bed
planting and 5 Irrigation levels), Flat5IR (flat plating system and
5 irrigation level), FlatDrip (flat planting system a drip irrigation).
Environments in data set 4 are Bed5IR (bed planting and
5 Irrigation levels), EHT (early heat stress), Flat5IR (flat plating
system and 5 irrigation level), FlatDrip (flat planting system a drip irrigation)

Data set Environments evaluated

Data set 1 Bed5IR, EHT, Flat5IR and LHT
Data set 2 Bed2IR, Bed5IR, EHT, Flat5IR and LHT
Data set 3 Bed2IR, Bed5IR, Flat5IR and FlatDrip
Data set 4 Bed5IR, EHT, Flat5IR and FlatDrip.
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got the highest number of “+1” predictions gets predicted by the
combined classifier (James et al. 2013).

Experimental data sets

Phenotypic data sets: In this study, we used the data set of Juliana et al.
(2018). The data used belong to four elite yield trial (EYT) nurseries
from the Global Wheat Program of the International Maize andWheat

Improvement Center (CIMMYT). The EYT nurseries were planted in
mid-November. They were planted in bed and flat planting systems in
optimally irrigated environments and received 500 mm of water at
the Norman E. Borlaug Research Station, Ciudad Obregon, Sonora,
Mexico. The nurseries were sown in 39 trials, each comprising 28 lines
and two high-yielding checks (Kachu and Borlaug) that were arranged
in an alpha lattice design with three replications and six blocks. The

Figure 3 Data set 1 in terms of percentage of cases correctly classified (PCCC) for traits days to heading (DTHD), days to maturity (DTMT) and Height.
(A) Prediction accuracy of TGBLUP, MLP with one layer and SVMmodels with the G·E term (I) and without the G·E term (WI) for each trait; (B) prediction
accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model with the G·E term (I) and without the G·E term (WI).

Figure 2 Percentage of individuals in each category of the ordinal response for data set 1 across environments for traits days to heading (DTHD),
days to maturity (DTMT) and Height.
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nurseries were evaluated for the following traits: number of days from
germination to 50% spike emergence (days to heading, DTHD), num-
ber of days from germination to 50% physiological maturity (days to
maturity, DTMT), grain yield (GY, tons per hectare) and plant height
(Height, centimeters). All these nurseries were evaluated during four
seasons: 2013-2014 (EYT 13-14; here called data set 1), 2014-2015
(EYT 14-15; called data set 2), 2015-2016 (EYT 15-16; called data

set 3) and 2016-2017 (EYT 16-17; called data set 4). It is important
to point out that the trait GY was ignored for this application.

Data set 1 included 767 lines, data set 2,775 lines, data set 3,964 lines,
and data set 4, 980 lines (Juliana et al. 2018). In addition, in each season
we studied six environments resulting from the level of irrigation (IR)
and planting system (bed or flat) which we called: Bed2IR, Bed5IR,
Flat5IR, FlatDrip, EHT and LHT. However, all these environments

Figure 5 Data set 2 in terms of percentage of cases correctly classified (PCCC) for traits days to heading (DTHD), days to maturity (DTMT) and Height. (A)
Prediction accuracy of TGBLUP, MLP with one layer and SVM models with the G·E term (I) and without the G·E term (WI) for each trait; (B) prediction
accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model with the G·E term (I) and without the G·E term (WI).

Figure 4 Percentage of individuals in each category of the ordinal response for data set 2 across environments for traits days to heading (DTHD),
days to maturity (DTMT) and Height.
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were not evaluated in all seasons (data sets). Table 1 gives the environ-
ments under study in each of the first four data sets.

It is important to point out that here we used the BLUEs of each of the
lines obtained (as suggested by Juliana et al. 2018) adjusted for trials, blocks
and replications in each data set. The three traits used were discretized
because the original data sets are continuous, only to illustrate the proposed
models. TraitsDTHDandDTMTwere discretized at quantiles 33.33%and

66.67% (in data sets 1 and 2) to obtain three categories, while trait Height
was discretized at quantile 50% to obtain 2 categories (in data sets 1, 2, 3
and 4); the discretization process was done for each environment of each
data set. For data sets 3 and 4, traits DTHDandDTMTwere discretized at
quantiles 20%, 45%, 70% and 90%.

Data set 5 is part of data set 3; for this reason, the phenotypic
information and genomic information were obtained in the same way

Figure 7 Data set 3 in terms of percentage of cases correctly classified (PCCC) for traits days to heading (DTHD), days to maturity (DTMT) and Height. (A)
Prediction accuracy of TGBLUP, MLP with one layer and SVM models with the G·E term (I) and without the G·E term (WI) for each trait; (B) prediction
accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model with the G·E term (I) and without the G·E term (WI).

Figure 6 Percentage of individuals in each category of the ordinal response for data set 3 across environments for traits days to heading (DTHD),
days to maturity (DTMT) and Height.
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as in data set 3; however, only 964 lines had complete data on the total
980 lines under study in data set 3. But now the traits measured in
data set 5 were grain color (GC) (1 = yes, 2 = no), leaf rust (ordinal

scale with 5 points), stripe rust (ordinal scale with 3 points) and GY,
which is a continuous trait (this trait was not used because it is
continuous). Data set 6 and data set 7 are part of the wheat yield

Figure 8 Percentage of individuals in each category of the ordinal response for data set 4 across environments for traits days to heading (DTHD),
days to maturity (DTMT) and Height.

Figure 9 Data set 4 in terms of percentage of cases correctly classified (PCCC) for traits days to heading (DTHD), days to maturity (DTMT) and Height. (A)
Prediction accuracy of TGBLUP, MLP with one layer and SVM models with the G·E term (I) and without the G·E term (WI) for each trait; (B) prediction
accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model with the G·E term (I) and without the G·E term (WI).
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trial (YT) nurseries from CIMMYT’s Global Wheat Breeding Pro-
gram. For data set 6, the number of lines used was 945 and for data
set 7, 1145 wheat lines were used. A continuous trait (grain yield, GY)
and an ordinal trait (lodging, ordinal scale of 5 points) were measured
on both data sets. However, only lodging was used in this paper due to
the fact that the other trait is continuous.

Genotypic data: The linesused in this studywere3,486 (79.807%)outof
4,368 lines thatwereevaluated in the fourseasons(nurseries) comprising
the data sets 1, 2, 3, and 4 were genotyped using genotyping-by-se-
quencing (GBS) (Elshire et al. 2011; Poland et al. 2012) at Kansas State
University, using an Illumina HiSeq2500 for obtaining genome-wide
markers. Marker polymorphisms were called across all lines using the
TASSEL (Trait Analysis by Association Evolution and Linkage) GBS
pipeline (Glaubitz et al., 2014) and anchored to the International
Wheat Genome Sequencing Consortium’s (IWGSC) first version of
the reference sequence (RefSeq v1.0) assembly of the bread wheat va-
riety Chinese Spring. Markers with more than 60% missing data, less
than 5%minor allele frequency and percent heterozygosity greater than
10% were removed; as a result, we obtained 2,038 markers. Missing
marker data were imputed using LinkImpute (Money et al. 2015)
implemented in TASSEL (Bradbury et al. 2007), version 5. The lines
were also filtered for more than 50% missing data and we end up with
3,486 lines (79.807%) of the total 4,368 lines originally evaluated
(767 lines from data set 1, 775 lines from data set 2, 964 lines from

data set 3 and 980 lines from data set 4) (Juliana et al. 2018). The lines
used in data sets 5, 6, and 7 were genotyped with the same marker
system that was used for the other data sets.

Evaluation of prediction accuracy with cross-validation
The prediction accuracy of the three models under study (TGBLUP,
MLP and SVM) was evaluated with an outer cross-validation (CV),
while the prediction accuracy of theMLP and SVMmodels, in addition
to outer cross-validation, was also evaluated using an inner cross-
validation as was done inMontesinos-López et al. (2018a, b). The outer
CVwas used for evaluating the prediction accuracy of the three models,
while the inner CV was used for tuning the hyperparameters in the
MLP and SVM models. In the outer CV, the original data set was
partitioned into five subsamples of equal size and each time four of
them were used for training (TRN) and the remaining one for testing
(TST), that is, we implemented a fivefold cross-validation. In the de-
sign, some lines can be evaluated in some, but not all, target environ-
ments, which mimics a prediction problem faced by breeders in
incomplete field trials. Our cross-validation strategy is the same
as the strategy denoted as CV2 that was proposed and imple-
mented by Jarquín et al. (2017), where a certain portion of test
lines in a certain portion of test environments is predicted, since
some test lines that were evaluated in some test environments
are assumed to be missing in others. We used the percentage of
cases correctly classified (PCCC) for evaluating the prediction

Figure 10 Percentage of individuals in each category of the ordinal response for data set 5 for traits grain color (GC), Leaf Rust and Stripe Rust.
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performance since our response variables were binary and ordinal
and it was calculated from each trait-environment combination
for each of the testing sets and the average of all folds was reported
as a measure of prediction performance. It is important to point
out that, to avoid biased results, the tuning step was done in each fold
using only the training set. As mentioned above, we implemented an
inner CV for the MLP and SVM models.

As mentioned above, for the MLP and SVM methods we imple-
mented an inner CV using the grid search method. For the MLP
model, the grid for the number of epochs and units was explained
above, where the MLP was presented and each training set of the
outer CV was split, with 20% of the data in the inner testing set
and the remaining 80% in the inner training set. This inner CV
was implemented using the validation_split argument on the fit

Figure 11 Data set 5 in terms of percentage of cases correctly classified (PCCC) for traits grain color (GC), leaf rust and stripe rust. (A) Prediction
accuracy of TGBLUP, SVM and MLP with one layer; (B) prediction accuracy with different numbers of layers (1, 2 and 3) across environments with
the MLP model.

Figure 12 Percentage of individuals in each category of the ordinal response (Lodging) for data set 6.
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function of the keras library to avoid implementing manual k-fold
cross-validation for the inner CV, which requires more computa-
tional resources (Chollet and Allaire 2017). However, for the SVM
method, the inner cross-validation was implemented with a 10-fold
cross-validation with the following values for parameters T and g :
T = (1,1.2,1.4,1.6,1.8,2) and g ¼ ð0:0001; 0:0002; 0:00025; 0:0003Þ.
Then the outer CV was implemented with the best combination of
T and g in each training set.

Data availability
Details of the phenotypic and genomic data of the seven data sets used in
this study can be downloaded in the link: http://hdl.handle.net/11529/
10548140. The seven data sets have also trait grain yield (not used in this
study). These seven data sets were also used in Montesinos-López et al.
(2018c, Manuscript submitted for publication) including trait grain yield.

RESULTS
The results are given in seven sections, one for each data set under study.
Each section gives a descriptive analysis of each data set and the prediction
accuracy obtained for each of the three models that we implemented. Also
Table A1 (Appendix) shows the Average percentage of cases correctly
classified foreachdata set (data sets1-7),model (SVM,TGBLUPandMLP),
layer, type of interaction terms with genotype · environment (I) and
without genotype  ·   environment (WI), and trait.

Data set 1
Figure 2 shows the percentages of individuals in each category for each
trait where can be observed that the number of individuals in each
category are different. Figure 3 gives the prediction accuracies
for the three traits under the three methods (TGBLUP, MLP and

SVM) with (I) and without (WI) the genotype  ·   environment
interaction. The best predictions with the interaction term (I) were
observed under the TGBLUP model and the worst occurred under the
SVMmethod and the range of predictions with (I) was between 0.5206
and 0.6773. Without the interaction term (WI), we did not find statis-
tical differences between the three methods (TGBLUP, SVM and
MLP) for the three traits under study, and the range of predictions
was between 0.5992 and 0.6722. Figure 3 also provides the predic-
tions for each trait with (I) and without (WI) the interaction term
using 1, 2 and 3 layers under the MLP model. The Figure 3 shows
(subpanel b) that there are no statistical differences between the
number of layers used (exist overlapping of the corresponding con-
fidence intervals), which was not expected, since with deep learning
methods, using more deep hidden layers helps to capture complex
interactions which many times help to increase prediction
accuracies.

Data set 2
The percentages of individuals in each category for data set 2 are
given in Figure 4, were we can see that each category has a different
number of individuals. Figure 5 gives the predictions in terms of
PCCC for the three methods under study for data set 2, which consists of
three traits. The predictions are provided with genotype · environment
interaction (I) and without genotype · environment interaction (WI). The
predictions obtained with (I) ranged between 0.5297 and 0.7021. The best
predictionswith the interaction (I) termwere observed under the TGBLUP
model, and the worst under the SVM method. Without the interaction
term (WI), the predictions ranged between 0.6371 and 0.6970, and we
found no statistical differences between the three methods (TGBLUP,
SVM and MLP) (Figure 5). We also did not find statistical differences

Figure 13 Data set 6 in terms of percentage of cases correctly classified (PCCC) for trait Lodging. (A) Prediction accuracy of TGBLUP, SVM and
MLP with one layer; (B) prediction accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model.
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between the MLP models using 1, 2 and 3 layers, which means that the
conventional neural network (with one hidden layer) is as good as the deep
learning models that had two or three hidden layers.

Data set 3
We can observe that there are different percentages of individuals in
each category in data set 3 (Figure 6). The prediction accuracies in
terms of PCCC for the three traits in this data set are given for the
three methods evaluated with (I) and without (WI) the genotype-
·  environment interaction term (Figure 7). When the genotype-
·  environment interaction term was taken into account, the
predictions ranged between 0.3630 and 0.6636, and the TGBLUP
model was the best. On the other hand, when the genotype-
·   environment interaction term was ignored, the predictions
ranged between 0.3998 and 0.6377, and the best predictions oc-
curred under the MLP method in two out of the three traits; how-
ever, the MLP was not statistically superior to the TGBLUP model.
Finally, we found no significant differences using 1, 2 and 3 layers
with the deep learning methods (Figure 7).

Data set 4
In Figure 8 it is observed that there are different percentages of indi-
viduals in each category in data set 4. For this data set, Figure 9 gives
the prediction accuracies in terms of PCCC for each of the three traits
evaluated under the three models (TGBLUP, SVM and MLP) with (I)
and without (WI) the genotype  ·   environment interaction term.
When the genotype · environment interaction term was taken into
account, the predictions ranged between 0.3720 and 0.6131, and the

TGBLUP model produced the best predictions. However, when the
genotype · environment interaction term was ignored, the predic-
tions ranged between 0.4247 and 0.6028, and the best predictions
were observed under the SVM method. We did not find statistical
differences between using 1, 2 and 3 layers under the MLP model,
which means that for this data set even the simple MLP model is
enough for producing competitive predictions (Figure 9).

Data set 5
There are different percentages of individuals in each category in
data set 5 (Figure 10). Figure 11 gives the prediction accuracies in
terms of PCCC for the three traits under study under the three
models (TGBLUP, SVM and MLP). We can see that for trait grain
color (GC), the best prediction occurred under the SVM method
and the worst under the MLP model; however, there were no
significant differences between the three methods in any of the
three traits under study, and the predictions ranged between
0.5082 and 0.5273. Also, it is important to point out that no sig-
nificant differences were found for the MLP model with 1, 2 and
3 hidden layers (Figure 11).

Data set 6
In each category there are different percentages of individuals for
data set 6 (Figure 12). For this data set, Figure 13 does not show
statistical differences between the three methods under study, but
the predictions of TGBLUP were better than the predictions of the
SVM and MLP models by 12.54% and 3.47%, respectively, while
the MLP model was superior to the SVM model by 9.07%. The

Figure 14 Percentage of individuals in each category of the ordinal response (Lodging) for data set 7.
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predictions ranged between 0.3979 and 0.4550. Figure 13 also shows
that no significant differences were found using 1, 2 and 3 layers
with the MLP model (Figure 13).

Data set 7
In each category there are different percentages of individuals for data set
7 (Figure 14). For this data set, no statistical differences were found
between the three models (TGBLUP, SVM andMLP) for the trait Lodg-
ing, but the TGBLUP model was slightly better than the SVM and MLP
models by 3.28% and 3.62%, respectively (Figure 15). The predictions for
this trait under the three methods ranged between 0.5082 and 0.5273,
respectively. Finally, also in this data set we did not find significant dif-
ferences between using 1, 2 and 3 layers in the MLP model (Figure 15).

Meta-comparison across environments and traits
Finally, Figure 16 provided a meta-picture across environments and
traits. When the interaction term was taken into account in the four
data sets (1, 2, 3, and 4) the TGBLUP presented the best prediction
accuracies, but not significantly differences were observed with those of
theMLPmodel.While when the interaction termwas ignored the three
methods in the first four data sets perform very similar in terms of
prediction performance. Also, in the meta-picture of data sets 5, 6 and
7 we found only in data set 6 a better performance of TGBLUP model
but not statistical differences were found with the other two methods
(SVM and MLP).

DISCUSSION
Due to the need formore powerful prediction models in the GS context
to improve the selection process of candidate individuals in plant (or
animal) breeding programs, we performed a benchmark study between

two popularMLmodels (MLP and SVM) and the TGBLUPmodel with
ordinal response variables (ordinal traits). This benchmark study is very
important because many claim that ML methods outperform conven-
tional genomic selection models in terms of prediction accuracy;
however, there is not enough empirical evidence in the literature to
support this claim.As stated byMakridakis et al. (2018), simply because
the models are new or based on ML (or artificial intelligence) is not
enough to persuade users of their practical advantages over alternative
or conventional methods. For this reason, it is of paramount impor-
tance to properly evaluate the performance of ML methods using a
wide range of diverse data sets and compare them to alternative or
conventional models in order to obtain enough evidence of their pre-
diction performance. For this reason, in this publication we used seven
real data sets for evaluating the prediction performance of twomachine
learning methods, the MLP and SVM methods, against the TGBLUP
model. We found that in general (4 out of 7 data sets), the best perfor-
mance in terms of prediction accuracy for ordinal data using as ametric
the percentage of cases correctly classified was obtained with the
TGBLUP model, a conventional Bayesian method with weakly infor-
mative priors. However, it is important to point out that the predictions
of both machine ML methods (MLP and SVM) were very competitive
with the predictions of the TGBLUP model but not better, since
the MLP method outperformed the TGBLUP model in two of the
seven data sets under study, while the SVMmethod only outperformed
it in one of the seven data sets used (across environments). For this
reason, we agree with Makridakis et al. (2018), who pointed out that it
should become clear that ML methods are not a panacea that would
automatically improve forecasting accuracy. Their capabilities can eas-
ily generate implausible solutions, leading to exaggerated claims of their
potential and must be carefully investigated before any claims can be

Figure 15 Data set 7 in terms of percentage of cases correctly classified (PCCC) for trait Lodging. (A) Prediction accuracy of TGBLUP, SVM and
MLP with one layer; (B) prediction accuracy with different numbers of layers (1, 2 and 3) across environments with the MLP model.
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accepted. This latter claim that ML methods can easily generate im-
plausible solutions is supported by the fact that their successful appli-
cation depends strongly on the tuning process, which is very
challenging, so that when this process is not appropriate, the resulting
solutions are very implausible.

Also, it is important topointout that forconveniencewediscretizedthe
response variables in four out of the 7 data sets.However, there is evidence
that the process of discretization of continuous variables produces a
significant loss of information and this was studied by Kizikaya et al.
(2014). When comparing the prediction accuracy using a threshold
model for ordinal data and a model for continuous response variable
using a data set with an ordinal response variable, Kizikaya et al. (2014)
showed that to reach the same level of predictive capacity, the model of
continuous response variable needs a training sample 2.25 times higher
than when the threshold model is implemented. Also, Kizikaya et al.
(2014) showed that using the same size of the training sample (TRN)
the model for continuous response variable produces lower predictive
capacity (16% lower) than using a threshold model.

A favorable attribute of many supervised learning algorithms is
that there is no restriction on the distribution of response variables;
thismakes them less sensitive to the problems that arise in parametric
models when ordinal scores are used to quantify diseases. Our results
found using the MLP, the SVM methods, and the Bayesian thresh-
old genomic best linear unbiased prediction (TGBLUP) model using
ordinal data are similar to those found by other authors. For exam-
ple, Ornella et al. (2012) compared the performance of ridge

regression with Bayesian Lasso and two Support Vector Regression
for predicting ordinal traits stem rust and yellow rust resistance in
five wheat populations. The Bayesian Lasso and the Ridge Regres-
sion had similar prediction performance and with a small superior-
ity over Support Vector Regression. González-Camacho et al. (2018)
compared the performance of several regression/classification ML
models against some parametric models (Bayesian LASSO, ridge re-
gression, etc.) on stem rust and yellow rust and found similar results
as those found by Ornella et al. (2012).

Our results support the idea that the ML methods are not the
panacea for prediction modeling and we invite the users of prediction
models not to blindly adopt or accept any model and assume it is the
best in termsofpredictionperformance, sincemore empirical evidence
is needed and a lot of research supports the idea that there is no
universal model or machine (Montesinos-López et al., 2018a,b,c;
Bellot et al., 2018). However, we need to be willing to test and adopt
models coming from other areas since we need to improve the pre-
diction accuracy of existing GS models to be able to really revolution-
ize plant and animal breeding and produce the required amount of
food that the world needs and will need in the coming years without
bringing more land under cultivation.

Also, we are convinced that more benchmark studies with a wide
range of real data sets should be conducted to be able to clearly identify
those models that perform better in terms of prediction accuracy
(Benjamin, et al., 2018). When researchers propose new models for
prediction, they should compare their models to conventional models

Figure 16 A meta-comparison across traits of the seven data sets in terms of percentage of cases correctly classified (PCCC) for the three
methods under study (TGBLUP, SVM and MLP).
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and use many data sets so as to provide enough evidence that the new
proposed models actually outperform conventional models, since a lot
of the new proposedmodels are not better than conventional models in
terms of prediction accuracy. However, many times the newmodels are
more complex to understand and to implement, which does not really
help satisfy the need for more powerful prediction models and for
advancing in the field of prediction modeling.

Anotherdisadvantageof theMLmethods is that a preprocessing step
is needed to be able to apply them successfully, since the results depend
on the type of transformation or preprocessing that is used (Chollet and
Allaire 2017). For this reason, ML methods need to be improved to
perform the tuning process and choose the appropriate preprocessing
step automatically to be able to implement these methods more easily
and with less possibility of error due to the fact that the tuning process
and preprocessing step are very challenging.

Finally, with the seven real data sets used we found that the ML
models (SVM andMLP) are very competitive with the TGBLUPmodel
and can be implemented in the GS context since software in the ML
domainhasbeendeveloped that is very easy touse andworks reasonably
well withmoderately large data sets. For this reason,we encourage other
scientists to performmore benchmark studies and compare the existing
GS models to ML methods, since the ML community had developed
many efficient and friendly software to implement prediction models
that can be used successfully in GS.We are convinced that by exploring
the theory behind ML methods, we will find a lot of opportunities to
improve the prediction performance of these methods and those of GS
since this area had long time working in developing prediction models.

Conclusions
In this paper, we explored two very popular machine learningmethods,
theMLP and SVMmodels, and compared them to the TGBLUPmodel
in terms of prediction performance of ordinal data using seven real data
sets.We found that in general (four out of seven data sets), the TGBLUP
model was the best in terms of prediction accuracy using the percentage
of cases correctly classified as a metric, followed by the MLP and SVM
models. However, the two machine learning methods were very com-
petitive since they produced very similar predictions to those of the
TGBLUPmodel and, in some cases, outperformed the TGBLUPmodel.
The disadvantage of bothmachine learning methods is that, to produce
reasonable predictions, they require a tuning process that is challenging
since it is both an art and a scientific process. However, despite these
difficulties, we found that both machine learning algorithms are very
competitive and practical to implement in GS because they are easy to
implement using the existing software and work efficiently with mod-
erately large data sets.
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n Table A1 Average percentage of cases correctly classified (PCCC)
for each data set, model, layer, type of interaction terms with
genotype3environment (I) and without genotype3environment
(WI), and trait DTHD = days to heading; DTMT = days to maturity;
Height = plant height). SE denotes standard error. For data sets 1-4,
the averages are across environments

Data
set Model Layers Interaction Trait PCCC SE

1 SVM _ I DTHD 0.5611 0.0401
1 SVM _ I DTMT 0.5206 0.0403
1 SVM _ I Height 0.6408 0.0387
1 SVM _ WI DTHD 0.6644 0.0381
1 SVM _ WI DTMT 0.6049 0.0394
1 SVM _ WI Height 0.6621 0.0382
1 TGBLUP _ I DTHD 0.6773 0.0376
1 TGBLUP _ I DTMT 0.6206 0.0392
1 TGBLUP _ I Height 0.672 0.0378
1 TGBLUP _ WI DTHD 0.664 0.038
1 TGBLUP _ WI DTMT 0.5992 0.0395
1 TGBLUP _ WI Height 0.6722 0.0379
1 MLP 1 I DTHD 0.6048 0.0378
1 MLP 1 I DTMT 0.5697 0.0387
1 MLP 1 I Height 0.6511 0.0359
1 MLP 1 WI DTHD 0.6629 0.0353
1 MLP 1 WI DTMT 0.6184 0.0373
1 MLP 1 WI Height 0.6648 0.0352
1 MLP 2 I DTHD 0.6006 0.038
1 MLP 2 I DTMT 0.572 0.0387
1 MLP 2 I Height 0.6571 0.0356
1 MLP 2 WI DTHD 0.6708 0.0349
1 MLP 2 WI DTMT 0.6218 0.0372
1 MLP 2 WI Height 0.6436 0.0362
1 MLP 3 I DTHD 0.606 0.0378
1 MLP 3 I DTMT 0.5703 0.0388
1 MLP 3 I Height 0.6472 0.036
1 MLP 3 WI DTHD 0.668 0.0351
1 MLP 3 WI DTMT 0.6167 0.0374
1 MLP 3 WI Height 0.6388 0.0364
2 SVM _ I DTHD 0.5439 0.04
2 SVM _ I DTMT 0.5297 0.0401
2 SVM _ I Height 0.6428 0.0385
2 SVM _ WI DTHD 0.6834 0.0372
2 SVM _ WI DTMT 0.6386 0.0384
2 SVM _ WI Height 0.6698 0.0377
2 TGBLUP _ I DTHD 0.7021 0.0365
2 TGBLUP _ I DTMT 0.639 0.0384
2 TGBLUP _ I Height 0.6751 0.0376
2 TGBLUP _ WI DTHD 0.6937 0.0368
2 TGBLUP _ WI DTMT 0.6371 0.0384
2 TGBLUP _ WI Height 0.6728 0.0376
2 MLP 1 I DTHD 0.6266 0.0367
2 MLP 1 I DTMT 0.6071 0.0374
2 MLP 1 I Height 0.6764 0.0344
2 MLP 1 WI DTHD 0.697 0.0331
2 MLP 1 WI DTMT 0.6481 0.0357
2 MLP 1 WI Height 0.6696 0.0347
2 MLP 2 I DTHD 0.6211 0.037
2 MLP 2 I DTMT 0.6005 0.0377
2 MLP 2 I Height 0.6725 0.0346
2 MLP 2 WI DTHD 0.6972 0.033
2 MLP 2 WI DTMT 0.6403 0.036

(continued)

n Table A1, continued

Data
set Model Layers Interaction Trait PCCC SE

2 MLP 2 WI Height 0.6698 0.0347
2 MLP 3 I DTHD 0.6175 0.0371
2 MLP 3 I DTMT 0.6075 0.0375
2 MLP 3 I Height 0.6653 0.035
2 MLP 3 WI DTHD 0.6882 0.0336
2 MLP 3 WI DTMT 0.6368 0.0363
2 MLP 3 WI Height 0.6636 0.0351
3 SVM _ I DTHD 0.3771 0.0346
3 SVM _ I DTMT 0.363 0.0344
3 SVM _ I Height 0.6535 0.0342
3 SVM _ WI DTHD 0.4508 0.0357
3 SVM _ WI DTMT 0.4059 0.0352
3 SVM _ WI Height 0.6377 0.0346
3 TGBLUP _ I DTHD 0.4699 0.0358
3 TGBLUP _ I DTMT 0.4082 0.0354
3 TGBLUP _ I Height 0.6486 0.0344
3 TGBLUP _ WI DTHD 0.4526 0.0358
3 TGBLUP _ WI DTMT 0.3998 0.0352
3 TGBLUP _ WI Height 0.6307 0.0347
3 MLP 1 I DTHD 0.4495 0.0343
3 MLP 1 I DTMT 0.4259 0.0341
3 MLP 1 I Height 0.6636 0.0314
3 MLP 1 WI DTHD 0.5062 0.0349
3 MLP 1 WI DTMT 0.441 0.0346
3 MLP 1 WI Height 0.6377 0.0326
3 MLP 2 I DTHD 0.4531 0.0345
3 MLP 2 I DTMT 0.4221 0.0342
3 MLP 2 I Height 0.6633 0.0314
3 MLP 2 WI DTHD 0.4971 0.0349
3 MLP 2 WI DTMT 0.4444 0.0347
3 MLP 2 WI Height 0.631 0.0328
3 MLP 3 I DTHD 0.4306 0.0339
3 MLP 3 I DTMT 0.4214 0.034
3 MLP 3 I Height 0.6632 0.0314
3 MLP 3 WI DTHD 0.4653 0.0344
3 MLP 3 WI DTMT 0.412 0.0339
3 MLP 3 WI Height 0.6292 0.0329
4 SVM _ I DTHD 0.372 0.0345
4 SVM _ I DTMT 0.3922 0.0348
4 SVM _ I Height 0.6021 0.0348
4 SVM _ WI DTHD 0.4818 0.0357
4 SVM _ WI DTMT 0.5397 0.0347
4 SVM _ WI Height 0.6028 0.0349
4 TGBLUP _ I DTHD 0.4776 0.0356
4 TGBLUP _ I DTMT 0.4712 0.0354
4 TGBLUP _ I Height 0.6131 0.0347
4 TGBLUP _ WI DTHD 0.4621 0.0356
4 TGBLUP _ WI DTMT 0.4622 0.0353
4 TGBLUP _ WI Height 0.5984 0.035
4 MLP 1 I DTHD 0.4291 0.0383
4 MLP 1 I DTMT 0.418 0.0378
4 MLP 1 I Height 0.5934 0.0376
4 MLP 1 WI DTHD 0.4936 0.0391
4 MLP 1 WI DTMT 0.4247 0.0378
4 MLP 1 WI Height 0.5541 0.0385
4 MLP 2 I DTHD 0.4242 0.0382
4 MLP 2 I DTMT 0.4336 0.0382
4 MLP 2 I Height 0.5553 0.0385

(continued)
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n Table A1, continued

Data
set Model Layers Interaction Trait PCCC SE

4 MLP 2 WI DTHD 0.502 0.0391
4 MLP 2 WI DTMT 0.4638 0.0381
4 MLP 2 WI Height 0.5327 0.0389
4 MLP 3 I DTHD 0.4331 0.0384
4 MLP 3 I DTMT 0.4282 0.0381
4 MLP 3 I Height 0.5531 0.0386
4 MLP 3 WI DTHD 0.5062 0.039
4 MLP 3 WI DTMT 0.4509 0.038
4 MLP 3 WI Height 0.5237 0.039
5 SVM _ _ GC 0.9315 0.0671
5 SVM _ _ Leaf_Rust 0.6629 0.0477
5 SVM _ _ Stripe_Rust 0.9035 0.0651
5 TGBLUP _ _ GC 0.8392 0.0604
5 TGBLUP _ _ Leaf_Rust 0.6785 0.0489
5 TGBLUP _ _ Stripe_Rust 0.8994 0.0648
5 MLP 1 _ GC 0.8091 0.0555
5 MLP 1 _ Leaf_Rust 0.7158 0.0637

(continued)

n Table A1, continued

Data
set Model Layers Interaction Trait PCCC SE

5 MLP 1 _ Stripe_Rust 0.9035 0.0417
5 MLP 2 _ GC 0.7977 0.0567
5 MLP 2 _ Leaf_Rust 0.7241 0.0631
5 MLP 2 _ Stripe_Rust 0.9035 0.0417
5 MLP 3 _ GC 0.7967 0.0568
5 MLP 3 _ Leaf_Rust 0.6919 0.0652
5 MLP 3 _ Stripe_Rust 0.9035 0.0417
6 SVM _ _ Lodging 0.3979 0.0289
6 TGBLUP _ _ Lodging 0.455 0.0331
6 MLP 1 _ Lodging 0.4392 0.0708
6 MLP 2 _ Lodging 0.4138 0.0702
6 MLP 3 _ Lodging 0.4042 0.07
7 SVM _ _ Lodging 0.51 0.0336
7 TGBLUP _ _ Lodging 0.5273 0.0348
7 MLP 1 _ Lodging 0.5082 0.0646
7 MLP 2 _ Lodging 0.4987 0.0646
7 MLP 3 _ Lodging 0.5134 0.0646
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