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Abstract

Acoustic patterning using ultrasound standing waves has recently emerged as a potent 

biotechnology enabling the remote generation of ordered cell systems. This capability has opened 

up exciting opportunities, for example, in guiding the development of organoid cultures or the 

organization of complex tissues. The success of these studies is often contingent on the formation 

of tightly-packed and uniform cell arrays; however, a number of factors can act to disrupt or 

prevent acoustic patterning. Yet, to the best of our knowledge, there has been no comprehensive 

assessment of the quality of acoustically-patterned cell populations. In this report we use a 

mathematical approach, known as Voronoï tessellation, to generate a series of metrics that can be 

used to measure the effect of cell concentration, pressure amplitude, ultrasound frequency and 

biomaterial viscosity upon the quality of acoustically-patterned cell systems. Moreover, we extend 

this approach towards the characterization of spatiotemporal processes, namely, the acoustic 

patterning of cell suspensions and the migration of patterned, adherent cell clusters. This strategy 

is simple, unbiased and highly informative, and we anticipate that the methods described here will 

provide a systematic framework for all stages of acoustic patterning, including the robust quality 

control of devices, statistical comparison of patterning conditions, the quantitative exploration of 

parameter limits and the ability to track patterned tissue formation over time.
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Introduction

Cell organization is a critical component in physiological tissue function, and significant 

research focus has been invested in engineering in vitro systems that can faithfully recreate 

biological microstructure.1 Advances in dielectrophoresis,2 three-dimensional (3D) 

bioprinting,3–5 and magnetic manipulation6–8 have provided new opportunities for spatially 

controlling the development of cell cultures and engineered tissues. Recently, acoustic 

patterning with ultrasound standing waves has emerged as a potent biotechnology for 

manipulating single cells and spatially organizing cell populations.9,10 In this approach, 

unlabelled cells can be rapidly and dynamically patterned using conventional cell media, 

culture substrates or biomaterial systems; characteristics that make this technique highly 

suited to generating complex cell systems. To date, acoustic patterning has been used to 

generate spheroid cultures,11–14 engineer complex tissue structures15–18 and study 

processes such as vascularization,19–21 intercellular communication,22 tissue development,

23 cell migration,24 natural killer cell activity25,26 and neurite outgrowth.27 This 

biological versatility arises from the physical mechanisms governing acoustic patterning. In 

theory, all that is required to achieve patterning is a cell population bearing a difference in 

density or compressibility with the surrounding medium, and a set of static pressure nodes 

and antinodes provided by an ultrasound standing wave. Under these conditions, cells 

acquire a position-dependent potential energy (Urad) that results in a timeaveraged acoustic 

radiation force F rad , which moves cells with a density greater than the host medium 

towards the pressure nodes:28

F rad = − ∇Urad (1)

The magnitude of the acquired energy potential is dependent upon several factors: the mean 

squared pressure 〈|p0|2〉, the mean squared particle velocity v 0
2 , the cell volume (Vc), 

density (ρc) and compressibility (κc), and the host medium density (ρm) and compressibility 

(κm):28

Urad = Vc f 1
1
2κm p0

2 − f 2
3
4 ρm v 0

2
(2)

where:

f 1 = 1 −
κc
κm

(3)

f 2 =
2 ρc/ρm − 1
2ρc/ρm + 1 (4)
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These equations can be used to compute the acoustic radiation force for different acoustic 

fields. For instance, a single standing wave of the form p0(x) = P0 cos(kx) sin(ωt) and unit 

vector in the x-direction n x  will produce a one-dimensional field with an acoustic radiation 

force that is dependent upon the wavelength (λ) and speed of sound (cm) in the host 

medium:

F rad = F0sin 4πx
λ n x (5)

where:

F0 =
6πVc

λ
f 1
3 +

f 2
2

P0
2

4ρmcm
2 (6)

The superposition of a second standing wave in an orthogonal direction n y  will create a 

two-dimensional field, which can be described by an extension of eqn (5) and (6). Here, the 

acoustic radiation force is proportional to the sum of the squared pressures from each 

standing wave, where the subscripts x and y denote the orthogonal directionality for the 

amplitude and wavelength components of the force distribution:

F rad = Fo
xsin 4πx

λx n x + Fo
ysin 4πy

λy n y (7)

In practice, however, an acoustic radiation force does not always result in translation of cells 

to the nodes. The extent of patterning is dependent on the balance between the supplied 

acoustic radiation force and the forces that act to oppose cell translation. For instance, 

acoustic patterning can be inhibited by attractive cell-material interactions (e.g. with an 

adherent surface), mechanical agitation, thermal currents or acoustic streaming.29 In 

addition, gravity can oppose the acoustic levitation of cells, while viscous drag becomes an 

increasingly important consideration as the field moves from solution-based manipulation 

towards patterning cells in gels.11,16–20,30 Overall, the characteristics of the cell, material 

and field all contribute to the balance of forces experienced by the cell and the final pattern 

quality. A well-defined patterned array offers: (1) a low proportion of “untrapped” cells, 

which is essential when attempting to measure bulk functional effects of cell patterning; (2) 

dense structures with a high degree of cell–cell contact, a critical feature for adhesion and 

membrane spreading studies; (3) uniformity in structure dimension and geometry, which is 

vitally important for achieving consistent development and functional properties of cell 

spheroids and organoid microtissues.11–13

Given the evident importance of pattern structure and consistency upon the design and 

outcome of acoustic cell patterning studies, there is a surprising dearth of feature 

characterization and quality control of the generated cell arrays. The recent, major reports of 
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acoustically patterned cell assemblies have reported only a binary, visual assessment of 

micrographs to ascertain whether or not a population is patterned.11–14,16–22,24–27,30–34 

Only three of these studies provided characterization beyond basic sizing: Christakou et al. 
indirectly evaluated the cluster “compactness” based on the penetration depth of a 

fluorescent dye,26 Comeau et al. used peak-to-peak and peak-to-trough measurements of 

patterned lines to estimate band spacing and density, respectively,21 while Olofsson et al. 
counted both the number of clusters and the number of single cells patterned in each well of 

a micro-well plate.13 In our recent report of acoustically-patterned muscle engineering, we 

used a Fast Fourier Transform algorithm to identify major frequencies in micrographs of 

acoustically-patterned myoblasts and define a unidirectional patterning index.15 However, 

such analysis provides a relatively limited assessment of the overall pattern quality, averaged 

over the entire image, and no quantification of the individual cell structures formed at the 

acoustic pressure nodes. In principle, it is actually relatively straightforward to characterize 

well patterned arrays, as these typically have tightly packed structures that can be identified 

using pixel intensity thresholding. However, this direct approach cannot be readily applied to 

the analysis of loosely packed structures that do not exhibit a clearly identifiable perimeter. 

Thus, a more sophisticated form of image analysis is required to make fair comparisons 

across different patterning conditions.

Here, we demonstrate the quantification of acoustically-patterned cell systems using Voronoï 

tessellation, an image analysis tool that has previously been used to compute atomic 

packing,35 simulate the cosmic evolution of galaxies36 and analyze the clustering of cell 

membrane proteins.37 This algorithm uses localized points in space known as “seeds” to 

generate a set of tessellated polygons, which each contain a single seed and encompass the 

points in space closer to its own seed than any other seed.37 In this case, the seeds 

corresponded to high intensity pixels arising from the fluorescence of cells that had been 

acoustically patterned into clusters under different experimental conditions (pressure 

amplitude, ultrasound frequency, cell concentration and biomaterial viscosity). We used 

Voronoï tessellation maps to evaluate patterning using a series of metrics (e.g. cluster 

density, ratio, area, number, barycenter), which allowed us to compare pattern quality and 

consistency in an impartial, quantitative and statistical manner. Moreover, we extended this 

algorithm to the analysis of spatiotemporal processes: the translation of cells exposed to an 

ultrasound field as well as the migration and proliferation of cells acoustically patterned on 

an adherent surface. The studies detailed in this report highlight some of the most relevant 

and practical applications of Voronoï tessellation for acoustic cell patterning. However, the 

versatile nature of this approach should enable application across different patterning 

systems and experimental conditions, from quantitative characterization and tracking of cell 

arrays to monitoring device performance or predicting the characteristics of untested cell 

systems.

Experimental

Acoustic patterning devices

All reagents were acquired from Thermo Fisher Scientific, unless otherwise stated. Two 

patterning devices were constructed with designs similar to those used in previous studies.
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15,38,39 A 12 mm thick acrylic base plate was laser cut with an inner chamber of either 

38.5 × 38.5 mm (device 1) or 10.5 × 10.5 mm (device 2) flanked by four outer chambers 

containing affixed piezotransducers with wrap-around electrodes (NCE51 12 × 4 × 1 mm, 

Noliac) (Fig. S1†). Electrical wires were soldered to the piezotransducer electrodes and an 

acetate sheet was glued to the acrylic base to allow all the chambers to be filled with filter-

sterilized dH2O. Opposing piezotransducers were wired as a pair, with each pair connected 

to a TG120 20 MHz Function Generator (Aim TTi). Continuous sine waves were used to 

create cell assemblies: linear arrays were produced using a single piezotransducer pair 

driven at 2.1 MHz, while clusters were formed by driving both transducer pairs 

independently using two unsynchronized function generators set at the same frequency (2.1 

× 2.1 MHz or 6.7 × 6.7 MHz). Note that in each case, the measured frequencies showed a 

small fluctuation (approximately ± 0.05 MHz) hence the signals generated were 

uncorrelated. The load voltages reported herein refer to the peak-to-peak voltage (Vpp) 

measured by an IDS6052-U Digital Storage Oscilloscope (Iso-Tech) during operation of the 

device (75% of the voltage input by the function generator). The pressure field was 

measured for acoustic patterning device 1 using a calibrated fibre-optic hydrophone 

(Precision Acoustics Ltd) mounted on a motorized X–Y stage. A raster scan was performed 

across a 6 × 6 mm scan area with a 50 μm step size. The output voltage was sampled at 50 

MHz and converted to the frequency domain via a fast Fourier transform. Two peaks were 

identified in the frequency domain, corresponding to the two orthogonal standing waves. 

Following eqn (7), the pressure amplitudes were extracted at these frequencies, squared then 

summed to calculate the mean squared pressure. The impedance of acoustic patterning 

device 1 was characterized between 1–4 MHz using a CypherGraph C60 (Cypher 

Instruments).

Patterning in solution

C2C12 myoblasts (ATCC) were cultured in expansion medium comprising high glucose 

Dulbecco's Modified Eagle's Medium (HG-DMEM) with 1% (v/v) penicillin/streptomycin 

and 20% (v/v) fetal bovine serum. The myoblasts were harvested, fixed in 4% (w/v) 

formaldehyde and then membrane stained using wheat germ agglutinin conjugated to Alexa 

Fluor 633 (WGA-633). 2 mL of stained myoblasts were transferred to a 35 mm tissue 

culture dish pre-coated with 2 mL autoclaved 2% (w/v) UltraPure Agarose 1000 and 

patterned into lines or clusters using device 1. 4 × 4 arrays of cell clusters were imaged after 

5 min of patterning using a 5× objective lens on an SP5 inverted confocal fluorescence 

microscope (Leica). Alternatively, time-lapse images were captured every 1 s, with the 

ultrasound field applied after 5 s of imaging. Larger arrays of cell clusters were generated by 

stitching a 7 × 7 grid of images captured using a 5× objective lens on an Observer 2.1 wide 

field microscope.

Migration of patterned cells

A 10 × 10 mm glass coverslip (Agar Scientific) was coated in 100 μg mL−1 poly-D-lysine 

(Sigma) and then 10 μg mL−1 laminin (from Engelbreth-Holm-Swarm murine sarcoma 

basement membrane, Sigma) to provide an adherent substrate for cell migration. A 2 mL 

solution of 2.5 × 105 C2C12 myoblasts that had been transfected with lentiviral particles 

(LVP340, Amsbio) to express GFP were harvested and patterned on the coated coverslip in a 
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35 mm agarose-coated tissue culture dish using device 1 (45 min, 2.1 MHz, 15 Vpp). The 

glass slide was washed once in culture medium to remove non-adherent cells and then 

placed in a 4-well chamber slide (LabTek). At this stage, 300 μL of freshly-thawed 50% 

(v/v) Matrigel Matrix (Corning) was added to one of the samples and gelled for 15 min at 

37 °C. The patterned cells were cultured in 400 μL of culture medium supplemented with 20 

mM HEPES. A 3 × 3 array of clusters was imaged every 5 min using a 10× objective lens on 

an Observer 2.1 wide field microscope (Zeiss).

Patterning in hydrogels

The hydrogel synthesis and gelation protocols have been previously published.40 Briefly, 20 

kDa 8-arm poly(ethylene)glycol (PEG) amine (JenKem) was functionalized with activated 

5-norbornene-2-carboxylic acid (Alfa Aesar) to produce 8-arm PEG norbornene. Myoblasts 

were fixed and membranestained with WGA-633, as before, and then patterned in 5% (w/v) 

PEG norbornene, 0.05% (w/v) Irgacure, 0–3% (w/v) 200 kDa PEG dopant (Sigma Aldrich) 

and PEG dithiol crosslinker (Sigma Aldrich), all diluted in phosphate buffered saline (PBS) 

with a thiol : norbornene ratio of 0.8 : 1. Viscosity creep tests were performed at room 

temperature using an AR 2000ex rheometer (TA Instruments) using 300 μL of precursor 

solution, a 25 mm plate, a 500 μm gap and 1 Pa stress. Patterning was performed in the 

central cavity of device 2 (2.1 × 2.1 MHz, 15 Vpp, 7 min) with the solution crosslinked for 

the final 2 min using ultraviolet light (365 nm, 6 mW cm−2). The crosslinked hydrogels were 

removed from the device and maintained in PBS overnight. This procedure generated 

hydrogels containing a large array of patterned clusters with pattern quality only reduced at 

the very edges of the material. We used a 5× objective lens and confocal fluorescence 

microscopy to capture 3 × 3 arrays at the center of the hydrogel, with the smaller number of 

imaged clusters due to the increased node separation caused by the material swelling. We 

used the same protocol, without any dopant, to produce patterned PEG hydrogels for 

imaging using wide field microscopy with either bright field, differential interference 

contrast (DIC) or phase contrast filters.

Voronoï tessellation analysis

The following protocol was used for all images, unless stated otherwise. For a full process 

chart and software links, refer to Fig. S2.† Fluorescence micrographs were processed using 

FIJI software (open source) with the format converted to 8-bit and the minimum brightness 

raised to remove any background noise. Seeds were identified from high intensity pixels 

using ThunderSTORM (open source FIJI plugin) with input pixel size and non-maximum 

suppression: note that large cells could contain more than one seed. Voronoï tessellation 

diagrams were generated from the pixel map using SR-Tessler software (open source).37 

The corr2 function MATLAB R2015a (The MathWorks, Inc.) was used to compute 2D 

correlation coefficients between patterned cell array images and clusters generated by 

varying the seed density and cut distance. All solution and hydrogel arrays were analyzed 

using a seed density factor of 2, a cut distance of 1 × 105 nm and no restrictions placed on 

the minimum size or number of seeds. This analysis produced the number, area, barycenter 

and density of the clusters, while the proportion of clustered seeds was calculated by taking 

into account the total number of seeds (using a seed density factor of 0). Time-lapse videos 

were cropped to 1400 × 1400 μm (live patterning) and 1170 × 1170 μm2 (live migration), 
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with the latter analyzed using a seed density factor of 1.5. Note that Voronoï tessellation 

analysis of bright field and phase contrast images required an image intensity inversion prior 

to seed identification.

Results

We fabricated an acoustic patterning device with four 12 mm piezotransducers arranged as 

orthogonal pairs around a central cavity. This cavity was used to house a 35 mm tissue 

culture dish containing a suspension of murine myoblasts (C2C12 line) that had been 

membrane stained with a fluorescent dye (Fig. 1a). By driving the piezotransducers at a 

frequency close to their primary resonance (2.1 MHz) we were able to translate the cells 

towards the acoustic pressure nodes and form clustered cell populations with defined 

periodicity (Fig. 1b). The region of clustered cells was located at the center of the petri dish, 

the intersection of the two ultrasound standing waves, and typically contained around 300 

uniform clusters (Fig. S3†). We imaged these patterned arrays using confocal fluorescence 

microscopy, and then applied Voronoï tessellation protocols adapted from super-resolution 

microscopy.37 First, we defined a coordinate map of “seeds”, corresponding to the high 

intensity pixels arising from the cell fluorescence (Fig. 1c). We used this map to segment the 

image into multiple tessellating polygons, bearing edges equidistant from the nearest two 

seeds (Fig. 1d). These Voronoï diagrams exhibited distinct and predictable geometry, with 

distinct regions of densely-packed seeds encased in small polygons surrounded by sparsely-

packed seeds in large polygons. From these tessellations, we were able to define discrete cell 

clusters by applying a threshold on the first-rank seed density factor and cut distance (Fig. 

1e). We show that a two-dimensional cross correlation coefficient can be used as an unbiased 

metric to determine optimal threshold parameters for cluster determination (Fig. S4†). It 

should be noted, however, that these parameters can also be readily tuned to suit different 

user applications; for instance, the seed density factor threshold could be increased for 

applications where biological outcome is contingent on tightly-packed cell clusters (e.g. 
organoid cultures). In our case, we selected a slightly lower seed density threshold that 

provided a near-optimal correlation coefficient but also included cells that were more loosely 

associated with the patterned clusters. Having defined the cell clusters from the Voronoï 

diagrams, we were able to extract quantitative information regarding the patterned cell array, 

such as the number, area, barycenter and density of the clusters, as well as the proportion of 

clustered seeds. Using these metrics, we were able to numerically and statistically compare 

patterning across different experimental conditions.

As a proof-of-concept demonstration, we used Voronoï tessellation analysis to quantify the 

clusters formed using different concentrations of myoblasts (1.25 × 105–2 × 106 cells per 

mL). We observed that using a higher concentration of cells resulted in negligible change in 

cluster number but rather the formation of larger sized clusters (Fig. 1f and S5A and B†). 

These profiles were expected, given the conserved total area and number of pressure nodes 

in the system. Indeed, the capacity to generate uniform and well-defined clusters is a 

valuable characteristic of acoustic cell patterning and one that has been used to exert control 

over spheroid culture and organoid tissue engineering.11–13 In this context, accurate 

measurement of cluster size could be used to determine size thresholds for the formation of 

nutrient gradients or the developmental fate of stem cells. However, it should be noted that 
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this analysis provides a measure of cluster area not volume. This is not an issue for many 

systems: for instance, the clusters we formed using a low concentration of cells 

predominantly occupied a single layer. On the other hand, when cells are patterned at high 

concentration, they can occupy multiple layers within an acoustic node and may not 

contribute to the cluster size measurements made using Voronoï tessellation analysis. 

Indeed, this effect was evident in the non-linear relationship that we observed between cell 

concentration and cluster area (Fig. S5C†).

We were able to generate Voronoï diagrams from a range of cell structures, including low-

frequency clusters (2.1 × 2.1 MHz), high-frequency clusters (6.7 × 6.7 MHz) and linear 

arrays (2.1 MHz) (Fig. S6†). In these examples, we employed frequencies close to the 

known primary resonance and first harmonic of the piezotransducer in order to produce 

steep pressure gradients and well patterned clusters. Indeed, the piezotransducer resonance 

often dominates the chamber resonance of the device and can be viewed as one of the most 

critical factors for acoustic cell patterning. To investigate this effect, we captured confocal 

fluorescence micrographs of myoblasts patterned in cell medium using transducers driven at 

15 Vpp (corresponding to a mean squared pressure amplitude of 0.0051 (MPa)2 for this 

device) across a range of ultrasound frequencies (1.75–2.45 MHz) (Fig. 2a). This range was 

selected as it centered on the primary resonance of the piezotransducers (2.12 MHz), which 

was identified using impedance spectroscopy (Fig. 2b). We then used Voronoï tessellation 

analysis to quantify the cell cluster area, which revealed a strong association between the 

ultrasound frequency and the final pattern quality (Fig. 2c). As expected, the frequencies 

close to the piezotransducer resonance (2.05, 2.15, 2.25 MHz) produced a tight distribution 

of large clusters, due to effective acoustic patterning. The more distant frequencies (1.75, 

2.45 MHz) generated clusters with statistically-significant differences in area distribution to 

the resonance condition (2.15 MHz) and much more similar to the control with no applied 

field. Moreover, the frequencies on the shoulder of the piezotransducer resonance (1.85, 

1.95, 2.35 MHz) produced clusters of intermediate size distribution, and interestingly, the 

highest median cluster area of the tested range. This result was attributed to the fact that 

offresonance patterning produces loosely aggregated cell clusters with a greater size than the 

tightly-packed clusters formed at resonance. Indeed, we used Voronoï tessellation to 

calculate the number of clusters per image and the density of the largest 16 clusters across 

the patterned range (Fig. 2d). This analysis revealed a strong association between the cluster 

number minimum and the cluster density maximum, which were both centered around 2.15 

MHz.

We next investigated how Voronoï tessellation could be used to characterize myoblasts 

patterned in solution across a range of pressure amplitudes. First, we used a hydrophone 

mounted on a motorized stage to map the pressure field generated by a 2.1 × 2.1 MHz 

ultrasound field at different load voltages (0–15 Vpp). Unsurprisingly, the devices driven 

with higher load voltage produced standing waves with higher mean squared pressure 

amplitude (Fig. 3a and S7†). Importantly, the steeper pressure gradients produced by the 

higher load voltages appeared to produce more defined cell clusters (Fig. 3b). For this 

analysis, we identified the barycenter of the clusters detected from the Voronoï tessellation 

maps and mapped their x and y coordinates individually, in order to assess the performance 

of each piezotransducer pair (Fig. 3c). This analysis, which we also performed in two 
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dimensions (Fig. S8†), showed that driving the patterning device at higher load voltage 

generated a more periodic distribution of barycenter coordinates. Indeed, when the higher 

load voltage systems were fitted to a tetramodal curve, we were able to measure peak-to-

peak separation distances of 0.36 ± 0.02 and 0.36 ± 0.03 mm that were consistent with the 

theoretical half wavelength separation of the acoustic pressure nodes (0.35 mm, using an 

ultrasound frequency of 2.1 MHz and a speed of sound in water of 1482 m s−1) (Fig. S9†).

41 This geometric evaluation was consistent with numerical and dimensional analysis. Each 

micrograph encompassed a 4 × 4 array of pressure nodes, so in theory, a perfectly patterned 

system would comprise 16 uniformlysized clusters. Voronoï tessellation analysis revealed 

the 15 Vpp/0.0051 (MPa)2 system to have a small number of clusters (N = 17 ± 1) with a 

relatively large median cluster size (Ã = 4.6 ± 0.3 × 103 μm2). When we reduced the load 

voltage, we observed a large increase in cluster number and a concomitant decrease in 

cluster area (Fig. 3d and e). These observations are consistent with theory; the acoustic 

radiation force experienced by a cell is proportional to the mean squared pressure (F α〈|p0|
2〉). Although a radiation force will be exerted in all field-exposed systems, this analysis 

showed that the load voltage must exceed a certain threshold limit (6 Vpp/0.0017 (MPa)2) in 

order to produce pressure gradients capable of generating detectable cell clusters.

Recently there has been interest in moving away from solution-based arrays towards 

approaches that use biomaterial systems to encapsulate and preserve acousticallypatterned 

cell arrays (e.g. hydrogels of poly(ethylene glycol) norbornene,15 Matrigel,15 fibrin,16,17 

alginate,30 agar/agarose,15,30 collagen,15,19,20,42 gelatin methacryloyl15,18). In these 

examples, cells are acoustically patterned in a liquid hydrogel precursor before or during a 

triggered crosslinking process (e.g. enzymatic, thermal, pH, ultraviolet irradiation). The 

chemical and physical properties of the biomaterial components, the total weight percentage 

and any pre-gelation crosslinking will dictate the rheological properties of the liquid 

precursor, and thus the degree of constraint placed upon the acoustic patterning process. 

Accordingly, we used Voronoï tessellation to assess the relationship between viscosity and 

cluster formation (Fig. 4a). For this study, we used a two-component hydrogel system, 

namely a photo-crosslinkable 8-arm PEG norbornene hydrogel precursor that was 

systematically doped with high molecular weight PEG (0–3% w/v). We used rheological 

creep tests to measure a respective viscosity of 16.7 ± 0.1, 20.7 ± 0.2, 26.2 ± 0.2 and 38.8 

± 0.2 mPa s for the systems containing 0, 1, 2 and 3% (w/v) PEG dopant (Fig. 4b). We used 

a 2.1 × 2.1 MHz field to acoustically pattern myoblasts within these four hydrogel 

precursors, followed by a 2 min exposure to ultraviolet light, in order to immobilize the 

arrays in a self-supporting hydrogel (see Experimental for more details). The center of the 

hydrogel contained a uniform array of clusters (Fig. S10†), which we imaged and analyzed 

using Voronoï tessellation analysis. As expected, the cluster size distribution was impacted 

by increasing the viscosity, with 3% dopant producing a cluster area profile with 

statistically-significant difference to the undoped system (Fig. 4c). Moreover, the proportion 

of clustered seeds (Z) was markedly decreased in the 2% (Z = 42 ± 3%) and 3% (Z = 19 

± 3%) systems compared to the undoped hydrogel (Z = 54 ± 3%) (Fig. 4d). These results 

highlight the implications for acoustic patterning applications that require high viscosity 

hydrogels. More generally, this route offers a means to quantifiably determine the viscosity 

limits for acoustic patterning in different biomaterial systems.
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The results described thus far demonstrate the capacity of Voronoï tessellation for 

quantifying cluster formation at single timepoints during the acoustic cell patterning process. 

In practice, however, the cluster definition improves over time as the acquired potential 

energy of the cells is converted into kinetic energy and the cells are translated towards the 

acoustic pressure nodes. Here, we used timelapse microscopy and Voronoï tessellation to 

investigate the dynamics of the acoustic patterning process. Specifically, we employed in 
situ confocal fluorescence microscopy to capture the patterning of myoblast clusters formed 

using a 2.1 × 2.1 MHz ultrasound field (Fig. 5a and video S1†). We tracked the x and y 
barycenter coordinates of the clusters, both prior to field exposure (−5 to 0 s) and during 

patterning (0 to 30 s) (Fig. 5b and S11†). This revealed a transition from a broadly uniform 

distribution to a periodic profile comprising four distinct peaks. In order to quantify this 

system, the profiles were fitted to a tetramodal Gaussian distribution mixture based on the 

expectation maximization algorithm43 and the variance of the peaks expressed as a function 

of time (Fig. 5c and S12 and 13†). This revealed a rapid decrease in variance, as the cell 

patterning transitioned the system from relatively uniform distributions into periodic arrays 

fitted with narrow Gaussian distribution curves. In addition to this coordinate analysis, the 

cluster area and proportion of clustered seeds proved to be particularly insightful metrics for 

characterizing the patterning process (Fig. 5d). For the five seconds prior to field exposure, 

the system was predominantly composed of small clusters (Ã < 5 × 102 μm2) and a low 

proportion of clustered seeds (Z < 20%). Initiating the patterning process produced rapid 

increases in both cluster area and proportion of clustered seeds to produce a final system that 

exhibited a stable and consistent profile after 20 s of patterning (Ã > 6 × 102 μm2, Z > 35%). 

This analysis clearly demonstrates how Voronoï tessellation can be used for spatiotemporal 

quantification and kinetic evaluation of acoustic cell patterning.

We next applied Voronoï tessellation to characterize spatiotemporal changes that occur after 

acoustic cell patterning. For this study, we used a common experimental approach of 

patterning cells onto a substrate and then removing the acoustic field once the cells have 

adhered.24,25,27,33 Without the field, there are no external forces acting to constrain the 

cells to their patterned configuration.25 As a result, there is almost always some degree of 

pattern loss over time, due to normal cell processes such as membrane spreading, migration 

and proliferation.24,25,27 Generally, this effect is greater than for cells grown on surfaces 

engineered with topographic, mechanical or chemical cues, which are able to exert long-

term effects during culture.44–46 In some cases, pattern loss is slow and does not hinder the 

final application: for instance, Gesellchen et al. showed that Schwann cells largely retained 

their patterned configuration on glass for at least 24 h, and could be used to guide neurite 

outgrowth from a dorsal root ganglion for a further four days.27 However, pattern loss will 

depend on factors such as the cell type and environment: for instance, Li et al. showed that 

linear arrays of HeLa cells were reasonably well preserved after 24 h in monoculture, but 

over the same time period, cocultured HeLa cells and endothelial cells each lost their 

patterned configuration.24 To the best of our knowledge, the only reported analysis of 

acoustically-patterned cultures involved the tracking of individual cells24 and individual 

clusters.25 Accordingly, we sought to characterize the population-wide pattern loss using 

live-cell microscopy of C2C12 myoblasts expressing cytosolic GFP. Specifically, we 
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generated uniform clusters of adherent myoblasts on the surface of laminin-coated glass, and 

then imaged the cells over 18 h of culture using timelapse wide field microscopy (Fig. 6a).

As before, we used Voronoï tessellation to measure the distribution in the cluster barycenter 

coordinates over time. This provided an effective means of visualizing the loss of pattern 

fidelity, with the clusters spreading out from the acoustic nodes to fully occupy the 

coordinate space (Fig. 6b). We also used Voronoï tessellation to monitor the median area of 

the nine largest clusters (Ã) and the total number of clusters over time (N), which provided 

interesting insights into the dynamic changes occurring over the culture period (Fig. 6c). 

During the first hour of culture, in the early stages of cell-substrate adhesion, the initial 

patterning profile was well maintained (Ã < 1.0 × 103 μm2, N < 15 at t < 1 h). After this 

initial lag period, the clusters remained largely intact but underwent membrane spreading; 

this was characterized by an unchanged cluster number but an increase in cluster size (Ã = 

2.2 × 103 μm2, N = 13 at t = 3.5 h). The next transition saw a steady increase in cluster 

number, due to the outward migration of myoblasts from the patterned clusters (Ã = 2.5 × 

103 μm2, N = 60 at t = 18 h). This rapid deterioration in pattern quality affords an 

exceptionally small window of opportunity to study biological processes, a factor that has 

limited acoustically-patterned culture systems to a small number of studies with short term 

outcomes.24,27 We hypothesized that we could extend this time frame by restricting 

migration with a constraining matrix. Indeed, by layering Matrigel on the surface of the 

adherent myoblasts we were able to slow cell migration and retain the acoustically-formed 

clusters over a greater period of time (Fig. 6d and e). Interestingly, the eventual loss of 

definition in the Matrigel system appeared to be dominated by cell proliferation, as opposed 

to the outward migration seen in the uncoated clusters. This was reflected in the Voronoï 

tessellation metrics; the coated system produced appreciably larger clusters during the 

intermediate stages (Ã = 8.3 × 103 μm2 at t = 10 h) than in the uncoated system (Ã = 2.8 × 

103 μm2 at t = 10 h) (Fig. 6f). This migration analysis provides a further demonstration of 

how Voronoï tessellation can be applied to quantitatively characterize spatiotemporal 

processes in acoustically-patterned cell cultures.

Finally, we sought to demonstrate that Voronoï tessellation analysis can be applied to 

acoustically-patterned cells that were not labelled with any fluorescent marker. We generated 

5% (w/v) PEG norbornene hydrogels patterned with unlabelled myoblasts using a 2.1 × 2.1 

MHz ultrasound field, as described previously. We removed the hydrogel from the device 

and imaged the clusters using bright field, differential interference contrast and phase 

contrast microscopy (Fig. S14†). We were able to analyze these images using Voronoï 

tessellation, with little difference observed between the identified clusters.

Conclusions

Acoustic cell patterning is rapidly emerging as an important biotechnological platform for 

guiding cell organization in culture and tissue engineering. While patterning capabilities are 

rapidly advancing and applications are broadening in exciting new directions, there is a 

conspicuous absence of quality control checks and quantitative characterisation. Here, we 

have employed a sophisticated Voronoï tessellation protocol to identify and quantify 

acoustically-formed cell clusters. Specifically, we have used this technique to extract 
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quantitative information (cluster density, number, area, barycenter, and proportion of 

clustered seeds) to assess the quality of acoustic patterning under different experimental 

conditions (pressure amplitude, ultrasound frequency, cell concentration, solution viscosity). 

Moreover, we have shown that spatiotemporal analysis can be used to quantify the cell 

patterning process and the post-patterning migration of cells. This analysis is simple, 

unbiased and highly informative, and we anticipate several areas in which it could be used to 

aid the acoustic patterning process. As Voronoï tessellation enables numerical and statistical 

comparison of cell patterning, it can be used to test empirical limits and explore the 

parameter space of different experimental conditions. In this mode, Voronoï tessellation 

could be used to determine geometrical thresholds in different biological systems, for 

instance, to identify the cluster size regimes required for different developmental pathways 

in acoustically-formed spheroid cultures. Practically, Voronoï tessellation could also be used 

to provide important quality control checks by quantifying the variation between different 

ultrasound devices and piezotransducer pairs, as well as their deterioration over time. Taken 

together, this information may then be used to predict the pattern features of cell/biomaterial 

systems that are yet to be tested. These varied applications of Voronoï tessellation provide a 

systematic framework for acoustic cell patterning and will enable a more robust and 

quantitative approach towards this rapidly developing biotechnology. Moreover, the 

principles outlined in this report should be readily applied to naturally-formed colonies or 

clusters,47,48 as well as organized structures formed using other technologies, such as 

dielectrophoretic patterning,49 material-based cues,50 or bioprinted cell systems.4

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Demonstration of acoustic cell patterning and Voronoï tessellation analysis.
(a) A custom-built acoustic patterning device was assembled with four orthogonal 

transducers surrounding a central cavity enclosing a 35 mm tissue culture dish holding a cell 

suspension. The piezotransducers were driven at resonance frequency to generate ultrasound 

standing waves capable of producing clustered arrays of cells (blue, inset). (b) Confocal 

fluorescence microscopy was used to capture micrographs of clusters of cells (green) after 5 

min of acoustic patterning. Scale bar = 200 μm. (c) High intensity pixels were used to 

determine seeds (red markers), (d) which were used to construct a Voronoï tessellation map. 

(e) A threshold of the seed density was then used to identify cell clusters (blue). (f) This 

approach enabled quantitative assessment under different experimental conditions, for 

example, the measurement of cluster area at different cell concentrations. This information 

can then be used, if necessary, to inform the parameters of any future acoustic patterning. 

The data shown was collected from four separate images per group and plotted as median ± 

interquartile range. For a full analysis of the effect of cell concentration, refer to Fig. S5.†
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Fig. 2. Voronoï tessellation analysis of clusters formed at different ultrasound frequencies.
(a) Representative confocal fluorescence micrographs of myoblasts (green) imaged after a 5 

min exposure to an acoustic field across a range of ultrasound frequencies. Scale bars = 200 

μm. (b) Impedance spectroscopy was used to characterize the frequency response for each 

piezotransducer pair (blue and orange traces). An impedance minimum corresponding to the 

material resonance was identified at 2.12 MHz for each pair (black dashed line). (c) Voronoï 

tessellation was used to quantify the cluster area at different frequencies. Tight clusters were 

formed around the piezotransducer resonance (2.05–2.25 MHz), while larger, more 

polydisperse clusters were observed at the shoulders of the resonant frequency (1.85, 1.95, 

2.35 MHz). Data was collected from four separate images per group, plotted as median ± 

interquartile range and statistically treated using a Kruskal–Wallis test with Dunn's 

correction for multiple comparisons (n.s. is nonsignificant, *** is p < 0.001). (d) Voronoï 

tessellation also revealed a minimum in the number of clusters per image (green box plot, 

left y-axis) at the frequencies close to resonance (2.05–2.25 MHz). This trend mirrored a 

peak maximum observed in the density of the largest 16 clusters of each image (red box 

plot, right y-axis). Data was collected from four separate images per group, and plotted as 

the mean, interquartile range and 95% confidence intervals.
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Fig. 3. Voronoï tessellation analysis of clusters formed in different pressure amplitude fields.
(a) A hydrophone was scanned across the center of an acoustic patterning device to map the 

mean squared pressure amplitude at different load voltages. Scale bars = 200 μm. For low 

magnification maps, refer to Fig. S7.† (b) Representative confocal fluorescence micrographs 

of myoblasts (green) imaged after a 5 min exposure to an acoustic field across the same 

voltage range. Scale bars = 200 μm. (c) The cluster barycenter coordinates, output from the 

Voronoï tessellation analysis, were plotted for each ultrasound standing wave pair (x = red, y 
= blue). The higher amplitude fields produced clusters with barycenters localized at periodic 

intervals corresponding to the acoustic nodes of the standing wave. Data was collected from 

three separate images per group. For a full analysis, refer to Fig. S8 and 9.† (d) Voronoï 

tessellation was also used to quantify the number of clusters per image. In higher amplitude 

fields, this value tended towards 16 (red line), which was equivalent to the number of 

acoustic nodes in each field of view. Data was collected from three separate images per 

group, and plotted as the mean, interquartile range and 95% confidence intervals. (e) Raising 

the pressure amplitude also produced an increasingly tight distribution of large cell clusters. 

Data was collected from three separate images per group, plotted as median ± interquartile 

range and statistically treated using a Kruskal–Wallis test with Dunn's correction for 

multiple comparisons (n.s. is nonsignificant, *** is p < 0.001).
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Fig. 4. Voronoï tessellation analysis of clusters formed in different viscosity systems.
(a) Representative confocal fluorescence micrographs of myoblasts (green) acoustically 

patterned within PEG norbornene hydrogels containing a concentration range of high 

molecular weight PEG dopant (0–3% w/v). The hydrogels were photocrosslinked after 5 

min of patterning, swollen overnight in PBS and then imaged. An undoped control was 

included without any applied field. Scale bars = 200 μm. (b) Rheological creep tests at 2 Pa 

stress were used to characterize the viscosity of the PEG norbornene precursor solution with 

a PEG dopant concentration of 0% (black), 1% (magenta), 2% (blue) and 3% (green). (c) 

The cluster area profile was measured for each dopant concentration to provide a 

quantitative measure of pattern formation across the viscosity range. Data was collected 

from three separate images per group, plotted as median ± interquartile range and 

statistically treated using a Kruskal–Wallis test with Dunn's correction for multiple 

comparisons (n.s. is nonsignificant, *** is p < 0.001). (d) Voronoï tessellation was also used 

to measure the proportion of total seeds that were detected within a cluster. Data was 

collected from three separate images per group and plotted as mean, interquartile range and 

95% confidence intervals.
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Fig. 5. Spatiotemporal Voronoï tessellation analysis of the acoustic cell patterning process.
(a) Time-lapse confocal fluorescence micrographs of myoblasts (green) in culture medium, 

imaged at intervals during acoustic cell patterning. Scale bars = 200 μm. (b) The x and y 
coordinates of the cluster barycenters were plotted as a function of time. Data was collected 

from four separate videos of patterning, here, one representative x coordinate dataset is 

shown. For the full coordinate analysis, refer to Fig. S11.† (c) The cluster barycenter 

analysis was used to define histogram profiles at 1 s intervals, which were fitted to a 

tetramodal Gaussian distribution mixture based on the expectation maximization algorithm. 

The variance on the four identified peaks was relatively high in the initial unpatterned 

system but decreased as the acoustic patterning generated periodic cell arrays. Data plotted 

as mean ± standard deviation from tetramodal fits of four separate videos of patterning, with 

only the x coordinate data shown. For all data fitting and the y coordinate variance analysis, 

refer to Fig. S12 and 13.† (d) This process could also be visualized by describing the 

proportion of clustered seeds as a function of median cluster area. A clear transition could be 

observed between two distinct regions: the unpatterned cell suspension with small clusters 

and a low proportion of clustered seeds (t < 3 s) and the patterned arrays with large clusters 

and a high proportion of clustered seeds (t > 13 s).
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Fig. 6. Spatiotemporal Voronoï tessellation analysis of patterned cell migration.
(a) Time-lapse wide field micrographs of acoustically-patterned myoblasts (green) adhered 

to a laminin-coated glass substrate, imaged during culture in expansion medium. (b) 

Spatiotemporal Voronoï tessellation was used to identify clusters at each time point, with the 

x and y coordinates of the cluster barycenters plotted over time. Here, only the x coordinate 

dataset is shown. (c) Voronoï tessellation was also used to track the median area of the 

largest nine clusters (those corresponding to the clusters formed at the acoustic nodes) and 

the number of clusters per image. (d) Matrigel was used to slow the migration of the 

myoblasts from the original pattern, with an identical spatiotemporal analysis used to define 

the change in (e) cluster barycenter coordinates, (f) the median area of the largest nine 

clusters and the number of clusters per image. In each case, the Voronoï tessellation analysis 

was used to track a single timelapse video. All scale bars = 200 μm.
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