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Chapter Summary

Sortases cleave short peptide motif sequences at the C-terminal end of secreted surface protein 

precursors and either attach these polypeptides to the peptidoglycan of Gram-positive bacteria or 

promote their assembly into pilus structures that are also attached to peptidoglycan. Sortase A, the 

enzyme first identified in the human pathogen Staphylococcus aureus, binds LPXTG motif sorting 

signals, cleaves between threonine (T) and glycine (G) residues and forms an acyl-enzyme 

between its active site cysteine thiol and the carboxyl-group of threonine (T). Sortase A acyl 

enzyme is relieved by the nucleophilic attack of the crossbridge amino group within lipid II, 

thereby generating surface protein linked to peptidoglycan precursor. Such products are 

subsequently incorporated into the cell wall envelope by enzymes of the peptidoglycan synthesis 

pathway. Surface proteins linked to peptidoglycan may be released from the bacterial envelope to 

diffuse into host tissues and fulfill specific biological functions. S. aureus sortase A is essential for 

host colonization and for the pathogenesis of invasive diseases. Staphylococcal sortase-anchored 

surface proteins fulfill key functions during the infectious process and vaccine-induced antibodies 

targeting surface proteins may provide protection against S. aureus. Alternatively, small molecule 

inhibitors of sortase may be useful agents for the prevention S. aureus colonization and invasive 

disease.

Introduction

Prior to bacterial genome sequencing and the genetic analysis of pathogenesis, 

microbiologists identified molecules on microbial surfaces and studied their role in disease 

processes (1). Ultimate goal of this research was the identification molecular formulations 

inciting antibody responses in vaccine recipients that prevented disease yet would otherwise 

not cause harm (2). Oswald Avery’s discovery of the pneumococcus capsule and the 

demonstration that capsular polysaccharide vaccine protects against pneumococcal 

pneumonia, represents an important paradigm (3, 4). Another was Rebecca Lancefield’s 

characterization of M protein as the determinant of type-specific immunity against 

Streptococcus pyogenes, the causative agent of streptococcal pharyngitis and rheumatic 

fever (2). Lancefield and Sjöquist required proteases or peptidoglycan (murein) hydrolases, 

but not membrane detergents, to solubilize surface proteins of Gram-positive bacteria (2, 5, 
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6). The underlying reason for this biochemical phenomenon is that surface proteins are 

covalently linked to peptidoglycan at their C-terminal ends (7, 8).

Whole genome sequencing enabled bioinformatic studies providing rapid answers about the 

universality of genetic traits among pathogens or about sequence variation in response to 

host adaptive immune (antibody) responses (9). While bioinformatic analyses have had 

tremendous impact in supporting or refuting hypotheses about surface proteins in Gram-

positive bacteria, experimental work represents the bedrock for hypothesis testing and for 

the alignment of arguments supporting bacterial vaccine development.

Staphylococcal sortases and their surface protein substrates

Surface proteins of S. aureus are amide linked to the pentaglycine crossbridge of the 

bacterial cell wall via their C-terminal threonine residue (8). Precursors of staphylococcal 

surface proteins are synthesized in the bacterial cytoplasm with N-terminal signal peptides 

for Sec-mediated secretion and C-terminal LPXTG motif sorting signals that promote cell 

wall anchoring (FIG. 1A) (10). Sortase A, a type II membrane protein (N-terminal 

membrane anchor) cleaves the LPXTG motif of the sorting signal between its threonine (T) 

and glycine (G) residues to form a thioester-linked acyl enzyme intermediate with its active 

site cysteine thiol (11, 12) (FIG. 1B). The acyl enzyme is relieved by the nucleophilic attack 

of the amino group of the pentaglycine crossbridge within lipid II, the precursor to 

peptidoglycan biosynthesis (13, 14) (FIG. 1B). Surface protein-linked to lipid II is 

subsequently incorporated into the cell wall envelope via the transglycosylation and 

transpeptidation reactions of bacterial cell wall synthesis (15–18) (FIG. 1B). S. aureus srtA 
(sortase A) mutants cannot assemble surface proteins into the cell wall envelope (19). The 

mechanism of action of S. aureus sortase A was validated for Listeria monocytogenes and 

Bacillus anthracis (20–22) and is considered to be universal in Gram-positive bacteria (23).

Genome sequences of all clinical S. aureus isolates harbor two sortase genes, srtA and srtB, 

however the number of surface protein genes is variable (Table 1) (24–26). Sortase A 

substrates bear the LPXTG motif sorting signal at their C-terminal end (Table 1) (27). 

Sortase B cleaves the NPQTN sorting signal of IsdC (iron-regulated surface determinant C), 

a protein that is linked to the cell wall when staphylococci are grown under iron-starvation 

conditions, as occurs during host invasion (28). Several sortase A substrates have been 

described as microbial surface components recognizing adherence matrix molecules or 

MSCRAMMs (29). These include ClfA, ClfB, Cna, FnbpA, FnbpB, and presumably also 

Pls, SraP, SasG, SrdC and SdrD, albeit that the identify of surface protein ligands in the 

latter group of proteins remains unclear (Table 1). Each MSCRAMM represents a mosaic of 

modular domains (30, 31). A surface exposed, N-terminal, A domain is generally endowed 

with ligand-binding activity. Repeat structural modules allow MSCRAMMs to span the 

thick peptidoglycan layer of staphylococci (30, 31). ClfA, ClfB, SrdC, SdrD, SdrE, Pls, and 

SraP each encompass extensively glycosylated serine-aspartate (SD) repeat domains (32–34) 

(Table 1).

The srtB and isdC genes are located in the isd locus, which also encodes sortase A-anchored 

products IsdA and IsdB, the membrane-transporter IsdEF, and the cytoplasmic protein IsdG 
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(35). The structural gene for sortase A anchored IsdH is located outside of the isd locus (36). 

IsdB and IsdH function as hemophores to remove heme-iron from hemoglobin and 

haptoglobin when hemoproteins are released from lysed host cells (36–39). IsdH competes 

with macrophage receptor CD163, the host recycling system for free hemoglobin, for the 

capture of heme from haptoglobin-hemoglobin (40). Bound heme-iron is transferred from 

the NEAT (near-iron-transporter) domains of IsdB or IsdH to the NEAT-domain of IsdA for 

subsequent passage across the cell wall to IsdC and IsdEF-mediated import across the 

membrane (35). IsdG and its paralogue IsdI cleave the tetrapyrrole ring of heme-iron to 

liberate iron as a bacterial nutrient and enzyme co-factor (37, 41, 42). The sortase B-IsdC 

acyl enzyme intermediate is resolved by the nucleophilic attack of assembled peptidoglycan 

instead of lipid II (43). This mechanism ensures that IsdC is attached to peptidoglycan in the 

vicinity to the IsdEF membrane transporter, whereas IsdA and IsdB are deposited across the 

peptidoglycan layer (44).

Sortases and surface protein contributions to S. aureus colonization and 

disease pathogenesis

S. aureus srtA mutants cannot colonize the nasopharynx and gastrointestinal tract of mice 

(45, 46). Further, staphylococcal srtA mutants cannot form abscess lesions or survive in 

mouse tissues (19, 47). Following intravenous S. aureus inoculation to precipitate lethal 

bacteremia in mice or guinea pigs, srtA mutants are avirulent and cannot cause disease (48, 

49). In the mouse skin abscess lesion and pneumonia models, S. aureus srtA mutants display 

smaller reductions in virulence. We attribute the smaller phenotypic defects to the models’ 

requirements for large bacterial inocula and α-hemolysin secretion (50–52). S. aureus srtB 
mutants exhibit small but significant reductions in virulence in the mouse renal abscess, 

bloodstream and infectious arthritis models; these defects are additive with those of sortase 

A mutants (53).

Cheng and co-workers isolated S. aureus Newman mutants with insertional lesions any one 

gene encoding LPXTG motif surface proteins. Unlike srtA variants, all mutants retained the 

ability to cause renal abscess lesions and lethal bacteremia in mice (47, 48). However, loss 

of spa (staphylococcal protein A), isdA and isdB resulted in significant reductions in the 

number of abscess lesions (47). Mutations in the genes for clumping factor A (clfA) or 

adenosine synthase A (adsA) caused significant delays in time-to-death in the murine model 

for S. aureus bacteremia (48). When analyzed with human nasal epithelial cells, cotton rats 

or mice as models for S. aureus colonization, srtA mutants are unable to colonize the 

nasopharynx and gastrointestinal tract (54–56). In these models, clumping factor B (ClfB) 

and IsdA, stand out as key contributors to S. aureus colonization (55, 57, 58). Thus, 

compared to any other virulence gene, srtA mutations exhibit the largest reduction in the 

ability of S. aureus to colonize and invade its hosts. Further, the sortase substrates AdsA, 

ClfA, ClfB, IsdA, IsdB, and SpA make important, non-redundant contributions towards 

colonization, invasion of host tissues or the establishment of abscess lesions.
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Staphylococcal protein A (SpA)

All clinical S. aureus isolates harbor the spa gene, which generates a precursor comprised of 

an N-terminal YSIRK/GXXS signal peptide, followed by 4–5 immunoglobulin binding 

domains (IgBDs), the region X repeats (Xr), LysM domain, and LPXTG sorting signal (23, 

59, 60) (FIG. 1). SpA precursors enter the secretory pathway at septal membranes via their 

YSIRK/GXXS signal peptide (61–63). Once SpA is deposited into the cross wall, septal 

peptidoglycan is split and the cross wall assumes one-half of the spherical surface of S. 
aureus cells (61, 63). Staphylococci divide perpendicular to previous cell division planes 

resulting in rapid SpA distribution over the entire bacterial surface (61). During cell division, 

dedicated murein hydrolases release SpA molecules from the peptidoglycan (64, 65). SpA-

linked to cell wall peptide fragments is thereby released into host tissues (66) (FIG. 1). 

Released SpA activates VH3 idiotype B cell receptors (BCRs) and promotes IgG and IgM 

secretion in activated plasmablasts (67, 68) (FIG. 2A). When displayed in the bacterial 

envelope, SpA binds to Fcγ, i.e. the effector domain of IgG, and protects staphylococci from 

opsonophagocytic killing by immune cells (49, 69) (FIG. 2A). The five IgBDs of SpA each 

bind to Fcγ of human (IgG1, IgG2 & IgG4) and mouse (IgG1, IgG2a-c & IgG3) IgG (70, 

71) (FIG. 2B). Each IgBD also binds VH3 heavy chains of human and mouse 

immunoglobulin, including IgM (BCRs), IgG, IgE, IgD and IgA (49, 68, 69, 72, 73) (FIG. 

2B). Thus, released SpA functions as a B cell superantigen that promotes systemic 

production of VH3-clonal IgG and IgM antibodies that do not recognize staphylococcal 

antigens, thereby preventing the development of pathogen-specific antibodies and the 

establishment of protective immunity (49, 67, 68). In spite of the B cell superantigen activity 

of SpA, S. aureus colonization and invasive disease in humans is associated with the 

development of antibody responses against some staphylococcal antigens, predominantly 

serum IgG4 (74–76). These antibodies are, however, not protective and cannot promote 

opsonophagocytic killing because they are captured by cell wall anchored SpA (71, 77–80).

Clumping factors A and B (ClfA and ClfB)

Vascular damage triggers blood coagulation, a process whereby soluble fibrinogen, a 340 

kDa dimer of trimers (α-,β-, γ-chains), is converted to insoluble fibrin following cleavage of 

fibrinopeptides A and B from the α- and γ-chains by thrombin; the prothrombinase complex 

Va/Xa is responsible for the conversion of prothrombin (PT) to active thrombin (81–83). The 

hemostatic system also immobilizes microbial invaders for destruction by the immune 

system (84). However, this does not occur with S. aureus. All clinical S. aureus isolates clot 

human or animal blood even in the presence of coagulation inhibitors (85). Coagulation is 

promoted by secreted coagulase (Coa) and von-Willebrand-factor binding protein (vWbp) 

bound to PT (86). Coa-PT and vWbp-PT complexes cleave the A and B fibrinopeptides of 

fibrinogen but do not cut any of the other thrombin substrates (FV, FVIII, FXI, FXIII, 

protein C, antithrombin and plasmin) (87). ClfA triggers S. aureus agglutination by binding 

to the C-terminal end of the fibrinogen γ-chain (residues 395–411), effectively capping and 

tethering Coa-PT- and vWbp-PT-polymerized fibrin cables to the staphylococcal surface 

(48). ClfA, the prototypical MSCRAMM, is comprised of an N-terminal A domain with N1, 

N2, and N3 subdomains, an EF-hand like calcium binding module and the SD repeat domain 

with 154 tandem seryl-aspartyl repeats (88). The N2 and N3 domains of ClfA (residues 229–

545) assume immunoglobulin-like folds and bind their fibrin/fibrinogen ligand via the 
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“dock, lock, and latch” mechanism (89–93). This interaction prevents further binding 

between fibrin/fibrinogen and the platelet integrin αIIbβ3 (94, 95). Thus, in addition to 

binding fibrinogen, ClfA functions as an inhibitor of platelet-fibrin clots. ClfB, which is also 

conserved among S. aureus isolates, represents a homologue of ClfA. The A domains of the 

two proteins are 26% identical (96) and both proteins use YSIRK/GXXS signal peptides, 

glycosylated SD repeats and LPXTG motif sequences as topogenic elements (32, 62). ClfB 

binds to several host proteins, including the Aα-chain of fibrinogen (97, 98), cytokeratin 8 

(99), cytokeratin 10 (100, 101), and loricrin (102) (Table 1). These mammalian proteins 

harbor a motif sequence, GSSGXG, that represents the binding site for ClfB (103) and and 

contributes to S. aureus colonization of nasopharynx of mice (102).

Adenosine Synthase A (AdsA)

S. aureus abscess lesions are composed of a bacterial nidus, the staphylococcal abscess 
community (SAC), encased within a pseudocapsule of fibrin, and surrounded by layers of 

immune cells (86, 104). In spite of large numbers of infiltrated neutrophils, mice are unable 

to eliminate staphylococci from abscess lesions and eventually succumb to the persistent 

infection (47). Although neutrophils use NETosis (extracellular DNA) to entangle 

staphylococci, NETs are degraded by staphylococcal nuclease (Nuc) and thereby fail to exert 

bactericidal activities (105). Nuclease digestion of NETs releases 5’ and 3’ monophosphate 

nucleotides that are converted by S. aureus AdsA into deoxyadenosine (dAdo)(106). AdsA-

mediated dAdo production triggers caspase-3 induced apoptosis of mouse and human 

macrophages and prevents phagocyte entry into the SAC (106). Human equilibrative 

nucleoside transporter 1 is responsible for the uptake of dAdo in phagocytes (107). 

Conversion of dAdo to dAMP is catalyzed by deoxycytidine kinase and adenosine kinase, 

and the subsequent formation of dATP triggers caspase-3 induced cell death (107). AdsA 

also converts adenosine nucleosides and nucleotides released during host cell lysis into 

adenosine, which binds adenosine receptors and triggers host immune suppression during 

bloodstream infection (108, 109).

Using sortases and surface proteins for vaccine development

The contribution of sortases towards S. aureus colonization and invasive disease provoked 

interest in surface proteins as vaccine antigens. Purified recombinant ClfA (A domain) 

generates antibodies that neutralize ClfA binding to fibrin/ogen and provide partial 

protection against lethal bloodstream infection and infectious arthritis in mice (110). Anti-

ClfA mouse hybridoma antibody or its cloned humanized variant tefibazumab bind to the 

ClfA N3 domain, inhibit fibrinogen binding (111, 112) and provide partial protection against 

lethal bloodstream infection in mice (113). Administration of clinical grade tefibazumab was 

safe in healthy human volunteers and in patients with methicillin-resistant S. aureus 
(MRSA) bacteremia but could not improve the clinical outcomes of these patients (114). 

Using ClfA immunized VelocImmune mice, MEDIMMUNE investigators isolated 

monoclonal antibody 11H10, with inhibitory activity for ClfA binding to fibrinogen (115). 

Human 11H10 IgG1 promotes MRSA opsonophagocytic killing with differentiated HL-60 

neutrophils (115) and increases the survival of mice with lethal MRSA bloodstream 

infection (116, 117). MEDIMMUNE seeks to develop 11H10 IgG1 in conjunction with 
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monoclonal antibody against α-hemolysin to improve the outcome of patients with 

ventilator associated pneumonia and other invasive diseases (115). PFIZER developed 

SA4Ag, a multicomponent vaccine composed of ClfA, capsular polysaccharide type 5 and 8 

conjugates, and manganese transporter C (118). SA4Ag is currently undergoing clinical 

efficacy evaluation in patients with instrumented posterior spinal fusion to protect against S. 
aureus surgical site and bloodstream infections (119).

Purified IsdB elicits antibodies that block heme-iron scavenging and provide partial 

protection against S. aureus bacteremia in preclinical models (120–122). IsdB-specific 

antibodies may also promote opsonophagocytosis of S. aureus (121, 123). In a phase 3 

clinical trial, IsdB (V710) immunization did not protect thoracic surgery patients from S. 
aureus surgical site infections (124). V710 immunization increased the risk for fatal S. 
aureus bacteremia five-fold over the control cohort; the molecular basis for this safety 

concern is not known (124).

Humans and mice cannot generate antibodies against the IgBDs of SpA, however SpA 

variants, engineered to exhibit reduced immunoglobulin binding, elicit SpA-neutralizing 

antibody responses (73). Animals with SpA-neutralizing antibodies exhibit dramatic 

increases in pathogen-specific antibody responses during colonization or invasive disease 

(46, 49, 69, 73). In fact, the corresponding SpA vaccine can protect against S. aureus 
colonization, renal abscess formation and lethal bloodstream infection (46, 49, 69, 73). 

Similarly, SpA-neutralizing monoclonal antibody protects against S. aureus colonization and 

invasive disease in mice (125, 126). SpA vaccines have not yet been subjected to clinical 

testing.

Sortase inhibitors

The complete transpeptidation reaction that is carried out by sortases can be recapitulated in 
vitro (12, 127, 128). However, most screens for sortase inhibitors have been conducted with 

assays measuring SrtA cleavage of LPXTG peptide (129). These inhibitors are generally not 

active in vivo, suggesting that in the envelope of S. aureus, sortase A may predominantly 

exist as an acyl-enzyme (130). Other inhibitors can block sortase A activity in vivo and such 

compounds abolish surface protein anchoring to the cell wall envelope of S. aureus and 

protect animals against lethal bloodstream infection (131, 132). Of note, sortase inhibitors 

may be useful for the prevention of S. aureus disease, as they can be expected to block 

colonization and invasion. Owing to the fact that the compounds cannot kill S. aureus, 

sortase inhibitors are unlikely to exhibit a therapeutic effect in individuals with active 

infectious disease (131).

Sortases in other pathogenic microbes

Gram-positive bacteria often harbor homologs of staphylococcal sortase A or class A 

sortases; only some microbes express sortase B homologs or class B sortases (133, 134). 

Based on structural features and substrate specificity, sortase homologs have been classified 

into six distinct classes A–F (135). Amongst bacterial pathogens, Corynebacterium 
diphtheriae and Bacillus anthracis harbor class C sortase genes, which are clustered with 
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surface protein genes containing LPXTG- and motif specific sorting signals (136, 

137).These genes encode pilus component: adhesin and pilin subunits. Class C sortases link 

adhesin and pilin subunits together to construct a pilus (136–140). Class C sortases cleave 

the LPXTG motif of pilins to form acyl-enzyme intermediates that are relieved by the 

nucleophilic attack of the ε-amino group of a conserved lysine (K) residue within the pilin 

motif of an incoming subunit (141–143). Pilin protomers are joined progressively to the 

pilus base; a housekeeping sortase terminates polymerization by transferring the whole 

structure to the peptidoglycan (142, 144). For additional information on the different classes 

of sortases and their distribution among various phyla, the reader is referred to a recently 

published review (135).

In conclusion, sortases are ubiquitous in Gram-positive bacteria, anchoring proteins and pili 

to peptidoglycan via a conserved transpeptidation mechanism. Sortase-mediated attachment 

of virulence factors in S. aureus has stimulated searches for sortase inhibitors and protective 

antigens. These strategies may lead to the development of drugs that can prevent hospital-

acquired infections or to protective vaccines that can prevent S. aureus colonization and/or 

invasive diseases.
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FIG. 1. 
Sortase-mediated anchoring to the cell wall envelope of Staphylococcus aureus using SpA as 

a model substrate. (A) Drawing to illustrate the primary structure of the SpA precursor with 

its N-terminal signal peptide and signal peptidase cleavage site, the five immunoglobulin 

binding domains (IgBDs), region X (Xr) LysM domain and C-terminal LPXTG motif 

sorting signal with cleavage site for sortase A. Cell wall-SpA is linked to peptidoglycan via 

an amide bond between the carboxyl group of the C-terminal threonine and the amino group 

of the pentaglycine crossbridge. Released-SpA is liberated from the cell wall envelope via 

the action of several murein hydrolases. (B) Drawing to illustrate S. aureus secretion of SpA 

precursor, sortase-mediated cleavage of SpA precursor and acyl-enzyme formation, 
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resolution of the acyl-enzyme by lipid II to generate SpA-linked to lipid II, incorporation of 

SpA into the cell wall via the transpeptidation and transglycosylation reaction, and release of 

SpA from the cell wall envelope by murein hydrolases. Released SpA bears the overall 

structure: L-Ala-D-iGln-L-Lys(SpA-LPET-Gly5)-D-Ala-Gly4.
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FIG. 2. 
Biological functions of staphylococcal protein A (SpA). (A) Staphylococcus aureus and its 

antibiotic-resistant isolates (MRSA) harbor SpA in the cell wall envelope or released into the 

extracellular milieu (released-SpA). Cell wall-SpA binds Fcγ of human and animal IgG 

(green segment within blue IgG) and blocks the effector functions of antibodies, thereby 

preventing opsonophagocytic killing (OPK) of MRSA by immune cells through interference 

with complement (CR1) and Fcγ receptors (FcγRs). Released-SpA crosslinks VH3-clonal B 

cell receptors (VH3-BCR on the surface of B cells), triggering B cell proliferation and 

secretion of VH3-clonal IgM and IgG (pink segments within blue IgG) without antigen-

specificity for S. aureus. This B cell superantigen activity (BCSA) of SpA produces 

irrelevant VH3-clonal IgG and prevents the establishment of protective immunity against S. 
aureus. (B) Drawing to illustrate the primary structure of human IgG with variable (VL and 

VH) and conserved (CL and CH1, CH2 & CH3) light (L) and heavy (H) chains, their antigen-

binding paratope (Ag), VH3 and Fcγ domains. SpA binding sites at VH3 heavy chains and 

Fc γ are identified in pink and green color, respectively.
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