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Abstract

Cannabis use is a heritable trait that has been associated with adverse mental health outcomes. In 

the largest genome-wide association study for lifetime cannabis use to date (N=184,765), we 

identified 8 genome-wide significant independent single nucleotide polymorphisms in 6 regions. 

All measured genetic variants combined explained 11% of the variance. Gene-based tests revealed 

35 significant genes in 16 regions, and S-PrediXcan analyses showed that 21 genes had different 

expression levels for cannabis users versus non-users. The strongest finding across the different 

analyses was CADM2, which has been associated with substance use and risk-taking. Significant 

genetic correlations were found with 14 of 25 tested substance use and mental health traits, 

including smoking, alcohol use, schizophrenia, and risk-taking. Mendelian randomization analysis 
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showed evidence for a causal positive influence of schizophrenia risk on cannabis use. Overall, our 

study gives new insights about the etiology of cannabis use and its relation with mental health.

Cannabis is a widely used psychoactive substance and its use is associated with various 

adverse (mental) health outcomes, including psychosis and schizophrenia 1–3. Successful 

prevention and intervention efforts aimed at reducing cannabis use, misuse, and related 

outcomes require a better understanding of why some people use cannabis whereas others do 

not. Lifetime cannabis use, defined as any use of cannabis during lifetime, is a heritable trait: 

a meta-analysis of twin studies estimated the heritability to be approximately 45% 4. Twin 

studies have shown there is substantial overlap in the genetic factors influencing cannabis 

use and those underlying problematic cannabis use (abuse/dependence) 5,6.

Several genome-wide association studies (GWASs) have tried to identify genetic variants 

underlying cannabis use phenotypes 7–11. Recently, Demontis et al. 11 performed the largest 

GWAS for cannabis use disorder to date with a discovery sample of 2,387 cases and almost 

50,000 controls, plus a replication sample of 5,501 cases and ~300,000 controls. They found 

one genome-wide significant risk locus for cannabis use disorder, a single nucleotide 

polymorphism (SNP) that is a strong marker for CHRNA2 expression. Their follow-up 

analyses showed that cannabis dependent individuals had a decreased expression of this 

gene in the cerebellum as well as in other brain regions.

The largest GWAS of lifetime cannabis use to date is from the International Cannabis 

Consortium (ICC) and is based on a sample size of 32,330 individuals in the discovery 

sample along with 5,627 individuals in the replication sample 10. Although no individual 

SNPs reached genome-wide significance, gene-based tests identified four genes significantly 

associated with lifetime cannabis use: NCAM1, CADM2, SCOC, and KCNT2. Notably, 

NCAM1 has previously been linked to other substance use phenotypes (e.g. 12,13), and 

following publication of the manuscript, CADM2 was found to be associated with alcohol 

consumption 14, personality 15, reproductive succes and risk-taking behavior 16 in other 

GWASs. These results indicate that CADM2 may play a role in a broader personality profile 

of sensation seeking and risk taking behaviour in general. In the current paper we present a 

GWAS of lifetime cannabis use on a substantially larger sample, providing more power to 

identify genetic variants.

As mentioned, cannabis use has been linked to a variety of mental health outcomes, 

including substance abuse and dependence and psychiatric disorders 3. In particular, the 

relationship between cannabis use and schizophrenia has been the subject of intensive 

research and debate. It has long been established that the prevalence of cannabis use is 

higher in schizophrenia patients 17,18. A substantial body of evidence supports the 

hypothesis that cannabis use increases the risk for developing psychoses and schizophrenia 
19, but other hypotheses (i.e. schizophrenia increases the use of cannabis, or the association 

is due to (genetic) pleiotropy) have also been posed. Previous studies have shown that 

genetic risk factors for cannabis use and schizophrenia are positively correlated 20,21. 

However, a genetic correlation does not provide insight in the direction of causation. With 

Mendelian randomization it is possible to examine the causality of the association between 

cannabis use and schizophrenia, and recently it has become possible to apply this method 

Pasman et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2019 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using summary statistics from GWASs 22. Previous MR studies have investigated the link 

between lifetime cannabis use and schizophrenia, but findings were inconsistent. Vaucher et 

al. 23 tested for causal effects from cannabis use to schizophrenia and found evidence for a 

causal influence of cannabis use on schizophrenia risk. Gage et al. 24 tested bi-directional 

effects and found weak evidence for a causal effect of cannabis use on schizophrenia and 

much stronger evidence for a causal effect in the other direction. The results from our 

GWAS provide more power to examine the causal association between cannabis use and 

schizophrenia.

In the present study, we performed the largest GWAS for lifetime cannabis use to date. We 

increased the sample size substantially by meta-analysing GWAS results from the ICC study 

(N=35,297), along with new data from UK-Biobank (N=126,785) and 23andMe 

(N=22,683). The combined sample size of this study was N=184,765, a five-fold increase in 

sample size compared to the previous largest GWAS on lifetime cannabis use. We tested the 

association of millions of SNPs with lifetime cannabis use, and estimated the heritability of 

lifetime cannabis use based on all SNPs. Tests of association for individual genetic variants 

were complemented with gene-based tests of association and S-PrediXcan analysis. The 

latter was used to identify genes with differential expression levels in cannabis users versus 

non-users. We further estimated the genetic correlation of lifetime cannabis use with other 

traits, including use of other substances and mental health traits, such as schizophrenia. 

Lastly, we performed bi-directional two-sample Mendelian randomization analysis to 

examine whether there was evidence for a causal relationship from cannabis use to 

schizophrenia and vice versa.

Results

Genome-wide association meta-analysis

The meta-analysis resulted in 8 independent genome-wide significant SNP associations 

(linkage disequilibrium [LD] R2<0.1, window size 250 kb) on chromosomes 3, 7, 8, 11, 16, 

and 17 (Table 1, Supplementary Table S1, and Figure 1). The top SNP and 2 other 

independent associations were located in CADM2 on chromosome 3 (rs2875907, 

p=9.38e-17; rs1448602, p=6.55e-11; rs7651996, p=2.37e-09). Other hits were located in 

ZNF704, SDK1, NCAM1, RABEP2/ATP2A1, and SMG6 (Figure 2). All SNPs combined 

explained 11% (h2
SNP=0.11, SE=0.01) of the individual differences in lifetime cannabis use. 

Supplementary Figure S1-S3 and Table S2 provide information on results of the individual 

GWASs (ICC, UK-Biobank, and 23andme).

Gene-based test of association and expression

Gene-based tests of associations in MAGMA25 identified 35 genes genome-wide 

significantly associated with lifetime cannabis use (see Figure 3, Table 2, Supplementary 

Figure S4, and Supplementary Table S3). These genes were located in 5 regions that were 

already identified in the SNP-based analysis (including those containing CADM2 and 

NCAM1) and in 11 different regions (Supplementary Figure S5).
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S-PrediXcan analysis26 revealed 133 Bonferroni-corrected significant associations across 

tissues targeting 21 unique genes (Supplementary Table S4-S5). Eight genes were also 

significant in the gene-based test, whereas 13 were novel. For genes identified in multiple 

tissues, directions of effects were largely consistent across tissues (Supplementary Figure 

S6). Again, the most significant finding was CADM2; genetic variants associated with 

increased liability to use cannabis are predicted to upregulate expression levels of CADM2 
in 8 (non-brain) tissues, including whole blood (Z=5.88, p=4.17e-09). Of note, although 

CADM2 is expressed more widely in brain compared with other tissues (Supplementary 

Figure S7), the top SNP rs2875907 regulates the expression of CADM2 only in non-brain 

tissues (Supplementary Figure S8). Exploration of S-PrediXcan results in UK-Biobank data 

(https://imlab.shinyapps.io/gene2pheno_ukb_neale/) showed that CADM2 expression is 

significantly associated with multiple traits, including increased risk-taking, BMI, and 

reduced feelings of anxiety. Similar to the SNP- and gene-based tests of association, the S-

PrediXcan analysis detected a strong signal in a high-LD region at 16p11.2. Supplementary 

Table S3 provides an overview of all genes that were identified in the gene-based test of 

association and the S-PrediXcan analyses, along with information about the gene-product 

and previously identified associations with the gene.

Genetic correlations with other traits

Using our GWAS results and those of other GWASs, we estimated the genetic correlation of 

lifetime cannabis use with 25 traits of interest, including substance use, personality, and 

mental health phenotypes. Fourteen traits were significantly genetically correlated with 

lifetime cannabis use after correction for multiple testing (Figure 4 and Supplementary Table 

S6). Positive genetic correlations were found with substance use phenotypes, including 

smoking and alcohol use and dependence, as well as with mental health phenotypes, 

including ADHD and schizophrenia. Furthermore, positive genetic correlations were found 

with risk-taking behaviour, openness to experience, and educational attainment, as well as a 

negative correlation with conscientiousness.

Causal association between cannabis use and schizophrenia: Two-sample Mendelian 
randomization

A positive genetic correlation was found between genetic risk factors for cannabis use and 

schizophrenia (rg=0.24, SE=0.03, p<0.01). To examine whether there was evidence for a 

causal effect of cannabis use on schizophrenia risk and vice versa we performed bi-

directional two-sample Mendelian randomization (MR) analysis22. In our main analysis 

(Inverse Variance Weighted [IVW] regression analysis) we found some weak (non-

significant) evidence for a causal influence of lifetime cannabis use on schizophrenia risk, 

but only for the genetic instrument containing SNPs associated with cannabis use under the 

p-value threshold 1e-05. The IVW regression odds ratio was 1.10 (95% confidence intervals 

[CIs] 0.99-1.21, p=0.074). We found stronger evidence for a causal positive influence of 

schizophrenia risk on lifetime cannabis use, the IVW regression odds ratio being 1.16 (95% 

CIs 1.06-1.27, p=0.001; see Table 3, Supplementary Table S7-S9, and Supplementary Figure 

S9-S10 for details).
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We performed 4 sensitivity analyses that rely on distinct assumptions regarding instrument 

validity, to determine the robustness of these findings. The sensitivity analyses showed a 

consistent pattern supporting weak evidence for a causal effect of cannabis use on 

schizophrenia and strong evidence for a causal effect of schizophrenia on cannabis use 

(Table 3). As an exception, the evidence provided by MR-Egger SIMEX for a causal relation 

from schizophrenia risk to cannabis use, was very weak. However, since the Egger intercept 

was not significantly different from 0 (Supplementary Table S10), indicating no pleiotropic 

effects for the SNPs included in the genetic instruments27, it is likely that this method 

simply lacked power to be able to reject the null hypothesis of no causal effect28.

Discussion

SNP- and gene-based tests revealed several SNPs and genes strongly associated with 

lifetime cannabis use. Overall, 11% of the variation in the phenotype was explained by the 

combined effect of SNPs, which amounts to approximately 25% of twin-based heritability 

estimates 4. CADM2 and NCAM1, both identified in the original ICC meta-analysis 10, were 

among the strongest findings in the SNP-based and gene-based tests. The CADM2 gene 

(Cell Adhesion Molecule 2) is a synaptic cell adhesion molecule and is part of the 

immunoglobulin superfamily. Interestingly, CADM2 has previously been identified in 

GWASs of other behavioural phenotypes, including alcohol consumption 14, processing 

speed 29, and number of offspring and risk-taking behavior 16. A large-scale phenome-wide 

scan showed that CADM2 was associated with various personality traits, with the risk 

variant being associated with reduced anxiety, neuroticism and conscientiousness, and 

increased risk-taking 15. Taken together, these findings suggest that risk variants in CADM2 
are associated with a broad profile of a risk-taking, optimistic, and care-free personality 15. 

Cannabis use has previously been associated with related personality traits, including high 

levels of impulsivity and novelty seeking 30,31.

NCAM1 (Neural Cell Adhesion Molecule 1) also encodes a cell adhesion protein and is 

member of the immunoglobulin superfamily. The encoded protein is involved in cell-matrix 

interactions and cell differentiation during development32. NCAM1 is located in the 

NCAM1-TTC12-ANKK1-DRD2 gene cluster, which is related to neurogenesis and 

dopaminergic neurotransmission. This gene cluster has been associated with smoking, 

alcohol use, and illicit drug use12,33–35 and has been implicated in psychiatric disorders, 

such as schizophrenia and mood disorders36,37.

A putatively novel finding comprises the 16p11.2 region (identified in the SNP and gene-

based tests of association and in S-PrediXcan analysis). Deletions and duplications in this 

region have previously been reported to be associated with autism and schizophrenia38,39, 

while a common 16p11.2 inversion underlies susceptibility to asthma and obesity40. The 

inversion explains a substantial proportion of variability in expression of multiple genes in 

this region, including TUFM and SH2B140. Given the high LD in this region and high levels 

of co-expression of the differentially expressed genes, follow-up studies will be needed to 

determine which genes are functionally driving the association with cannabis use.
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Several of the top genes from the gene-based and/or S-PrediXcan analyses have previously 

shown an association with other traits, including schizophrenia (e.g., TUFM, NCAM1), BMI 

or obesity (e.g. SH2B1, APOBR, ATXN2L), alcohol use (e.g. ALDH2), intelligence and 

cognitive performance (CNNM2, CCDC101), and externalizing and impulsive phenotypes 

(e.g. CADM2; see Supplementary Table S3). Interesting is also the association with 

HTR1A; this gene has been implicated in alcohol and nicotine co-dependence41, BMI42, 

psychiatric disorders43,44, and antipsychotic pharmacological treatment response45. At the 

phenotypic level, associations between cannabis use and psychiatric disorders2 and use of 

other substances30 are well-established.

There are two previous studies that found significant SNP associations for a cannabis use 

phenotype. Sherva et al. (2016, 46) found 3 SNPs significantly associated with cannabis 

dependence. In our results only one of the SNPs was available (rs77378271) and was not 

significantly associated with lifetime cannabis use (p=.144). The other 2 SNPs (rs143244591 

and rs146091982) or their high LD proxies were not available in our data. The SNPs 

rs77378271 and rs146091982 were located in genes CSDM1 and SLC35G1 respectively, 

and neither of those were significant in our gene-based results (p=0.96 and p=0.49, 

respectively). Demontis et al.11 found one independent significant signal at chromosome 8 to 

be associated with cannabis dependence (with top SNP rs56372821, a strong eQTL for 

CHRNA2). Neither the SNP (p=0.55) nor the gene (p=0.52) was significantly associated 

with lifetime cannabis use in our study. The protein encoded by CHRNA2 is a subunit of 

certain nicotinic acetylcholine receptors and Demontis et al.11 provide three potential 

biological explanations for the link between cannabis intake and CHRNA2. However, it is 

possible that while CHRNA2 is associated with cannabis dependence, it does not play a role 

in the initial stages of cannabis use, which are more related to personality and risk-taking 

behaviours and less to the actual effects of cannabis intake on the brain.

The genetic correlation analyses revealed genetic overlap of cannabis use with a broad range 

of traits, including positive associations with substance use and mental health phenotypes. 

Furthermore, positive genetic correlations were found with risk-taking behaviour, openness 

to experience, and educational attainment, as well as a negative correlation with 

conscientiousness. The range of correlations suggests that genetic liability to lifetime 

cannabis use should be viewed in a broader context of personality and mental health traits. 

Specifically, the substantial genetic correlations with risk-taking behaviour and openness to 

experience may indicate that liability to start using cannabis is an indication of one’s 

personality. The positive genetic correlation between lifetime cannabis use and educational 

attainment was unexpected and in contrast to a previous study that found a negative genetic 

correlation between cannabis dependence and educational attainment 11. We therefore 

investigated phenotypic associations of cannabis use with household income and fluid 

intelligence using UK-Biobank data. Within Caucasian participants of UK-Biobank 

(N=438,870), categorically rated household income was higher among lifetime cannabis 

users compared to non-users (χ2[4]=2243, p=2.2e-16). Cannabis users also scored higher on 

fluid intelligence (t[50,856]=25.13, p<2e-16). These findings are in agreement with 

observations by Patrick et al.47, who showed that cannabis use is associated with higher 

childhood family social economic status (SES) in a survey of US families. Possibly, 

environments more often experienced by those with higher SES backgrounds, such as 
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universities, increase accessibility to cannabis, explaining how a positive correlation 

between lifetime cannabis use and educational attainment in our study could arise.

We also found a significant genetic correlation between cannabis use and schizophrenia 

(rg=0.24), which is in line with previous findings20,21, indicating that genetic risk factors for 

cannabis use and schizophrenia are positively correlated. As for the causal direction of this 

correlation, we found weak evidence for a causal link from cannabis use to schizophrenia 

and much stronger evidence for a causal link from schizophrenia to cannabis use. This 

suggests that individuals with schizophrenia have a higher risk to start using cannabis. These 

results are in contrast with results from a MR study by Vaucher et al.23, who found strong 

evidence for a causal effect from cannabis use to schizophrenia (causality in the other 

direction was not tested). However, our findings are in line with a MR study by Gage et al.24 

who used genetic instruments similar to ours and also found weak evidence for a causal 

effect of cannabis use to schizophrenia and much stronger evidence for a causal effect in the 

other direction. Our findings may indicate that individuals at risk for developing 

schizophrenia experience prodromal symptoms or negative affect that make them more 

likely to start using cannabis to cope or self-medicate48. The lack of strong evidence of a 

causal influence of cannabis use on schizophrenia may be due to the lower power of the 

instrumental variables. The instrumental variable based on schizophrenia SNPs explained 

3.38% of variance in liability to schizophrenia. For cannabis use, the genetic instruments 

explained 1.12% and 0.15% of the variance in cannabis use for SNPs included with p<1e-05 

and p<5e-08, respectively.

The results of our study should be interpreted in view of its strength and limitations. 

Important strengths of this study include the analyses of the largest population sample to 

date which has led to a substantial increase in power to identify genetic variants associated 

with lifetime cannabis use. The association analyses were complemented with several 

follow-up analyses to further investigate the genetic basis of cannabis use and the extent to 

which the genetic aetiology of cannabis use overlaps with that of other complex phenotypes. 

Strong genetic correlations across a wide spectrum of traits are observed, confirming that 

lifetime cannabis use is a relevant measure of an individual’s vulnerability.

Our study also has several limitations. First, lifetime cannabis use was analyzed as a 

dichotomous measure combining experimental and regular users in a single group. 

Additionally, the different samples varied substantially regarding the age of the participants, 

the prevalence of cannabis use, and the country’s policies regarding cannabis use. All these 

factors may introduce heterogeneity which may reduce the power to detect genetic 

associations. Secondly, power of some analyses may have been limited. For example, the 

MR analysis from cannabis to schizophrenia was based on an instrument of only 5 SNPs, 

and the summary statistics of some traits used for the genetic correlation analyses in LD-

score regression (e.g. cannabis dependence) were based on a small sample size. Finally, 

some regions identified in the SNP-based analyses did not appear in the gene-based 

analyses. In particular, inspection of the region around rs9773390 (in ZNF704) showed that 

the top SNP in this region was isolated, and that the SNP was only available in two of the 

three datasets (not in UK-Biobank). SNPs in LD with the top SNP that were included in all 
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three datasets were not genome-wide significant. Thus, this result may not represent a robust 

association.

In summary, our GWAS of lifetime cannabis use, which is the largest to date, revealed 

significant SNP and gene associations in 16 regions, 14 of which have not been previously 

implicated in cannabis use. The most promising candidates for future functional studies are 

CADM2, NCAM1, and multiple genes located at 16p11.2. Our findings further indicated a 

causal influence of schizophrenia on cannabis use and substantial genetic overlap between 

cannabis use and use of other substances, mental health traits, and personality traits, 

including smoking and alcohol use, schizophrenia, ADHD, and risk-taking.

Online Methods

Samples

Data from three sources were obtained: ICC, 23andMe, and UK-Biobank (total N=184,765). 

We used existing GWAS summary statistics from the ICC, based on data from 35,297 

individuals of European ancestry from 16 cohorts from Northern America, Europe, and 

Australia10. Details regarding ethical approval and informed consents of the ICC cohorts can 

be found in the supplementary material of the original ICC paper10. The overall sample 

included 55.5% females and the age ranged between 16 and 87 years with a mean of 35.7 

years. An average of 42.8% of the individuals had used cannabis during their lifetime. The 

second set of results was derived from the personal genetics company 23andMe Inc.. Data 

were available for 22,683 individuals of European Ancestry who provided informed consent 

and answered surveys online according to a human subjects protocol approved by Ethical & 

Independent Review Services, a private institutional review board. The sample included 

55.3% females and the age ranged between 18 and 94 years with a mean of 54.0 years. 

Within the sample, 43.2% had used cannabis during their lifetime. The third sample was 

obtained from UK-Biobank. Data were available for 126,785 individuals of European 

ancestry. The sample included 56.3% females and the age ranged between 39 and 72 years 

with a mean of 55.0 years. Within the sample, 22.3% had used cannabis during their 

lifetime. Ethical approval for UK-Biobank data collection procedures has been provided by 

the North West Multi-centre Research Ethics Committee (MREC), the National Information 

Governance Board for Health & Social Care (NIGB), and the Community Health Index 

Advisory Group (CHIAG).

Phenotype and covariates

For all participants, self-report data were available on whether the participant had ever used 

cannabis during their lifetime: yes (1) versus no (0). Measurement instruments and phrasing 

of the questions about lifetime cannabis use differed across the samples. For the ICC study 

this has been described for each cohort in the original paper10. As part of their online 

questionnaire, 23andMe used the following phrase to examine lifetime cannabis use: ‘Have 

you ever in your life used the following: Marijuana?’. The UK-Biobank – as part of an 

online follow-up questionnaire - asked: ‘Have you taken CANNABIS (marijuana, grass, 

hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it was a long time ago?’.
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Genotyping and imputation

Genotyping was performed on various genotyping platforms and standard quality control 

checks were performed prior to imputation. Genotype data were imputed using the 1000 

Genomes phase 1 release reference set49 for ICC and 23andMe, and the Haplotype 

Reference Consortium reference set50 for the UK-Biobank sample. Information about 

samples, genotyping, imputation, and quality control is summarized in Supplementary Table 

S11 and S12. After quality control, the ICC sample comprised 35,297 individuals and 

6,643,927SNPs, the 23andMe sample 22,683 individuals and 7,837,888 SNPs, and the UK-

Biobank sample 126,785 individuals and 10,827,718 SNPs.

Statistics

All statistical tests were two-sided and -unless stated otherwise- we used the conventional p-

value of 0.05 for significance testing. When necessary, Bonferroni correction for multiple 

testing was applied. Randomization and blinding procedures do not apply to our study 

design.

Genome-wide association analyses and meta-analysis—We conducted the 

GWASs in 23andMe and UK-Biobank samples separately. Associations between the binary 

phenotype and SNPs were tested using a logistic regression model accounting for the effects 

of sex, age, ancestry, and genotype batch (and age2 in the UK-Biobank sample). The GWAS 

for UK-Biobank was performed in PLINK 1.951 and for 23andMe using an internally 

developed pipeline. We then meta-analysed the GWAS results from ICC, 23andMe, and UK-

Biobank. Prior to conducting the meta-analysis, additional quality control of the summary 

statistics of each study was conducted in EasyQC52. Because of varying GWAS methods and 

sample characteristics (Supplementary Table S11), slightly different quality control criteria 

were used for the 3 samples (Supplementary Table S12). All 3 samples were aligned with 

the Haplotype Reference Consortium panel using the EasyQC R-package52, to ensure that 

rs-numbers and chromosome-basepair positions referred to the exact same variants and to 

correct for strand effects. Variants were deleted if they had a minor allele frequency (MAF) 

diverging more than 0.15 from that in the reference panel.

We applied genomic control to the three GWAS files prior to meta-analysis. Inflation due to 

stratification was estimated using LD-score regression, which can differentiate inflation due 

to population stratification from that due to real signal. The intercept was used to correct the 

standard errors (SEs) of the estimated effect sizes as follows: SEGC = LDSC intercept ∗ SE2. 

The intercepts were b0= 1.005 (SE=0.007) for ICC, b0=1.004 (SE=0.007) for 23andMe, and 

b0=1.022 (SE=0.008) for UK-Biobank. We then performed a fixed effects meta-analysis 

based on effect sizes (log odds ratios [OR]) and standard errors in METAL53. We applied the 

conventional p-value threshold of 5e-08 as indication of genome-wide significance. The 

meta-analysis was performed on 11,733,371 SNPs that passed quality control. The 

combined sample size of the meta-analysis was 184,765 individuals, although the sample 

size varied per SNP due to differential missingness across samples.
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Manhattan and QQ-plots for the GWAS, meta-analysis, and gene-based test results were 

created using the R-package qqman54. Regional plots were created using LocusZoom55, 

with varying window size for optimal visualization.

Gene-based test of association—Testing associations on the level of protein-coding 

genes can be more biologically meaningful and is more powerful (lower multiple testing 

burden) than testing solely on the level of SNPs. Gene-based analysis was used to test 

associations for the combined effect of SNPs in protein-coding genes taking into account LD 

between the SNPs and the size of the gene. The analysis was conducted in MAGMA (v 1.6) 
25, which uses the 1000 Genomes reference-panel (phase 3, 2012) to control for LD. SNPs 

were mapped to genes if they were located in or within 10 kb from the gene, such that 

5,710,956 SNPs (49%) could be mapped to at least one of 18,293 protein-coding genes in 

the reference panel. The significance threshold was set at p<2.74e-06 (Bonferroni corrected 

p-value for 18,293 tests).

Identification of genes with differential expression levels between cannabis 
users and non-users—We used S-PrediXcan to integrate eQTL (expression quantitative 

trait loci) information with our GWAS summary statistics to identify genes of which 

genetically predicted expression levels are associated with cannabis use26. Briefly, S-

PrediXcan estimates gene expression weights by training a linear prediction model in 

samples with both gene expression and SNP genotype data. The weights are then used to 

predict gene expression from GWAS summary statistics, while incorporating the variance 

and co-variance of SNPs from an LD reference panel. We used expression weights for 48 

tissues from the GTEx Project (V7) and the DGN whole blood cohort generated by 

Gamazon et al.56, and LD information from the 1000 Genomes Project Phase 357. These 

data were processed with beta values and standard errors from the lifetime cannabis use 

GWAS meta-analysis to estimate the expression-GWAS association statistic. We used a 

transcriptome-wide significance threshold of p<1.92e-07, which is the Bonferroni corrected 

threshold when adjusting for all tissues and genes (i.e. N=259,825 gene-based tests in the 

GTEx and DGN reference sets).

We used the GTExPortal (https://www.gtexportal.org/home/; GTEx Analysis Release V7)58 

to obtain gene expression levels of CADM2 across tissues. We used the same portal to plot a 

multi-tissue eQTL comparison of the top SNP rs2875907. The multi-tissue eQTL plot shows 

both the single-tissue eQTL p-value and the multi-tissue posterior probability from 

METASOFT59.

SNP-based heritability analysis—The proportion of variance in liability to cannabis 

use that could be explained by the aggregated effect of the SNPs (h2
SNPs) was estimated 

using LD-Score regression analysis60. The method is based on the premise that an estimated 

SNP effect-size includes effects of all SNPs in linkage disequilibrium (LD) with that SNP. A 

SNP that tags many other SNPs will have a higher probability of tagging a causal genetic 

variant compared to a SNP that tags few other SNPs. The LD score estimates the amount of 

genetic variation tagged by a SNP within a specific population. Accordingly, assuming a 

trait with a polygenic architecture, SNPs with a higher LD-score have on average stronger 

effect sizes than SNPs with lower LD-scores. When regressing the effect size from the 
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association analysis against the LD score for each SNP, the slope of the regression line 

provides an estimate of the proportion of variance accounted for by all analysed SNPs60. For 

this analysis, we included 1,179,898 SNPs that were present in all cohorts and the HapMap 

3 reference panel. Standard LD scores were used as provided by Bulik-Sullivan et al.60 

based on the Hapmap 3 reference panel, restricted to European populations61.

Genetic correlations with other substances and mental health phenotypes—
We used cross-trait LD-Score regression62 to estimate the genetic correlation between 

lifetime cannabis use and 25 other traits using GWAS summary statistics. The genetic 

covariance is estimated using the slope from the regression of the product of z-scores from 2 

GWASs on the LD score. The estimate represents the genetic covariation between the 2 traits 

based on all polygenic effects captured by SNPs. Summary statistics from well-powered 

GWASs were available for 25 relevant substance use and mental health traits, including 

nicotine, alcohol and caffeine use, schizophrenia, depression, bipolar disorder, and 

loneliness (Supplementary Table S6). To correct for multiple testing we adopted a 

Bonferroni corrected p-value threshold of significance of 0.002 (0.05/25). LD scores were 

based on the HapMap 3 reference panel, restricted to European populations.

Causal association between cannabis use and schizophrenia: Two-sample 
Mendelian randomization—We performed two-sample Mendelian randomization 

analyses (MR)22 to examine whether there was evidence for a causal relationship from 

cannabis use to schizophrenia and vice versa. Analyses were performed with the R package 

of database and analytical platform MR-Base63 and with the gsmr R package which 

implements the GSMR (Generalized Summary-data based Mendelian Randomization) 

method64.

MR utilizes genetic variants strongly associated with an exposure variable as an ‘instrument’ 

to test for causal effects of the exposure on an outcome variable. This approach minimizes 

the risk of spurious findings due to confounding or reverse causation present in 

observational studies, provided that the following assumptions are met: 1) the genetic 

instrument is predictive of the exposure variable, 2) the genetic instrument is independent of 

confounders, and 3) the genetic instrument is not directly associated with the outcome 

variable, other than by its potential causal effect through the exposure (i.e. there is no 

directional pleiotropy)65. Two-sample MR refers to the application of MR methods to well-

powered summary association results estimated in non-overlapping sets of individuals22 in 

order to reduce instrument bias towards the exposure-outcome estimate.

Bi-directional causal effects were tested between lifetime cannabis use and schizophrenia. 

We used genetic variants from our cannabis GWAS as well as those from the largest 

schizophrenia GWAS66 to serve as instruments (gene-exposure association). For lifetime 

cannabis use we used 2 genetic instruments; 1) an instrument including all independent 

genetic variants that were genome-wide significantly associated with lifetime cannabis use 

(p<5e-08; 5 SNPs), and 2) an instrument including independent variants with a more lenient 

significance threshold (p<1e-05; 69 SNPs). For schizophrenia we used one genetic 

instrument, including independent genetic variants that were genome-wide significantly 
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associated with schizophrenia (instrument p<5e-08; 109 SNPs). Information on the included 

SNPs in the genetic instruments is provided in Supplementary Table S7.

Genetic variants were pruned (R2<0.001) and the remaining genetic variants (or proxies 

[R2≥0.8] when an instrumental SNP was not available in the other GWAS) were then 

identified in GWAS summary-level data of the outcome variable (gene-outcome 
association). Note that not all independent SNPs identified in the exposure dataset have been 

included in the analyses, because not all exposure SNPs or their proxies were also available 

in the outcome dataset and because some SNPs were palindromic (see Supplementary Table 

S7).

Evidence for both a gene-exposure and a gene-outcome association suggests a causal effect, 

provided that the MR assumptions are met. To combine estimates from individual genetic 

variants we applied Inverse-Variance Weighted (IVW) linear regression67. In addition, 4 

sensitivity analyses more robust to horizontal pleiotropy were applied, each relying on 

distinct assumptions regarding instrument validity: Weighted Median68, MR-Egger 

SIMEX27, Weighted Mode69, and Generalized Summary-data based Mendelian 

Randomization (GSMR)64. These sensitivity analyses rely on orthogonal assumptions, 

making their inclusion important for triangulation. The Weighted Median approach provides 

a consistent estimate of the causal effect even when up to 50% of the weight comes from 

invalid instruments68. MR-Egger regression applies Egger’s test to MR instruments that 

consist of multiple genetic variants27,28. MR-Egger provides a consistent estimate of the 

causal effect, provided that the strength of the genetic instrument (the association between 

SNPs and exposure) does not correlate with the effect the instrument has on the outcome 

(i.e. the InSIDE assumption: Instrument Strength Independent of Direct Effect). This is a 

weaker assumption than the assumption of no pleiotropy. MR-Egger may, however, be 

biased when the NOME (NO Measurement Error) assumption is violated – i.e. the 

assumption that the SNP-exposure associations are known rather than estimated. Violation 

of NOME can be quantified with the I2 statistic, which ranges between 0 and 1. A value 

below 0.9 indicates a considerable risk of bias. This bias can be corrected for with MR-

Egger simulation extrapolation SIMEX70. Since I2 ranged between 0.7-0.9 for our analyses, 

we report results from MR-Egger SIMEX in Table 3. The Weighted Mode methods can 

produce an unbiased result, as long as the most common causal effect estimate is a 

consistent estimate of the true causal effect: the Zero Modal Pleiotropy Assumption 

(ZEMPA)69. Finally, we performed GSMR, a method which leverages power from multiple 

genetic variants while accounting for LD between these variants64. Because GSMR accounts 

for LD, genetic variants that were included in GSMR instruments were pruned at a higher 

threshold of R2<0.05 (instead of R2<0.001 for the other MR analyses). Zhu et al. (2018, 64) 

showed that the gain of power from including SNPs in higher LD than 0.05 is limited. 

GSMR also allows extra filtering for SNPs that are suspected to have pleiotropic effects on 

both the exposure and the outcome (HEIDI filtering).

To calculate variance explained (R2) by the instrument, first we selected a single SNP to 

obtain an estimate of the phenotypic variance, var(y). Assuming effect sizes are normally 

distributed, we used the quantile function of the student t-distribution to transform the p-

value of the SNP association into an estimate of t, t ^. The number of degrees of freedom 
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and N were based on the effective sample size (4/(1/cases+1/controls)). The effective sample 

sizes were estimated at N=130,072 for schizophrenia and N=180,934 for cannabis use. The 

corresponding value of r was calculated using the formula t=r / (sqrt[(1- R2)/(N-2)] and 

obtained the R2 that corresponds to t with the online tool http://vassarstats.net/rsig.html. 

Subsequently, we approximated the variance of the phenotype y using var (y)=(2*MAF*(1-

MAF)*β2)/ R2 in which MAF denotes the Minor Allele Frequency and β the effect size of 

the specific SNP. Finally, we used the estimated value of var (y) to calculate the R2 for the 

remaining SNPs of interest using R2=(2*MAF*(1-MAF)*β2)/var(y); and summed the R2 of 

all SNPs of interest included in the instrumental variable to obtain an estimate of the total R2 

explained by the instrument.

Data availability

General information on study design and data availability are included in the Life Sciences 

Reporting Summary. Summary statistics based on the UK-Biobank and ICC samples and 

full results from the top 10,000 SNPs based on all three subsamples (i.e. including the 

23andMe sample) will be available via LDhub (http://ldsc.broadinstitute.org/gwashare/). 

Codes and scripts are available upon reasonable request. Full summary statistics can only be 

provided after permission by 23andMe.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) QQ-plot of the distribution of the −log 10(p-values) observed for the SNP associations 

with lifetime cannabis use against those expected under the null hypothesis

Expected −log 10(p-values) under the null hypothesis are indicated by the red line. Genomic 

inflation is indicated with λ in the plot. There was no evidence for population stratification 

(LD score regression b0=1.00, SE=0.007).

b) Manhattan plot for the SNP-based GWAS meta-analysis

Results are based on N=184,764 individuals and NSNPs=11,733,371 SNPs. The SNP with 

the lowest p-value per independent (R2<0.1, window size 250 kb) genome-wide significant 

locus is annotated (red circle with rs-number). The red line represents the conventional 

genome-wide significance threshold of p<5e-08. The statistical test comprised linear 

regression; significance was tested two-sided.
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Figure 2. Regional plots of the genome-wide significant SNPs
Underlined in yellow are the genes that were significant in the gene-based test (tested two-

sided; p<2.74e-06, Bonferroni corrected p-value threshold of p<0.05 adjusted for 18,293 

tests); underlined in green the genes that were identified in the S-PrediXcan analysis only 

(p<1.92e-07, Bonferroni corrected p-value threshold of p<0.05 adjusted for 259,825 tests). 

Colors of the dots indicate the level of LD (blue for low and red for high LD) with the lead 

SNP (purple; independent defined as R2<0.1, window size 250 kb).
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Figure 3. 
a) QQ-plot of the distribution of the −log10(p-values) for the gene-based association with 

lifetime cannabis use against those expected under the null hypothesis

Expected −log 10(p-values) under the null hypothesis are indicated by the red line. Genomic 

inflation is indicated with λ. The gene-based test was performed in MAGMA, which uses 

multiple regression (tested two-sided).

b) Manhattan plot for the gene-based test of association

The red line represents the genome-wide significance threshold of p<2.74e-06, (Bonferroni 

corrected p-value threshold of p<0.05 adjusted for 18,293 tests; NSNPs=5,710,956 were 

mapped to at least one gene). The top-gene (with the lowest p-value) per locus is annotated 

(red circle with gene symbol).
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Figure 4. Genetic overlap between lifetime cannabis use and other phenotypes
Blue dots represent point estimates of the genetic correlation, blue error bars represent 95% 

confidence intervals and red asterisks indicate significant associations after correction for 

multiple testing (two-sided p<0.002, Bonferroni corrected p-value threshold of p<0.05 

adjusted for 25 tests).

MDD=Major Depressive Disorder; ADHD=Attention Deficit Hyperactivity Disorder; 

BMI=Body Mass Index
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Table 1.

Association results of 8 independent SNPs that are significantly associated with lifetime cannabis use

SNP rs Chr Gene BP A1 A2 Freq A1 N β SE p-value Direction

rs2875907 3p12.1 CADM2 85,518,580 A G 0.352 181,675 0.070 0.009 9.38e-17 +++

rs1448602 3p12.1 CADM2 85,780,454 A G 0.756 184,765 -0.062 0.010 6.55e-11 ---

rs7651996 3p12.1 CADM2 85,057,349 T G 0.477 184,765 0.049 0.008 2.37e-09 +++

rs10085617 7p22.2 SDK1 3,634,711 A T 0.416 184,765 0.046 0.008 2.93e-08 +++

rs9773390 8q21.13 ZNF704 81,565,692 T C 0.933 44,595 -0.171 0.029 5.66e-09 --?

rs9919557 11q23.2 NCAM1 112,877,408 T C 0.614 180,428 -0.055 0.009 9.94e-11 ---

rs10499 16p11.2 RABEP2, ATP2A1 28,915,527 A G 0.651 179,767 0.053 0.009 1.13e-09 +++

rs17761723 17p13.3 SMG6 2,107,090 T C 0.346 184,765 0.047 0.009 3.24e-08 +++

Independent hits were defined as R2<0.01, window size 250 kb. The p-value threshold was set at p<5e-08 (conventional genome-wide significant 
threshold; significance was tested two-sided). Chromosomal region (Chr), gene the SNP is located in or the nearest gene (within 500kb; Gene), 
base pairs location SNP on Hg19 (BP), allele 1 (A1), allele 2 (A2), frequency of allele 1 (Freq A1), number of individuals for which variant was 
included (N), beta coefficient of the effect allele A1 (β), standard error (SE).

Direction per sample: allele A1 increases (+) or decreases (−) liability for cannabis use, or sample did not contribute to this SNP (?). Order of 

samples: ICC, 23andMe, UK-Biobank. Independent SNPs were selected as SNPs with linkage disequilibrium R2<0.1 using a window size of 250 
kB.

SNP rs9773390 was not present in UK-Biobank sample and its effect is rather isolated (see Figure 1b and 2); it might not represent a robust 
association.
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Table 2.

Genes significantly associated with lifetime cannabis use, as identified in the MAGMA and/or S-PrediXcan 

analyses

Locus Top genes BP start BP stop #SNPs Z p-value

1p36.31 KLHL21 6,640,784 6,672,958 96 4.81 7.65e-07

PHF13 6,663,756 6,694,093 84 4.61 1.99e-06

2p12 LRRTM4 76,969,849 77,754,502 3621 5.19 1.03e-07

3p12.1 CADM2 85,003,133 86,128,579 4287 8.96 1.59E-19

4p16.3 MSANTD1 3,240,766 3,283,465 231 4.59 2.22e-06

5q12.3 HTR1A 63,245,875 63,268,119 64 4.57 2.41e-06

6p12.1 BEND6 56,814,773 56,897,450 252 5.22 2.60e-08

KIAA1586 56,906,343 56,925,023 58 5.09 1.75e-07

RAB23 57,046,790 57,092,112 86 5.86 2.32e-09

6q21 REV3L 111,610,234 111,814,421 539 4.61 1.99e-06

6q25.3 ARID1B 157,093,980 157,536,913 1344 5.59 1.15e-08

8q24.3 ADGRB1 143,535,377 143,636,369 275 4.71 1.23e-06

10q24.32-33 NEURL 103,493,890 103,592,552 17 5.22 1.83e-07

BORCS7 104,603,967 104,634,718 87 4.72 1.19e-06

AS3MT 104,624,183 104,666,656 177 5.54 1.53e-08

CNNM2 104,673,075 104,843,344 549 4.80 8.02e-07

NT5C2 104,842,774 104,958,063 389 4.81 7.64e-07

11q23.2 NCAM1 112,826,969 113,154,158 1263 6.21 2.63e-10

12q24.12 BRAP 112,069,950 112,133,790 97 4.87 5.48e-07

ACAD10 112,118,857 112,199,911 141 5.22 8.96e-08

ALDH2 112,199,691 112,252,789 112 4.96 3.61e-07

MAPKAPK5 112,275,032 112,336,228 195 4.87 5.58e-07

TMEM116 112,364,086 112,456,023 222 4.94 3.96E-07

16p11.2/16q12.1 SBK1 28,303,840 28335170 23 5.47 4.52e-08

NPIPB7 28,467,693 28481868 10 5.44 5.46e-08

CLN3 28,483,600 28,510,897 62 5.84 2.56e-09

APOBR 28,500,970 28,515,291 49 5.66 7.56e-09

IL27 28,505,683 28,523,155 57 5.66 7.48e-09

CCDC101 28,560,249 28,608,111 181 4.90 4.87e-07

SULT1A2 28,603,264 28,608,391 25 5.40 6.66e-08

SULT1A1 28,605,196 28,623,625 51 5.30 1.14e-07

CDC37P1 28,700,176 28,701,611 31 5.26 1.42e-07
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Locus Top genes BP start BP stop #SNPs Z p-value

EIF3C 28,722,782 28,747,053 14 5.37 8.08-08

EIF3CL 28,722,785 28,747,053 23 5.47 4.55e-08

NPIPB9 28,742,728 28,772,850 8 5.41 6.29e-08

ATXN2L 28,829,369 28,853,558 89 5.85 2.50e-09

TUFM 28,848,732 28,862,729 55 5.83 2.83e-09

SH2B1 28,867,939 28,890,534 71 5.72 5.46e-09

ATP2A1 28,884,192 28,920,830 89 5.97 1.20e-09

NFATC2IP 28,962,318 28,977,767 8 5.35 8.82e-08

RABEP2 28,910,742 28,942,339 71 5.43 2.84e-08

17p13.3 SRR 2,202,244 2,233,553 121 5.33 5.03e-08

TSR1 2,220,972 2,245,678 90 5.59 1.12e-08

18q11.2 C18orf8 21,078,434 21,118,311 132 5.30 5.65e-08

NPC1 21,081,148 21,171,581 257 5.30 5.87e-08

For the gene-based test, the p-value was set at p<2.74e-06, Bonferroni corrected p-value threshold of p<0.05 adjusted for 18,293 tests. For the S-
PrediXcan analysis, p< 1.92e-07, Bonferroni corrected p-value threshold of p<0.05 adjusted for 259,825 tests. The MAGMA statistical test is based 
on multiple regression. Significance was tested two-sided in both analyses. Genes that were significant only in the S-PrediXcan analysis are 
hightlighted in grey. Location in base pairs (hg19) at beginning and end of gene (BP start/stop), number of SNPs included in the gene (#SNPs), 
test-statistic for the test of association (Z).

The CDC37P1 gene was significant in two different tissues; information presented here is based on the association with the smallest p-value. For 
full results, see Supplementary Table S4.
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