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Cellular senescence (CS) is one of hallmarks of aging and 
accumulation of senescent cells (SCs) with age contributes to 
tissue or organismal aging, as well as the pathophysiologies of 
diverse age-related diseases (ARDs). Genetic ablation of SCs in 
tissues lengthened health span and reduced the risk of 
age-related pathologies in a mouse model, suggesting a direct 
link between SCs, longevity, and ARDs. Therefore, seno-
therapeutics, medicines targeting SCs, might be an emerging 
strategy for the extension of health span, and prevention or 
treatment of ARDs. Senotherapeutics are classified as senolytics 
which kills SCs selectively; senomorphics which modulate 
functions and morphology of SCs to those of young cells, or 
delays the progression of young cells to SCs in tissues; and 
immune-system mediators of the clearance of SCs. Some 
senolytics and senomorphics have been proven to markedly 
prevent or treat ARDs in animal models. This review will 
present the current status of the development of seno-
therapeutics, in relation to aging itself and ARDs. Finally, 
future directions and opportunities for senotherapeutics use 
will discussed. This knowledge will provide information that 
can be used to develop novel senotherapeutics for health span 
and ARDs. [BMB Reports 2019; 52(1): 47-55]

INTRODUCTION

Cellular senescence (CS) is initially defined as an irreversible 
growth arrest of normal somatic cells, and has been proposed 
to contribute to tissue and organismal aging itself, and to be an 
intrinsic safeguard against tumor progression (1). SCs have 
been shown to have diverse phenotypes, including cellular 
flattening and hypertrophy, senescence-associated -galactosidase 
activity (SAG), senescence-associated secretory phenotype 

(SASP), resistance to apoptotic cell death, alterations in nuclear 
structure and senescence-associated heterochromatic foci 
(SAHF), mitochondrial expansion, and signaling events, 
including upregulation of cell cycle inhibitors and -pro-survival 
effectors (2). SCs accumulated in various tissues in mice with 
age, and comprised 5-40% of the total cells, depending on the 
tissue types (3). Although their number are relatively small in 
tissues, SCs can cause extensive dysfunction of the 
microenvironment and damage to surrounding cells and 
tissues, due to their pro-inflammatory senescence-associated 
secretory phenotype (SASP). Accumulating evidence suggests 
that CS plays an important role in diverse biological processes, 
such as embryonic development, diabetes, host immunity, 
wound healing, tissue renewal, as well as fibrosis, cardio-
vascular diseases, and cancer (4).

Since aging is one of major risk factors of human diseases, a 
variety of aging interventions have been developed to extend 
health span and to prevent or treat ARDs in in vitro and in 
vivo experimental models. Caloric restriction (CR) is the only 
intervention shown to increase health span as well as to 
decrease the risk of ARDs in nonhuman primates (5). Recently, 
clinical trials of CR in non-obese humans revealed that a 15% 
lower calorie intake for 2 years delayed metabolism 
accompanied by reduced oxidative damage, suggesting that 
CR could also slow down the aging process in humans (6). 
Although CR can enhance healthy aging, the inconvenience of 
most subjects to maintain CR for a longtime limits its 
application. Therefore, caloric restriction mimetics (7), and 
calorie restriction diets or fasting-mimicking diets (8) have 
been proposed as alternatives. Elucidation of the mechanisms 
by which aging is regulated also suggested a variety of 
compounds and medicines, including sirtuin activators (9), 
AMP dependent protein kinase (AMPK) activators (10), 
mammalian target of rapamycin (mTOR) inhibitors (11), 
autophagy activators (12), that might be applicable for use in 
aging intervention. In addition, the use of geroprotectors, 
compounds and medicines that slow down aging, and thus 
lengthen the lifespan of model organisms has also been 
proposed (13). In present, a curated database of geroprotectors 
is available, and includes 259 compounds in 13 animal 
models from yeast to human, obtained from 2,408 literature 
(http://geroprotectors.org/). An old story tells the rejuvenation 
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Fig. 1. Senotherapeutics targeting SCs. CS
induced by diverse factors is involved in
many biological processes, embryonic 
development, tissue homeostasis, and 
tissue dysfunction, thus contributing to 
age-related pathologies and lifespan. 
Therefore, senotherapeutics targeting SCs
is an emerging strategy of aging in-
tervention for extension of health span and
prevention and treatment of ARDs. 
Senotherapeutics is comprised of 3 
classes: senolytics which kill SCs selec-
tively; senomorphics which modulates or
even reverses the phenotypes of SCs to 
those of young cells by interfering with 
triggers of CS, targeting SCs directly, or 
blocking SASP: and mediators of the 
immune-system clearance of SCs.

effects of young blood. Heterochronic parabiosis, in which an 
aged mouse and a young one were joined surgically, revealed 
that some factors in young blood, such as growth 
differentiation factor 11 with controversial reports and oxytocin 
enhanced tissue regeneration, and led to improvement of 
aging phenotypes (14). Similarly, transfusion of young serum 
also retarded age-related impairments in cognitive function 
and synaptic plasticity in aged mice (15, 16).

Although CS is one of hallmarks of aging (17), and 
accumulation of SCs with age has been suggested to be 
associated with aging and ARDs (18), direct evidence of a 
causal relationship between CS and aging or ARDs has only 
recently been validated in rodent models. Furthermore, 
senotherapeutics, have been implicated as novel strategies for 
aging intervention in applications designed to extend healthy 
aging and to prevent or treat ARDs.

DIRECT LINKAGE OF CS TO AGING AND ARDs

Baker et al., reported the first direct evidence of a direct causal 
relationship of CS to ARDs in 2011 (19). For the clearance of 
senescent cells in mice, a transgenic strategy, was employed, 
using INK-ATTAC derived from p16Ink4a, a well-known marker 
of CS, in which senescent cells were selectively eliminated by 
apoptotic cell death upon administration of AP20187. The 
INK-ATTAC transgenic mice were bred onto a BubR1H/H- 
progeroid mouse background to obtain BubR1H/H;INK-ATTAC 
mice. The authors demonstrated that the animals treated with 

AP20187 from early (weaning time) or late (5 months) in life, 
had reduced numbers of p16Ink4a-positive senescent cells, and 
progression of p16Ink4a-mediated age-related phenotypes in 
adipose tissue and muscle was delayed (19). Five years later, 
Baker et al., reported more concrete evidence of the direct 
linkage of CS to aging itself and ARDs (20). This time, they 
demonstrated effects of the clearance of p16Ink4a-positive 
senescent cells in both male and female INK-ATTAC 
transgenic mice of two distinct genetic backgrounds (C57BL/6 
and mixed). AP20187 treatment from 12 months to 18 months 
increased the median lifespan of both C57BL/6 and mixed 
background mice by 24%, and prolonged the heath span in 
C57BL/6 mice by 18%, and by 25% in mixed background 
mice. In addition, they demonstrated that AP20187 attenuated 
age-related functional and structural deterioration of multiple 
organs, without any detrimental side effects to adipose tissue, 
kidney, or heart (20). Genetic ablation of senescent cells, using 
the INK-ATTAC transgenic mice further revealed that clearance 
of p16Ink4a-positive senescent cells improved age-related 
lipodystrophy (21), hepatic steatosis (22), age-related cardiac 
function and bone loss (23), and tau-mediated cerebral 
pathologies (24). Studies on another p16Ink4a-based transgenic 
mouse, named the p16Ink4a-trimodality reporter (p16-3MR) 
mouse, in which p16Ink4a-positive senescent cells were cleared 
by treatment with ganciclovir, revealed that removal of 
senescent macrophages attenuated atherosclerotic plaque 
formation in LDLR−/− background mice (25), and osteoarthritis 
(26). In addition to genetic clearance of senescent cells, 
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Agents Target/Pathway Effective senescent cells Outcomes in vivo Ref.

Dasatinib ＋ Quercetin Pan-receptor tyrosine 
kinase/Multiple pathways

HUVECs
Preadipocytes
MEFs
BM-MSCs

↓Atherosclerosis
↓Osteoporosis
↓Hepatic steatosis
↓Pulmonary fibrosis
↑Exercise capacity
↑Vasomotor function
↑Cardiac function
↑Lifespan

22 
23 
28 
29 
31 
32

ABT-263 Bcl-2 family (Bcl-2, 
BCL-XL, Bcl-W)

HUVECs
IMR90
MEFs
WI-38

↑Hematopoietic and muscle stem cell function
↓Atherosclerotic lesion formation

33 
34

ABT-737 Bcl-2 family (Bcl-2, Bcl-xL, 
Bcl-W)

IMR90 ↑Hair follicle stem cell function
↓IR-induced lung injury

35

A1331852
A1155463

Bcl-2 family (Bcl-xL) HUVECs
IMR90
Cholangiocytes

↓Liver fibrosis 37

17-AAG Geldanamycin HSP90 MEFs
MSCs
IMR90
HUVECs
WI-38

↓Age-related symptoms
↑Health span

38

Fisetin PI3K/AKT HUVECs Not reported 36
Piperlongumine Multiple pathways WI-38 Not reported 39
Quercetin-3-D-galactose Multiple pathways HCAECs Not reported 40
UBX0101 MDM2/p53 Chondrocytes ↓Osteoarthritis 26
Panobinostat HDAC NSCLC cell lines

HNSCC cell lines
Not reported 41

FOXO4-DRI peptide p53/p21/serpine IMR90 ↓Liver toxicity induced by doxorubicin
↓Frailty 
↑Hair growth
↑Renal function

44

Table 1. Senolytic candidates

transplanting senescent ear fibroblasts into the knee region 
induced osteoarthritis in mice (27). Transplanting relatively 
small numbers of senescent cells into young mice was 
reportedly sufficient to cause persistent physical dysfunction, 
as well as to spread cellular senescence to host tissues, which 
led to reduced survival (28). Therefore, these proof-of-principle 
experiments revealed the direct linkage of CS to aging and 
ARDs, and suggest that therapeutic interventions to remove 
senescent cells or block their effects might represent a novel 
strategy to lengthen health span and prevent or treat ARDs in 
human (20).

SENOLYTICS

Since elimination of SCs using genetic approaches mitigated 
aging and ARDs, pharmacological intervention targeting SCs, 
named as senotherapeutics, has been proposed. Senothera-
peutics are classified as senolytics, which selectively kill SCs; 
senomorphics which modulate SCs by blocking SASP; and 
senoinflammation, the immune system-mediated clearance of 

SCs (Fig. 1). 
In 2015, Zhu et al., reported the first senolytics, dasatinib, a 

protein tyrosine kinase inhibitor, and quercetin, a plant 
flavonoid (29). Based on transcriptomic analysis, they 
discovered that SCs increased the expression of pro-survival 
networks, which led to resistance to apoptosis. The authors 
screened 46 candidate drugs for their ability to eliminate SCs 
in vitro and found that dasatinib was effective against 
senescent human preadipocytes, and that quercetin was 
effective against senescent human endothelial cells and mouse 
bone marrow-derived mesenchymal stem cells (BM-MSCs). 
Finally, they showed that combination of dasatinib and 
quercetin reduced SC burden in chronologically aged, 
radiation-exposed, and Ercc1−/-progeroid mice, which 
resulted in extension of health span and reduction of 
age-related pathologies (29). Their seminal demonstration on 
the feasibility of selectively ablating senescent cells by 
pharmacological intervention and the efficacy of senolytics for 
alleviating symptoms of frailty and extending health span in 
mice, prompted development of other senolytics.
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Until now, seven classes of senolytics have been reported, 
including kinase inhibitors, a Bcl-2 family inhibitors, natural 
compounds, a p53 binding inhibitor, heat shock protein 90 
(HSP90) inhibitors, UBX0101, and a histone deacetylase 
(HDAC) inhibitor (30) (Table 1). The combined administration 
of dasatinib and quercetin improved the pathologies of diverse 
ARDs, including cardiac aging (29), atherosclerosis (31), 
osteoporosis (23), pulmonary fibrosis (32), hepatic steatosis 
(22), and Alzheimer’s disease (24) by clearing SCs in the 
tissues. Recently, the combination of dasatinib and quercetin 
was reported to enhance physical function and to lengthen 
health span and lifespan in old mice (28).

Resistance of SCs to apoptotic cell death, due to 
upregulation of Bcl-2 and Bcl-xL suggested inhibitors of these 
anti-apoptotic proteins as useful candidates for senolytics. In 
this regard, ABT-263, ABT-737, A1331852, and A1155463 
were reported as senolytic candidates in in vitro, as well as in 
in vivo models. ABT-263, which binds to the inhibitory 
domain of anti-apoptotic Bcl-2, Bcl-xL, and Bcl-W, effectively 
cleared SCs, senescent bone marrow hematopoietic stem cells 
(HSCs), and senescent muscle stem cells (MuSCs) from either 
irradiated or normally aged mice, and led to mitigation or 
rejuvenation of HSCs and MuSCs in both animal models (33). 
ABT-263 selectively decreased viability of some senescent 
cells, such as senescent human umbilical vein epithelial cells 
(HUVECs), IMR90 human lung fibroblasts, and murine 
embryonic fibroblasts (MEFs), but not human primary 
preadipocytes (34). ABT-263 eliminated senescent foam cell 
macrophages in atherosclerotic lesions, consequently blocking 
progression of atherosclerosis in LDLR−/− mice (25). ABT-737 
selectively killed senescent IMR90 cells induced by etoposide, 
H-Ras activation, and replication in vitro (35). ABT-737 
treatment also efficiently cleared senescent lung epithelial cells 
of irradiated mice, and senescent epidermal cells of p14ARF 
transgenic mice, and resulted in an increase in hair follicle 
stem cell proliferation (35). A1331852 and A1155463, selective 
Bcl-xL inhibitors, induced apoptosis of irradiation-induced 
senescent HUVECs and IMR90 cells, but not of preadipocytes 
(36). A1331852 reduced liver fibrosis through depletion of 
senescent cholangiocytes and reduction of serum levels of 
SASP factors in primary sclerosing cholangitis model of 
multidrug-resistance 2 knockout mice (37).

Inhibitors of HSP90, 17-N-allylamino-17-demethoxygeldana-
mycin (17-AAG) and geldanamycin, were suggested as a new 
class of senolytic candidates from the screening of 97 
autophagy regulators in oxidative stress-induced senescent 
Ercc1−/− mouse embryonic fibroblasts (MEFs) (38). These 
HSP90 inhibitors induced apoptosis of senescent MEFs, 
murine mesenchymal stem cells (MSCs), IMR-90, HUVECs, 
and WI-38 cells, induced by oxidative stress, irradiation, or 
replication, in vitro. They selectively eliminated p16Ink4a-positive 
cells, and thereby delayed the onset of several age-related 
symptoms, and ultimately lengthened the health span of 
Ercc1−/-progeroid mice (38). 

In addition to quercetin, natural phytochemicals, piperlon-
gumine (PL) and fisetin, were reported to have senolytic 
activities in in vitro experiments. PL preferentially induced 
apoptosis in human WI-38 fibroblasts senesced by ionizing 
radiation, replicative exhaustion, or ectopic expression of the 
oncogene Ras, through an ROS-independent pathway (39). 
Fisetin selectively killed IR-induced senescent HUVECs, but 
not senescent IMR90 or pre-adipocytes (36). Quercetin- 
3-D-galactose (Q3G) has been suggested to be a potential 
senolytic agent, that was reported to kill senescent endothelial 
cells, but not HUVECs (40).

UBX0101, a small molecule inhibitor of the MDM2/p53 
protein interaction, was revealed to be a potent senolytic 
candidate (26). Intra-articular injection of UBX0101 eliminated 
SCs accumulated in the articular cartilage and synovium, and 
resulted in attenuation of the development of post-traumatic 
osteoarthritis (OA) in aged mice (26). UBX0101 also cleared 
SCs by inducing apoptosis and improved the cartilage-forming 
ability of chondrocytes from human OA tissue (26). UBX0101 
is the first senolytic under Phase 1 clinical trial in patients with 
OA of the knee (https://clinicaltrials.gov/ct2/show/NCT03513016).

In addition to primary cells, senolytics targeting cancer cells 
have been also proposed. Panobinostat, an FDA approved 
HDAC inhibitor, was identified to have senolytic activity in 
chemotherapy-induced senescence of cancer cells, non-small 
cell lung cancer, and head and neck squamous cell carcinoma 
cell lines (41). During standard chemotherapy, senescence- 
associated events, such as decreased histone acetylation, 
enhancement of Bcl-2 family proteins, and SASP production 
occurred in cancer cells (42, 43). The latter events are a 
biomarker of senescence and a target of senotherapeutics. 
Chemotherapy-induced senescence has reported to be 
involved in the increased invasion of cancer cells, due to 
epithelial-to-mesenchymal transition in thyroid cancer (42), as 
well as acquisition of stem-cell-related properties in B-cell 
lymphoma (43). Thus, senolytics targeting senescent cancer 
cells might be a new strategy for treatment cancer metastasis 
and cancer stemness.

Forkhead box protein O4 (FOXO4) was identified as a 
pivotal protein involved in the viability of SCs. Using 
bioinformatic analysis of RNA sequence data from IR-induced 
senescent IMR90 cells, FOXO4-D-retro-inverso (FOXO4-DRI) 
peptide was demonstrated to be a new class of senolytic 
candidates (44). FOXO4-DRI peptide blocked the interaction 
of FOXO4 and p53 in senescent cells, which induced 
apoptosis of senescent IMR90 cells and HUVECs. Admini-
stration of the peptide improved fitness, hair density, and 
kidney function in both XpdTTD/TTD-progeroid and naturally 
aged mice (44).

Based on the countable lists of senolytics candidates, 
research on senolytics is still in its infancy, but growing 
rapidly. Since most senolytics target known proteins, such as 
p53, a tyrosine kinase, HSP90, Bcl-2, and Bcl-xL, elucidation 
of novel targets specific to CS is necessary for further 
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Agents Target pathway Effects Ref.

NBD peptide IKK/NFB pathway Delaying aging symptoms and chronic diseases in 
Ercc1−/-progeroid mice

54

JAK inhibitor (ruxolitinib) JAK (Janus kinase) pathway Alleviation of the SASP and frailty in old mice 55
KU-60019 ATM kinase Functional recovery of senescent fibroblasts through 

lysosomal-mitochondrial axis
Acceleration of cutaneous wound healing in aged mice

56

JH4 Progerin/lamin A/C Alleviation of nuclear deformation and reduction of senescence 
markers in HGPS and aged cells

Mitigation of age-related pathologies and extension of lifespan 
in the HGPS-progeroid mice 

58

Juglanin Not reported Inhibition of doxorubicin-induced senescence of HDFs and 
HUVECs and replicative cellular senescence of HDFs

59

Quercetin-3-O--D-glucuronide Not reported Inhibition of doxorubicin-induced and replicative senescence of 
HDFs and HUVECs

60

(−)-Loliolide Not reported Inhibition of doxorubicin-induced and replicative senescence of 
HDFs

61

Quercetagetin 3,4’-dimethyl ether Not reported Inhibition of doxorubicin-induced and replicative senescence of 
HUVECs

62

ESC-CM PDGF/FGF pathway Decreases in senescence phenotypes of HDFs and HUVECs
Acceleration of the skin wound healing in mice

63

Mmu-miR-291a-3p TGFBR2/p21 pathway Inhibition of senescence phenotypes of HDFs and HUVECs
Acceleration of the excisional skin wound healing in aged mice

64

Table 2. Senomorphic candidates

development of senolytics. In addition, senolytics demon-
strated cell-specific effects in killing SCs, suggesting CS might 
be differentially regulated depending on cell or tissue-specific 
factors. Further unbiased exploration of senolytics using 
chemical libraries or drug repositioning might contribute to the 
development of novel senolytics, as well as to the elucidation 
of novel mechanisms of CS.

SENOMORPHICS

Senomorphics is a wide range of agents that can modulate the 
phenotypes of SCs to those of young cells through interfering 
with senoinflammation/inflammaging, senescence-related 
signal pathways, and SASP, without induction of SC apoptosis 
(Table 2). Senomorphics include previous anti-aging or 
anti-senescence compounds, such as telomerase activator (45), 
CRMs (7), caloric restriction diets (8), sirtuin activators (46), 
mTOR inhibitors (47), antioxidants (48), anti-inflammatory 
agents targeting senoinflammation or inflammaging (49), 
autophagy activators (12), and proteasome activators (50). This 
review will not cover the aforementioned anti-aging or 
anti-senescence agents as senomophics. Instead, we have 
included recent results on agents exhibiting senomorphic 
activity, based on selective markers of cellular senescence, 
such as SASP and SAG in in vitro and in vivo experimental 
models.

Senoinflammation or inflammaging refers to chronic, sterile, 
low-grade, and unresolved inflammation characterized upon 

aging (51, 52). Nuclear factor-kappa B (NF-B) activated in 
aging and ARDs, is a key transcription factor mediating 
senoinflammation or inflammaging and its activation has been 
linked to known regulators of the aging process, such as 
insulin/insulin-like growth factor (IGF)-1, FOXO, SIRT, mTOR 
and DNA damage (53). Therefore, inhibition of NF-B has 
been suggested as a potential target of senomorphics. A 
peptide inhibitor of IKK, the NF-B–activating kinase, reduced 
cellular senescence in vitro and in vivo, and delayed the 
age-related symptoms and pathologies of Ercc1−/-progeroid 
mice (54). In addition, SASP in SCs also plays an important 
role in senoinflammation or inflammaging. Thus, blocking of 
SASP in SCs might be a plausible target of senomorphics. SASP 
is regulated by the Janus kinase (JAK)/STAT pathway, and 
pharmacological inhibitors of JAK in SCs suppressed 
senoinflammation, alleviated age-related tissue dysfunction, 
and enhanced physical function in old mice (55).

Ataxia-telangiectasia mutated (ATM) kinase, a serine/threonine 
protein kinase activated by DNA double strand breaks, 
functions in the regulation of CS (2). Therefore, ATM kinase 
inhibitor, KU-60019, was identified as a potential senomorphic 
candidate. KU-60019 induced the functional recovery of the 
lysosome/autophagy system, coupled with mitochondrial 
functional recovery and metabolic reprogramming (56).

Progerin, a truncated form of lamin A protein involved in 
Hutchitson-Gilford progeria syndrome (HGPS), accumulated 
with progressive telomere shortening during CS of normal 
human fibroblasts, and suggested a causative role in CS (57). A 
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Surface proteins Expression Therapeutic cells Ref.

MICA, ULBP2 Replicative, oncogene-induced, and DNA 
damage-induced senescent fibroblasts

Clearance of SCs by NK cells 69

DPP4 Senescent fibroblasts Clearance of SCs by NK cells 70
CD9 Replicative and doxorubicin-induced senescent 

HUVECs and HDFs
Delivery of senomorphics by CD9-antibody 

conjugated nanoparticles and liposomes
75
76

Table 3. Immune-system mediated clearance of SCs

small molecule, JH4, interfering binding of progerin and lamin 
A/C, has been shown to be a senomorphic candidate. JH4 
alleviated nuclear deformation and reversed senescence 
markers, such as growth arrest and SAG activity, in HGPS 
and aged cells. Administration of JH4 markedly mitigated 
several age-related pathologies and extended lifespan in 
HGPS-progeroid mice (58).

Natural compounds derived from plants, including juglanin 
(59), quercetin-3-O--D-glucuronide (60), (−)-loliolide (61), 
and quercetagetin 3,4’-dimethyl ether (62) were identified as 
senomorphic candiates, when they decreased SAG and p53 
levels in senescent HDFs and HUVECs.

Embryonic stem cells (ESCs) and ESC conditioned medium 
(CM) have been suggested as a source of anti-aging 
interventions that modulate the phenotypes of SCs. ESC-CM 
and ESC-CM derived factors, such as growth factor and 
miRNAs, reportedly might also be senomorphic candidates. 
ESC-CM markedly improved the phenotypes of SCs in HDFs 
and HUVECs, through a PDGF-FGF mediated pathway and 
accelerated wound healing in an in vivo mouse model (63). In 
addition, mmu-miR-291a-3p, enclosed in exosomes secreted 
from ESCs, was found to mitigate the phenotypes of SCs in 
HDFs and HUVECs, through a transforming growth factor beta 
receptor 2 (TGFBR2)-p21 pathway, and accelerated wound 
healing in aged mice (64).

IMMUNE-SYSTEM MEDIATED CLEARANCE OF SCs

SCs in tissues can activate both innate and adaptive immune 
responses, and are eliminated by the immune system to 
maintain tissue homeostasis mainly, through the DNA damage 
response (65). Clearance of SCs contributed to the regulation 
of tissue homeostasis, such as wound healing (66), hepatic 
fibrosis (67), and embryonic/placenta development (68). 
However, inefficient clearance of SCs due to aging of immune 
system or senescence immunosurveillence was shown to 
facilitate their accumulation in various tissues with age, and 
led to aging and ARDs (65). SCs revealed upregulation of 
MHC class I polypeptide-related sequence A (MICA) and UL16 
binding protein 2 (ULBP2), ligands of an activating natural 
killer (NK) cell receptor (NKG2D), which induced NK-mediated 
clearance of SCs and decreased liver fibrosis (69). Dipeptidyl 
peptidase 4 (DPP4) was selectively upregulated in the cell 

membrane of senescent fibroblasts, but not in proliferating 
cells or DPP4-positive SCs preferentially eliminated by 
antibody-mediated NK cell-mediated cytotoxicity, and suggested 
a possible immunotherapeutic strategy for targeting SCs (70) 
(Fig. 1). In addition to NK cells, CD4＋ T cells and macrophages 
were also involved in clearance of SCs, and prevented tumor 
development (71) and their contribution to embryonic 
development (68). Since NKG2D ligands are also expressed in 
many cancer cells, strategies to improve immunosurveillance 
already being developed as cancer therapy, might be 
repurposed to target SCs for the alleviation of aging and ARDs 
(18, 72, 73) (Table 3). T cells engineered to express the 
NKG2D chimeric antigen receptor (CAR), which recognizes 
NKG2D ligands on the surface of SCs, may be used to target 
SCs (65). CD9 is upregulated in the cell membrane of SCs (74), 
and CD9 antibody conjugated nanoparticles or liposomes 
preferentially delivered drugs to SCs and inhibited phenotypes 
of SCs in HDFs (75, 76). Therefore, antibody-mediated 
targeted drug delivery to SCs represents another immuno-
therapeutic strategy against SCs. Although some cell surface 
proteins preferentially upregulated in SCs have been shown to 
be involved in immune-system mediated clearance of SCs, 
more cell membrane proteins specific to diverse SCs should be 
investigated. Their identification would contribute to the 
development of senescence vaccines, targeting senescence- 
specific antigens, and promote development of novel strategies 
for immune-system mediated clearance of SCs.

CONCLUSION

Recent accumulating evidence has suggested a causal linkage 
between CS, and aging and ARDs, and has led to the 
development of senotherapeutics targeting SCs. These 
senotherapeutics are classified as senolytics, senomorphics, 
and immune-system mediators of the clearance of SCs, and 
represent an emerging strategy of aging intervention for 
healthy aging, and prevention and treatment of ARDs. Similar 
to chemotherapeutics, the development of novel seno-
therapeutics must be more active and promote aging research 
on the mechanisms of CS regulation to identify novel targets. 
However, additional crucial issues must be overcome before 
senotherapeutics are applied in clinical practice. Although 
preclinical animal experiments revealed no significant side 
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effects of some senolytics, further in-depth and careful analyses 
on potential adverse effects of long-term administration of 
senotherapeutics is essential for its successful application in 
healthy aging and ARDs of humans. Occasionally, imagination 
becomes realty. In 1997, GATTACA, a science fiction (SF) film 
directed by Andrew Niccol, highlighted a eugenics issue in 
genetically modified babies in a not-too-distant future society. 
In 2010, he released other SF film, IN TIME, in which people 
are genetically engineered to stop aging on their 25th birthday 
in 2169. What do you think of the two SF films? Are they still 
fantasy? In the future, senotherapeutics will be available in 
markets and contribute to healthy aging and prevention and 
treatment of ARDs.
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