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Abstract

Haralick texture features are common texture descriptors in image analysis. To compute the

Haralick features, the image gray-levels are reduced, a process called quantization. The

resulting features depend heavily on the quantization step, so Haralick features are not

reproducible unless the same quantization is performed. The aim of this work was to

develop Haralick features that are invariant to the number of quantization gray-levels. By

redefining the gray-level co-occurrence matrix (GLCM) as a discretized probability density

function, it becomes asymptotically invariant to the quantization. The invariant and original

features were compared using logistic regression classification to separate two classes

based on the texture features. Classifiers trained on the invariant features showed higher

accuracies, and had similar performance when training and test images had very different

quantizations. In conclusion, using the invariant Haralick features, an image pattern will give

the same texture feature values independent of image quantization.

Introduction

The easiest and most intuitive image features for most applications in image analysis are first

order statistics computed from histograms of the gray-level values in images, like their mean,

variance, skewness and kurtosis. Such features involve the values of individual pixels, but

ignore the spatial interaction between pixels. Histogram features do not reflect objects or pat-

terns in the image, only the distribution of gray-levels. This inability makes first order statistics

a blunt tool for quantifying changes in images, or any change in the spatial distribution of gray

values.

Most texture analysis methods use higher-order statistics, and consider the relation between

two or more pixels at a time. Methods such as local binary patterns [1], wavelets [2] and Gabor

filters [3] can be used to assess texture in images. Haralick et al. [4] proposed using a gray-level

co-occurrence matrix (GLCM) as a method of quantifying the spatial relation of neighboring

pixels in an image. Haralick texture features, computed from the GLCM, are widely used due

to their simplicity and intuitive interpretations, and have successfully been applied in e.g. in

the analysis of skin texture [5], in land-use and forest-type classification [6], in automatic pol-

len detection [7], in fabric defect detection [8], in plant leaf classification [9], in cutting tool

condition monitoring [10], and electrophoresis analysis [11]. In recent years there has been a

rapid increase in the application of Haralick features in medical image analysis, e.g. in the
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analysis of ultrasound and MRI images of the liver [12, 13], the heart [14], X-ray mammography

[15, 16], MRI images in the study of breast cancer [17, 18], prostate cancer [19–21] and brain

cancer [22–24]. It is also used in radiomics [25, 26], which is an emerging technique where a

large number of quantitative features are extracted from medical images, and used to build

models predicting e.g. tumor phenotype [27], survival [28, 29] and tumor classification [30].

When creating a GLCM from an image or a region of interest (ROI), the image bit depth,

i.e. the number of gray-levels, may be reduced in a process called quantization. It is, however,

not straight-forward to set an appropriate bit depth, and many projects have been looking at

the optimal bit depths for various applications. [28, 31–35] The optimal bit depth depends on

the size of the image or ROI, image noise [36] and, of course, the content of the image [33]. To

complicate things further, the values of the Haralick features depend strongly on the bit depth

and the choice of maximum and minimum values used in the quantization [34, 37]. Clausi

et al. [38] proposed a method for normalizing two features with respect to the quantization

gray-levels to improve classification, however this method is not generalizable to all Haralick

features. Shafiq-ul-Hassan et al. [39] proposes another method for scaling a selection of the

Haralick features to make them less sensitive to the quantization gray-levels. The presented

approach is empirical, and no general rule for feature normalization is presented. Currently,

most Haralick feature values cannot be compared between analyses using different numbers of

gray-levels, even when they are computed on images depicting the same texture. This means

that Haralick features cannot be used to create general models that can be applied regardless of

image size or noise levels, and are not reproducible unless the same quantization is performed.

The aim of this work is to propose a modified set of Haralick texture features that are

asymptotically invariant to the image quantization, while preserving most of the interpreta-

tions of the original features. The modified features allow statistical models to be constructed

from images with varying number of gray-levels, or to apply a model trained on one number

of gray-levels to image data using a different number of gray-levels.

Theory

The first step in texture analysis using the Haralick features is to map the gray-levels in the

original image with size M × K, I
0

, from the range [a, b], to a quantized image, I, in the range

[1, N], that has the desired number of gray-levels, N. We represent this step with a quantization

function

φ : ½a; b�M�K ! ½1;N�M�K ; ð1Þ

that returns the quantized image

I ¼ φðI0Þ: ð2Þ

In this work we have set φ to be an affine function, but there is no constraint on this func-

tion for the purpose of this work.

The second step is to construct the non-normalized GLCM, X 2 NN�N
, by counting the

number of times each pair of gray-levels occurs as neighbors the image, I, or in an arbitrary

region in I. The neighbor of a pixel is defined by a displacement vector, δ = (dx, dy), in two

dimensions, where dx; dy 2 Z represent the displacement in x and y in units of pixels. Each ele-

ment, X(i, j), in the GLCM is computed as

Xði; jÞ ¼
XM

m¼1

XK

k¼1

(
1; if Iðm; kÞ ¼ i and Iðmþ dx; kþ dyÞ ¼ j;

0; otherwise;
ð3Þ
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where I(m, k) is element m, k in the quantized image I. Simply put, the element X(i, j) of the

non-normalized GLCM counts how many times gray values i and j occur as neighbors in I,

where i, j 2 [1, N]. It is possible to create a GLCM with several displacement vectors, e.g.

d0
� ¼ ð1; 0Þ d180

� ¼ ð� 1; 0Þ

d45
� ¼ ð1; 1Þ d225

� ¼ ð� 1; � 1Þ

d90
� ¼ ð0; 1Þ d270

� ¼ ð0; � 1Þ

d135
� ¼ ð� 1; 1Þ d315

� ¼ ð1; � 1Þ;

ð4Þ

for the eight immediate neighbors of a pixel, in two dimensions. This can be extended to three

dimensions, in which case 26 displacement vectors would be required. A GLCM created using

all of these displacement vectors, e.g. by summation, is said to be direction invariant. If dis-

placement vectors with opposite directions are used to construct the GLCM, the GLCM will be

symmetric. Symmetric GLCMs are semi-direction invariant, they represent relations between

pixels in e.g. vertical or horizontal directions instead of up or down, left or right. A semi-direc-

tion invariant GLCM can also be created by adding the transpose of a GLCM created by one

displacement vector to itself. This means that only one of the columns in Eq 4 needs to be cal-

culated to obtain a direction invariant GLCM in two dimensions, or 13 displacement vectors

for GLCMs constructed from neighbors in three dimensions.

The third step is to construct a normalized GLCM, P 2 QN�N
, where each element repre-

sents the estimated probability of each combination of pairs of neighboring gray-levels in the

image. The normalized GLCM is computed as

P ¼
X

XN

i¼1

XN

j¼1

Xði; jÞ
:

ð5Þ

The normalized GLCM can be interpreted as a probability mass function of the gray-level

pairs in the image.

The fourth step is to compute the texture features from the normalized GLCM. The Hara-

lick texture features are functions of the elements and their corresponding indices in the nor-

malized GLCM, and can be written in a general form as

f ¼
XA

i¼a

XB

j¼b

�ði; j; gðPÞÞcðpði; jÞÞ; ð6Þ

where ψ is a function of an element of P, g is a vector-valued function of P, and ϕ is a function

of the indices and g. Examples of g are found in in Table 1. For instance when computing Cor-
relation (see Table 2), we have

a ¼ b ¼ 1 ; A ¼ B ¼ N ;

gðPÞ ¼ ðmx; my; sx; syÞ ; cðpði; jÞÞ ¼ pði; jÞ ;

�ði; j; gðPÞÞ ¼
i � mx

sx

� � j � my

sy

 !

; f ¼
XN

i¼1

XN

j¼1

i � mx

sx

� � j � my

sy

 !

pði; jÞ :

Fig 1 illustrates Steps 2–4 of computing the Haralick texture features from a 4 × 4 example

image, that has already been quantized to three gray-levels.

Gray-level invariant Haralick texture features

PLOS ONE | https://doi.org/10.1371/journal.pone.0212110 February 22, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0212110


The number of gray-levels in the quantized image determines the size of the GLCM, and

will affect the texture feature values. By increasing the number of gray-levels, N, the sums in

Tables 1 and 2 will change. Further, the element values, p(i, j), of the normalized GLCM will

decrease as the number of gray-levels increases, since the sum of all elements is unity. These

two properties of the GLCM and the Haralick texture features means that the texture feature

values depend on the number of gray-levels in the quantized image.

Table 1. Variables and notation used to compute the Haralick texture features. The two left-most columns show the original definitions, and the two right-most col-

umns show the modifications needed to make the feature invariant to the number of gray-levels.

Notation Definition Mod. Notation Definition

x(i, j) Element i, j in the unnormalized GLCM

N Number of gray-levels

Δ 1

N

Δx+y
1

2N� 1

Δij 1

N2

p(i, j) xði;jÞ

XN

i¼1

XN

j¼1

xði;jÞ

~pði; jÞ xði;jÞ

XN

i¼1

XN

j¼1

xði;jÞ Dij

px(i) XN

j¼1

pði; jÞ
~pxðiÞ XN

j¼1

~pði; jÞD

py(j) XN

i¼1

pði; jÞ
~pyðjÞ XN

i¼1

~pði; jÞD

μx XN

i¼1

i � pxðiÞ
~mx XN

i¼1

i
N � ~pxðiÞD

μy XN

j¼1

j � pyðjÞ
~my XN

j¼1

j
N � ~pyðjÞD

s2
x XN

i¼1

ði � mxÞ
2
� pxðiÞ

~s2
x XN

i¼1

i
N � ~mx

� �2
� ~pxðiÞD

s2
y XN

j¼1

ðj � myÞ
2
� pyðjÞ

~s2
y XN

j¼1

j
N � ~my

� �2

� ~pyðjÞD

px+y(k) XN

i¼1

XN

j¼1 iþj¼k

pði; jÞ
~pxþyðkÞ XN

i¼1

XN

j¼1 iþj¼k

~pði; jÞD

px−y(k) XN

i¼1

XN

j¼1
ji� jj¼k

pði; jÞ
~px� yðkÞ XN

i¼1

XN

j¼1
ji� jj¼k

~pði; jÞD

μx+y X2N

k¼2

k � pxþyðkÞ
~mxþy X2N

k¼2

2ðk� 1Þ

2N� 1
� ~pxþyðkÞDxþy

μx−y XN� 1

k¼0

k � px� yðkÞ
~mx� y XN� 1

k¼0

kþ1

N � ~px� yðkÞD

HX
�
XN

i¼1

pxðiÞ � log pxðiÞ
gHX

�
XN

i¼1

~pxðiÞ � log ~pxðiÞD

HY
�
XN

i¼1

pyðiÞ � log pyðiÞ
gHY

�
XN

i¼1

~pyðjÞ � log ~pyðjÞD

HXY
�
XN

i¼1

XN

j¼1

pði; jÞ � log pði; jÞ
gHXY

�
XN

i¼1

XN

j¼1

~pði; jÞ � log ~pði; jÞDij

HXY 1
�
XN

i¼1

XN

j¼1

pði; jÞ � log ½pxðiÞ � pyðjÞ�
gHXY1

�
XN

i¼1

XN

j¼1

~pði; jÞ � log ½~pxðiÞ � ~pyðjÞ�Dij

HXY 2
�
XN

i¼1

XN

j¼1

pxðiÞ � pyðjÞ � log ½pxðiÞ � pyðjÞ�
gHXY2

�
XN

i¼1

XN

j¼1

~pxðiÞ � ~pyðjÞ � log ½~pxðiÞ � ~pyðjÞ�Dij

Q(i, j) PN
k¼1

pði;kÞpðj;kÞ
px ðiÞpy ðkÞ

~Qði; jÞ
PN

k¼1

~p ði;kÞ~pðj;kÞ
~px ðiÞ~py ðkÞ

Dij

https://doi.org/10.1371/journal.pone.0212110.t001
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Table 2. The texture features computed from GLCMs. The middle column shows the original definitions, and the right column shows the modifications needed to make

the features invariant to the number of gray-levels. There was an error in the definition of Sum variance in Haralick et al. [4], which has been corrected. λ2(Q(i, j)) denotes

the second largest eigenvalue of a matrix Q(i, j). Note, however, that this feature is computationally unstable, and was therefore not included in the examples in this work.

For symmetric GLCMs, μx and μy is identical, and is represented by μ in the expression for Cluster prominence and Cluster shade.

Feature Original expression Invariant expression

Autocorrelation [31] XN

i¼1

XN

j¼1

ði � jÞpði; jÞ
XN

i¼1

XN

j¼1

i
N �

j
N

� �
~p i; jð ÞDij

Cluster prominence [4] XN

i¼1

XN

j¼1

ðiþ j � 2mÞ
3pði; jÞ

XN

i¼1

XN

j¼1

i
N þ

j
N � 2~m

� �3
~p i; jð ÞDij

Cluster shade [4] XN

i¼1

XN

j¼1

ðiþ j � 2mÞ
4pði; jÞ

XN

i¼1

XN

j¼1

i
N þ

j
N � 2~m

� �4
~p i; jð ÞDij

Contrast [4] XN

i¼1

XN

j¼1

ði � jÞ2pði; jÞ
XN

i¼1

XN

j¼1

i
N �

j
N

� �2
~p i; jð ÞDij

Correlation [4] PN
i¼1

PN
j¼1

i� mx
sx

� �
j� my
sy

� �
pði; jÞ

PN
i¼1

PN
j¼1

i=N� ~mx
~sx

� �
j=N� ~my

~sy

� �
~pði; jÞDij

Difference entropy [4]
�
XN� 1

k¼0

px� yðkÞlog px� yðkÞ �
XN� 1

k¼0

~px� yðkÞlog ~px� yðkÞD

Difference variance [4] XN� 1

k¼0

ðk � mx� yÞ
2px� yðkÞ

XN� 1

k¼0

kþ1

N � ~mx� y

� �2

~px� y kð ÞD

Dissimilarity [31] XN

i¼1

XN

j¼1

ji � jj � pði; jÞ
XN

i¼1

XN

j¼1

j iN �
j
N j � ~pði; jÞDij

Energy [4] XN

i¼1

XN

j¼1

pði; jÞ2
XN

i¼1

XN

j¼1

~pði; jÞ2 Dij

Entropy [4]
�
XN

i¼1

XN

j¼1

pði; jÞ log pði; jÞ �
XN

i¼1

XN

j¼1

~pði; jÞ log ~pði; jÞDij

Homogeneity [31] XN

i¼1

XN

j¼1

pði; jÞ
1þ ði � jÞ2

XN

i¼1

XN

j¼1

~pði; jÞ

1þ
i
N
�

j
N

� �2 Dij

Information measure of correlation 1 [4] HXY � HXY1
max ðHX;HYÞ

gHXY � gHXY1

maxðgHX ;gHY Þ
Information measure of correlation 2 [4]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � exp ½� 2ðHXY2 � HXYÞ�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � exp ½� 2ð gHXY2 � gHXY Þ�
q

Inverse difference [38] XN

i¼1

XN

j¼1

pði; jÞ
1þ ji � jj

XN

i¼1

XN

j¼1

~pði; jÞ

1þ j
i
N
�

j
N
j

Dij

Maximum probability [31] max
i;j

pði; jÞ max
i;j

~pði; jÞ

Sum average [4], μx+y X2N

k¼2

kpxþyðkÞ
X2N

k¼2

2ðk� 1Þ

2N� 1
~pxþyðkÞDiþj

Sum entropy [4]
�
P2N

k¼2

pxþyðkÞ log pxþyðkÞ �
X2N

k¼2

~pxþyðkÞ log ~pxþyðkÞDiþj

Sum of squares [4] XN

i¼1

XN

j¼1

ði � mÞ2pði; jÞ
XN

i¼1

XN

j¼1

i
N � ~m
� �2

~pði; jÞDij

Sum variance [4] X2N

k¼2

ðk � mxþyÞ
2pxþyðkÞ

X2N

k¼2

2ðk� 1Þ

2N� 1
� ~mxþy

� �2

~pxþyðkÞDiþj

Maximal Correlation Coefficient [4]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðQði; jÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2ð
~Qði; jÞÞ

q

https://doi.org/10.1371/journal.pone.0212110.t002
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Invariant texture features

To develop asymptotically invariant texture features, we propose an interpretation of the

GLCM as a discrete approximation of a probability density function. In this interpretation, the

texture features are expressed as integrals over functions of the density, i.e. as

Z 1

0

Z 1

0

�ði; j; gðp�ÞÞcðp�ði; jÞÞ di dj ; ð7Þ

where p� is the underlying true probability density function, for which

R 1

0

R 1

0
p�ði; jÞ di dj ¼ 1 : ð8Þ

Eq 7 can be approximated by a Riemann sum:

Z 1

0

Z 1

0

� i; j; g p�ð Þð Þc p�ði; jÞð Þ di dj �
XN

i¼1

XN

j¼1

�
i
N
;
j
N
; gð~PÞ

� �

c ~pði; jÞð ÞDiDj ; ð9Þ

where

Di ¼ Dj ¼
1

N
; ð10Þ

and

~P ¼
X

XN

i¼1

XN

j¼1

Xði; jÞDiDj

;
ð11Þ

where Δi and Δj are differentials, and ~P is the invariant GLCM. So, to make the Haralick

Fig 1. An illustration of how the Haralick texture features are computed. In a 4 × 4 image, three gray-levels are

represented by numerical values from 1 to 3. The GLCM is constructed by considering the relation of each voxel with

its neighborhood. In this example, for simplicity, we only look at the neighbor to the right. The GLCM acts like a

counter for every combination of gray-level pairs in the image. For each voxel, its value and the neighboring voxel

value are counted in a specific GLCM element. The value of the reference voxel determines the column of the GLCM

and the neighbor value determines the row. In this ROI, there are two instances when a reference voxel of 3 “co-

occurs” with a neighbor voxel of 2 (indicated in solid, blue), and there is one instance of a reference voxel of 3 with a

neighbor voxel of 1 (indicated in dashed, red). The normalized GLCM represents the estimated probability of each

combination to occur in the image. The Haralick texture features are functions of the normalized GLCM, where

different aspects of the gray-level distribution in the ROI are represented. For example, diagonal elements in the

GLCM represent voxels pairs with equal gray-levels. The texture feature “contrast” gives elements with similar gray-

level values a low weight but elements with dissimilar gray-levels a high weight. Reprinted from Brynolfsson et al. [37]

under a CC BY license, with permission from Nature Publishing Group, original copyright 2017.

https://doi.org/10.1371/journal.pone.0212110.g001
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texture features invariant to the number of gray-levels, i and j are normalized to the half-open

interval (0, 1], the sums are multiplied by differentials, and the GLCM is normalized so that its

Riemann sum is 1, see Fig 2 and Eq 11. The proposed invariant texture features can be seen in

Columns 3 and 4 of Tables 1 and 2. The discrete approximations of the integrals depend on

the discretization of the distribution (i.e., the quantization, or the number of gray-levels), but

the approximation is equal to the integral in the limit as N!1. The original features do not

give the same approximated values for different discretizations, they either approach zero, a

fixed value or infinity when N!1.

Materials and methods

We investigated the properties of the original and invariant texture features using two data

sets. Dataset 1 contained T1-weighted MRI volumes of the brain. We computed texture fea-

tures for the cerebellum and the prefrontal cortex, see Fig 3. We used logistic regression to

classify each region based on their texture properties, and compared the result for the two

methods. This dataset has limited clinical utility, and is used to compare the performance of

Fig 2. A comparison between a original GLCM and an invariant GLCM for different numbers of bins. Synthetic GLCMs

generated as bivariate Gaussian distributions, for two different quantization levels, 16 and 24 gray-levels. The elements of the

standard GLCM sums to 1, which means that the GLCM element values will decrease with increasing GLCM size. The

invariant GLCMs are normalized to keep the total volume of the GLCM at 1, where each element is ascribed an area of 1/N2

units.

https://doi.org/10.1371/journal.pone.0212110.g002
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the original and invariant texture features only. Dataset 2 contained histology images of colo-

rectal cancer glands from the Warwick-QU dataset [40, 41]. This is an open dataset that was

used in the Gland Segmentation in Colon Histology Images Challenge Contest (GlaS), held at

MICCAI’2015. We computed texture features for each gland, and used logistic regression to

classify each gland as benign or malignant.

Dataset 1 imaging

Dataset 1 contained 81 T1-weighted axial spoiled gradient echo images of 29 subjects. The

image field of view was 250 × 250 × 240 mm3, with an in-plane resolution of 1.3 × 1.3 mm2

and a slice thickness of 1 mm. The repetition time and echo time were 7.1 and 2.5 ms,

Fig 3. The image data used to test the invariant features in classification problems. Texture features were computed for a range of quantization

gray-levels from a region in the cerebellum (a) and a region in the prefrontal cortex (b), and from benign (c) and malignant (d) colorectal glandular

structures.

https://doi.org/10.1371/journal.pone.0212110.g003
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respectively, and the bandwidth was 392 Hz/pixel. A region of the prefrontal cortex (30 × 30 ×
10 mm3, 23 × 23 × 10 voxels), and a region of the cerebellum (25 × 25 × 10 mm3, 19 × 19 × 10

voxels), were delineated on a reference image set, see Fig 3. The other images were rigidly reg-

istered to the reference, and the corresponding regions were extracted. Twenty-three images

from 13 patients where the image registration failed were excluded from the study. The clinical

trial was approved by the local Regional Ethical Review Board of Umeå University, and oral

and written consent was given by all subjects.

Dataset 2 imaging

Dataset 2 contained 1,518 images of colorectal glandular structures in 165 Hematoxylin and

Eosin (H&E) stained slides. The slides were digitally scanned at 20 × magnification, with a res-

olution of 0.62005 μm/pixel, using a Zeiss MIRAX MIDI Slide Scanner. The image dimensions

were 520 × 775 pixels for 151 slide scans, and 430 × 575 pixels for 14 slides. 934 gland struc-

tures in 74 slides were classified as benign and 584 structures in 91 slides as malignant. The

luminance, calculated from the RGB slides were used in the analysis. The images were dithered

using uniform noise, to reduce quantization errors.

Texture analysis

Thirty-two direction invariant GLCMs were created from the immediate voxel neighbors in

Eq 4, for each brain region or gland structure, one for every quantization of 8–256 gray-levels

in steps of 8. We used fixed upper and lower limits of 1500 and 4500 pixel units for the cerebel-

lum and 1000 and 8000 pixel units for the prefrontal cortex, determined by the limits of the

histograms from all regions. The upper and lower limits of the glandular structures were set to

0–256. The 20 original Haralick features and the corresponding invariant features described in

Table 2 were computed for each quantization. All texture analysis was done using MICE

Toolkit [42] and MATLAB 2016b (MathWorks, Inc., Natick, MA).

Classification

The goal of each logistic regression model was to correctly predict the brain regions (cerebel-

lum or prefrontal cortex) in Dataset 1 or the glandular structures (benign or malignant) in

Dataset 2, from the texture values. Two scenarios were explored. In the first scenario, the data-

sets were split into training (50%) and test dataset (50%). One hundred classifiers were trained

using a random quantization of each member in the training data. These models were used to

predict the correct class in the test set for all quantization levels. In the second scenario, the

datasets were split into training (50%), validation (25%) and test (25%) sets. One classifier was

trained for each of the 32 quantizations. These classifiers were used to predict the correct class

in the test set for all quantization levels. For each dataset and texture method, the validation set

was used to perform variable selection to remove irrelevant or highly correlated features. We

used forward selection [43], and maximized the mean accuracy.

Evaluation

The first scenario was evaluated by the average accuracy of the 100 classifiers that was trained

on randomly quantized data. We compared the original and invariant Haralick features using

a two-sample, two-tailed Welch’s t-test for populations with unequal variances. The second

scenario was evaluated using a Mann-Whitney U-test to compare the results of the original

and invariant Haralick features.
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Results

Fig 4 shows the original GLCMs (left) and the invariant GLCMs (right) for the reference

region of the cerebellum for 16, 32, 64, and 128 gray-levels. The standard GLCMs decrease in

amplitude with orders of magnitude as the number of gray-levels increase. The invariant fea-

tures retain the same volume, and the amplitude only increases slightly between 8 and 128

gray-levels, due to noise introduced with increased gray-level resolution.

Fig 5 shows how the texture feature values change with the number of gray-levels of the

GLCM, computed from a benign glandular structure in the gland dataset (Dataset 2). In the

left column, the upper graph shows features that increase rapidly with the number of gray-lev-

els, the middle graph shows features that increase modestly, or reach a limit as the number of

gray-levels increases, and the lower graph shows features that decrease with increasing number

of gray-levels. The right column shows the corresponding invariant texture features. Note that

the original features are plotted on a logarithmic scale on the vertical axis, whereas the invari-

ant features are plotted on a linear scale.

Fig 6 shows the accuracy of 100 logistic regression models trained on randomly quantized

images in the range of 8–256 gray-levels in steps of 8, and tested on images quantized to all

gray-levels in the range 8–256 in steps of 8. The error bars show the standard deviation of the

accuracy of the 100 classifiers, for each test dataset quantization level. Consistently, classifiers

trained on the invariant features outperformed classifiers trained on the original features, and

had a lower standard deviation of the accuracy. The average accuracies were 0.77 ± 0.08 and

0.96 ± 0.03 (p< 10−39, t = 20.82, using a two-sample Welch’s t-test with 138 degrees of free-

dom, estimated using the Satterthwaite-Welch formula [44]) for Dataset 1 (the brain dataset),

and 0.69 ± 0.06 and 0.80 ± 0.03 (p< 10−35, t = 17.15, using a two-sample Welch’s t-test with

142 degrees of freedom [44]) for Dataset 2 (the gland dataset) for the original and invariant

features, respectively.

Fig 7 shows the accuracy of the logistic regression models trained on one quantization lev-

els, and tested on all quantization levels in the range 8–256 in steps of 8, for Dataset 1 (the

brain dataset) and Dataset 2 (the gland dataset). The classifiers that were trained and tested on

the original features had a high accuracy only when the test data quantization was close to the

training data quantization. The classifiers that were trained on the invariant features had a

high accuracy for all combinations of training and test dataset quantizations. The renormalized

feature accuracies were significantly larger (p< 10−99 using a Mann-Whitney U-test) for both

datasets.

Discussion

We have presented a simple modification of the Haralick texture features that makes them

asymptotically invariant to the numbers of gray-levels in the quantizations. This is achieved by

viewing the GLCM as a discrete approximation of a probability density function, instead of a

probability mass function, over the pairs of gray-levels in the image. We have shown examples

of how the standard and invariant GLCMs scale with increasing bit depth, Fig 4, and how

most of the modified texture features quickly approach a limit, whereas most of the original

features diverge or converge to zero, Fig 5. We have demonstrated the benefit of the proposed

modified features by training logistic regression models to separate two brain regions in Data-

set 1, and the malignancy of colorectal glands in Dataset 2, based only on texture features. Clas-

sifiers based on the invariant features performed better than the original features in all tests

performed in this work. Further, the invariant Haralick features are rescaled versions of the

original features, which means that they retain their original interpretations in most cases.

Finally, the proposed modifications allow texture features to be reproducible regardless of

Gray-level invariant Haralick texture features
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Fig 4. Example of original and invariant GLCMs for different quantization levels from Dataset 1. The left column

shows the original GLCMs created from the cerebellum region in Fig 3, for different quantization levels. The right

column shows the invariant GLCMs for the same quantization levels. The original GLCMs are normalized so that the

sum is 1, whereas the invariant features are normalized so that the volume of the GLCM is 1.

https://doi.org/10.1371/journal.pone.0212110.g004
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quantization, since the same texture feature will give similar values independent of the

quantization.

We tested the texture features in two scenarios. In the first scenario, we trained classifiers

on texture features computed from images with different quantizations. In this scenario, the

quantization levels might be chosen to enhance features optimally in each image, which is

employed by e.g. Leijenenaar et al. [45]. Fig 6 shows that models trained on the invariant fea-

tures have a higher accuracy and smaller standard deviation than models trained on the origi-

nal features. In the second scenario, we trained the classifiers on one quantization level and

predicted the classes from features computed on each of the other quantization levels. This

Fig 5. The original Haralick feature values, and the proposed invariant feature values. Texture feature values computed from a benign glandular

structure in the gland dataset. The upper left plot shows the original Haralick features that increase rapidly with the number of gray-levels. The

middle left plot shows original Haralick features that increase modestly, or reach a plateau with increasing number of gray-levels. The bottom left

plot shows original Haralick features that decrease with increasing number of gray-levels. The right column shows the corresponding invariant

features. Note that the original features are plotted on a log-scale to accommodate the wide range of values. The Information measure of Correlation
2 and Correlation overlap in the original features. The Information Measure of Correlation 1 is negative in the original features, but the absolute

values are displayed in the graph to accommodate the log scale.

https://doi.org/10.1371/journal.pone.0212110.g005
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scenario represents cases in e.g. radiomics, where a predictive model is created using one quan-

tization, and employed to other datasets where the quantization is different due to e.g. resolu-

tion constrains, the size of the ROI, or where the optimal quantization is different. The

classifiers trained on the invariant features had equal or higher accuracies compared to classifi-

ers trained on the original features for the same combination of training and test dataset quan-

tizations in most cases. The exceptions were some classifiers trained on the original features

where the test quantization is slightly higher than the training quantization, see the upper left

plot in Fig 7. In these situations, feature differences between the two classes are enhanced by

the changes in feature values of the test data due to the different quantization gray-levels, as

shown in Fig 5. This effect depends on the inherent texture of the two classes to be separated,

and the features that are used in the model.

Maximum probability is very sensitive to noise, which is evident from Figs 4 and 5. For the

invariant features, the maximum probability is now interpreted as the maximum probability
density, i.e. the density value at the mode.

In the continuous case with the invariant features, the entropy becomes a differential

entropy, and no longer has all the properties of the discrete counterpart. For instance, the dif-

ferential entropy can be negative. This reinterpretation has particularly problematic conse-

quences for the Information Measure of Correlation 1, (see Table 2). The denominator can be

both positive and negative, and in particular, it can be close to zero. We note that in our partic-

ular case, with integration limits running from zero to one, division by zero can only occur if

either of the marginal distributions of P are uniform.

Fig 6. Accuracy of classifiers trained on multiple quantization gray-levels. To evaluate the performance of classifiers that were trained on a wide

range of quantizations, 100 logistic regression models were trained for each data set and method. Each image in the training data was randomly

quantized to one of 32 quantization gray-levels between 8 and 256 for every model. The markers show the mean accuracy and the error bars show

the standard deviations of the accuracy for each quantization of the test data. The dashed line shows the accuracy obtained by assigning all

predictions to the most common class, which is 0.5 for either the cerebellum or prefrontal cortex in Dataset 1 and 0.615 for benign glandular

structures in Dataset 2.

https://doi.org/10.1371/journal.pone.0212110.g006
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It is important to note that except for maximum probability and the features that involve

entropy, the interpretations of the texture features do not change. The invariant features are

obtained by renormalizing the GLCM, the indices, and by multiplication with a differential

determined by the bin size. It is merely a rescaling of the features to make them independent

of the number of gray-levels of the GLCM. This has generally no impact on the interpretations

of these features.

We chose to study the behavior of the invariant features between 8 and 256 quantization

gray-levels. Too few gray levels will lead to a crude Riemann approximation in Eq 9, which can

be seen in e.g. Fig 5 where the feature values stabilize around 16 gray-levels for most features,

or in Figs 6 and 7 where the accuracies improve drastically between 8 and 16 gray-levels.

Choosing excessively many quantizations gray-levels, e.g. on the order of the pixels present in

Fig 7. Accuracy of classifiers trained on one quantization gray-level. The heatmaps show the accuracy of logistic regression models trained on

one quantization gray-level and tested on all quantization gray-levels in the range 8–256 in steps of 8. The colormap is scaled to show a neutral gray

for the accuracy obtained by assigning all predictions to the most common class, which is 0.5 for either the cerebellum or prefrontal cortex in

Dataset 1 and 0.615 for benign glandular structures in Dataset 2. The upper row shows the result from Dataset 1 and the lower row shows the results

from Dataset 2. The left column shows the original features and the right column shows the invariant features. The diagonal elements show the

accuracies where the same quantization gray-levels were used for the training and test data.

https://doi.org/10.1371/journal.pone.0212110.g007
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the image, can produce sparse GLCMs. The invariant features will suffer from the same symp-

toms as the original features in this regard, i.e. an over-sensitivity to noise; and for small image

regions which will produce sparse GLCMs, a failure to properly represent the underlying tex-

ture information.

Clausi et al. [38] proposed a normalized version of Homogeneity and Inverse difference by

dividing the indices i and j by N to improve classification. The result is equivalent to the invari-

ant versions presented in Table 2, since the effect of the differential Δij and the renormalized

GLCM, ~pði; jÞ cancel out in these features. However Clausi’s approach to only normalize the

indices will not render all features invariant to the quantization; features such as Energy,

Entropy measures, Variance measures, Information measure of correlation 1 and 2 and Maxi-

mum probability are not explicitly expressed in terms of the GLCM indices and cannot be nor-

malized in this way. Shafic-ul-Hassan et al. [39] empirically derive normalization factors in

terms of the quantization gray-levels for a selection of Haralick features. Of those, only one

(Contrast) were identical to our results. A few of their normalized features were similar but

not identical to the results presented here. Hence, most empirical derivations presented by

Shafic-ul-Hassan do not fit the theory presented in this work. Further, many features pre-

sented in Table 2 cannot be reduced to a simple scaling factor of the original features, e.g. any

feature containing entropy.

In this study we chose global min-max limits when quantizing the images in each dataset to

minimize variations in the feature values due to image noise or other structures in the region

of interest. Another approach is to set the limits for each ROI based on the minimum and max-

imum values inside each ROI [37, 45]. However, one extremely high or low pixel value inside

the ROI will shift the center of mass of the GLCM, drastically affecting the Haralick feature val-

ues. The global limits approach requires that the image intensities are comparable between all

images in the dataset, which requires that the images are acquired with the same hardware and

imaging settings, or it can be achieved by e.g. normalizing the intensity of common structures

in the images.

The invariant features can be used when analyzing multiple images of different sizes (differ-

ent number of pixels), and possibly even different amounts of noise, by optimizing the quanti-

zation level for each image, while still obtaining comparable texture features. Image noise will

affect the texture feature values [36, 37, 46], but the smoothing effect of gray-level quantization

could reduce the impact on the resulting features. Some features are more sensitive to noise

[37], and a more aggressive gray-level quantization for the invariant version of the features

could reduce impact of the noise, while retaining the possibility to compare feature values with

those from images analyzed at different quantization levels. This approach requires further

research. Finally, there are other methods of extracting features, such as the Gray-level Size

Zone Matrix (GLSZM), Gray-level Run Length Matrix (GLRLM) and the Neighborhood

Gray-tone Difference Matrix (NGTDM), which feature values are also affected by the gray-

level quantization. Shafic-ul-Hassan et al. [39] proposes empirical normalization factors for

some features from these methods, and it is be feasible that a similar approach to what is pre-

sented in this work could reduce the impact of gray-level quantization to these methods as

well. Making more methods independent of the gray-level quantization will increase the appli-

cability and reproducibility of radiomics analyses, so this is also an interesting prospect for

future research.

Conclusion

By reinterpreting the GLCM as a discretized probability density function, it is possible to con-

struct a modified set of Haralick texture features that are asymptotically invariant to the image
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quantization. Except for maximum probability and features involving entropy, the invariant

features retain their original interpretations. We show that the invariant features can be used

in different classification setups, with results superior to the original definitions. This mean

that the invariant Haralick texture features are reproducible even when different gray-level

quantizations are used, unlike the original definitions.
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