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Abstract

A central goal of protein-folding theory is to predict the stochastic dynamics of transition paths — 

the rare trajectories that transit between the folded and unfolded ensembles — using only 

thermodynamic information, such as a low-dimensional equilibrium free-energy landscape. 

However, commonly used one-dimensional landscapes typically fall short of this aim, because an 

empirical coordinate-dependent diffusion coefficient has to be fit to transition-path trajectory data 

in order to reproduce the transitionpath dynamics. We show that an alternative, first-principles 

free-energy landscape predicts transition-path statistics that agree well with simulations and 

single-molecule experiments without requiring dynamical data as an input. This ‘topological 

configuration’ model assumes that distinct, native-like substructures assemble on a timescale that 

is slower than native-contact formation but faster than the folding of the entire protein. Using only 

equilibrium simulation data to determine the free energies of these coarse-grained intermediate 

states, we predict a broad distribution of transition-path transit times that agrees well with the 

transition-path durations observed in simulations. We further show that both the distribution of 

finite-time displacements on a one-dimensional order parameter and the ensemble of transition-

path trajectories generated by the model are consistent with the simulated transition paths. These 

results indicate that a landscape based on transient folding intermediates, which are often hidden 

by one-dimensional projections, can form the basis of a predictive model of protein-folding 

transition-path dynamics.
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Introduction

In studies of complex molecular systems, free-energy landscapes provide a tractable and 

intuitive framework for predicting rare events. Free-energy landscapes are low-dimensional 

projections that describe the equilibrium distribution of molecular configurations with 

respect to a small number of collective variables. However, when appropriately defined, 

these landscapes can also be used to predict dynamical properties of equilibrium or near-

equilibrium stochastic trajectories, such as the relative rates of transitions between 

macrostates. This feature, combined with the fact that a variety of computational techniques 

have been developed for efficiently calculating free energies without directly simulating rare 

events,1 makes freeenergy landscapes useful for rationalizing reaction and phase-

transformation mechanisms in complex systems. Consequently, theories based on free-

energy landscapes are widely applied to problems in classical2–4 and non-classical5,6 

nucleation, phase separation,7,8 and protein folding.9–12

A particularly important problem in protein folding is the prediction of transition paths 

between the unfolded and folded ensembles.13–18 These trajectories are both rare and, at an 

atomistic level, extremely heterogeneous, making this problem ideal for landscape-based 

theories. One of the most widely adopted approaches is to model folding as a diffusion 

process on a smooth, one-dimensional free-energy landscape.19–25 Nevertheless, even when 

using a good reaction coordinate,1 one-dimensional landscapes typically have to be 

corrected empirically to reproduce the dynamical properties of the actual stochastic folding 

trajectories.25,26 This correction can be achieved by introducing a position-dependent 

diffusion coefficient,27 since the gradient of the free-energy landscape itself is not sufficient 

to predict the relative rates of molecular motions on the one-dimensional reaction 

coordinate. The key limitation of this approach is that the transition-path trajectories that we 

wish to predict are required as input, either to determine the coordinate-dependence of the 

diffusion coefficient26,28–30 or to find a projection for which the apparent diffusive behavior 

is coordinate-independent.31,32 It is also unclear whether a single optimized one-

dimensional coordinate can always be found for large proteins, which may have more 

complicated or parallel folding pathways.33 Furthermore, recent single-molecule 

measurements of folding transition paths15,34 have provided experimental evidence of the 

shortcomings of one-dimensional landscapes, as the folding free-energy barrier inferred by 

applying a one-dimensional diffusion model to measured transit-time distributions is often 

inconsistent with the landscape determined directly in the sameexperiments.35,36

In contrast, an optimal free-energy landscape is one that is capable of predicting the 

statistical properties of stochastic transition paths without requiring additional, empirical 

kinetic information. To address this problem, we recently proposed an alternative, first-

principles approach37 for constructing structure-based free-energy landscapes to describe 

protein-folding transition paths. Based on an analysis of a native-centric ‘Ising-like’ model,
38–40 we postulated that the key events along transition paths coincide with the formation of 

native-like loops in the polymer backbone.41 We therefore devised a coarse-graining 

1In this context, a good reaction coordinate is one that not only distinguishes the unfolded and folded states, but also takes a single 
value for all configurations visited on transition paths that have an equal probability of reaching either of these macrostates.
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procedure in which microstates sharing the same set of native-like loops, but different sets of 

native contacts, are grouped into the same ‘topological configuration.’ Because the loss of 

entropy due to loop closure is not compensated until multiple stabilizing native contacts are 

formed, we further postulated that these topological configurations are, in general, separated 

by free-energy barriers, leading to a separation of timescales between the formation of 

individual native contacts and the assembly of topological configurations. Consistent with 

this prediction, we found that topological configurations interconvert on much slower 

timescales than individual native contacts in atomistic simulations and that these slower 

transitions follow roughly Markovian dynamics.37

In this paper, we show that the topological configuration model accurately describes the 

stochastic dynamics of transition-path trajectories. By estimating the free energies of the 

predicted topological configurations using equilibrium all-atom simulation snapshots,42 we 

apply this model to generate an ensemble of transition paths in terms of transitions between 

coarse-grained, partially folded states. First, we show that the distribution of transit times 

predicted by this approach is much closer to the distribution of simulated transit times than 

that predicted by a model of diffusion on a smooth one-dimensional landscape. Second, we 

demonstrate that the distribution of simulated finite-time displacements on a one-

dimensional order parameter can be rationalized by the topological configuration model.

Lastly, we use a hidden Markov framework to show that the predicted separation of 

timescales generates an ensemble of transition paths that is consistent with the simulated 

folding trajectories. Overall, these results indicate that a free-energy landscape defined on 

the basis of transient, native-like intermediates can predict protein-folding transition paths 

without requiring post hoc corrections to the transition-path dynamics.

Theory

Definition of a topological configuration

The central principle of the topological configuration model 37 is a separation between three 

different timescales: a relatively fast timescale associated with native-contact formation, a 

slower timescale on which substantial portions of native structure assemble, and a slowest 

timescale on which the entire protein folds. The timescale separation for these processes has 

been well established experimentally, with measurements reporting single-contact formation 

on timescales of approximately 10 ns,43 native-like loop formation on timescales of 100 ns– 

1 μs,44 and the folding of proteins with approximately 100 residues or more on timescales of 

100 μs or longer.45 It is also well established that the entropy–enthalpy compensation of 

protein folding is imperfect, meaning that while a small number of native contacts is rarely 

sufficient to counter the associated loss of configurational entropy completely, the formation 

of subsequent native contacts tends to be more thermodynamically favorable.46,47 This 

general feature, which is responsible for the overall free-energy barrier that determines the 

slowest timescale of protein folding, also gives rise to many smaller barriers on folding 

transition paths. In particular, the entropic penalty associated with the closure of a single 

native-like loop typically results in a small yet significant free-energy barrier, which in turn 

leads to a dynamical timescale that is slower than the average rate of native-contact 

formation but faster than the rate at which the entire protein folds.
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By identifying native loops and considering all permutations of the order in which they can 

form, we can construct a free-energy landscape that captures this key intermediate timescale. 

We previously demonstrated37 how this analysis could be applied to a structurebased, ‘Ising-

like’ model based on the pioneering work of Eaton and colleagues.38,48,49 In that work, we 

calculated the free-energy barriers between configurations in the structure-based model to 

support the predicted separation of timescales. We also provided indirect evidence of 

intermediate barriers in an all-atom model by analyzing the dwell times associated with the 

predicted topological configurations in all-atom simulations.

As in Ref. 37, we shall focus on the protein Ubiquitin in order to test the topological 

configuration model’s ability to predict transition-path dynamics. In the contact map shown 

in Figure 1a, individual ‘substructures’ comprise native contacts that are adjacent2 in the 

contact map. Topological configurations are defined as combinations of one or more 

substructures, including any additional native contacts between the residues that comprise 

these substructures. As shown in the schematic Figure 1b, we can then construct a free-

energy landscape in the discrete space of topological configurations. Transitions are allowed 

between configurations that differ by a single substructure (and thus a single native-like loop 

closure). It is important to note that each topological configuration is not a rigid structure but 

rather an ensemble of microstates, in which different sets of native contacts are present but 

the same set of substructures (and, consequently, native-like loops) are represented. 

Furthermore, due to the predicted separation of timescales, the fluctuations in native-contact 

formation within a topological configuration are typically much faster than the transitions 

between configurations.

Estimation of topological configuration free energies from Molecular Dynamics 
simulations

In this paper, our goal is to evaluate the predictions of a free-energy landscape constructed 

solely from thermodynamic data. For this purpose, we analyzed snapshots from all-atom 

Molecular Dynamics (MD) simulations,42 which were conducted under conditions where a 

total of ten unbiased, reversible folding and unfolding transition paths of Ubiquitin were 

observed. To calculate the free energy associated with each predicted topological 

configuration, we first classified all simulation snapshots, recorded at 1ns intervals, 

according to which substructures are present. In each snapshot, we found all native residue–

residue contacts in which at least one pair of heavy atoms is less than 4.5 Å apart. We then 

considered a substructure to be formed if at least six of its native contacts were present in the 

largest structured region, i.e., the largest connected component of the graph of native 

residue–residue contacts in a simulation snapshot. As demonstrated in Ref.37, this definition 

prevents contacts with extremely brief lifetimes (on the order of 1ns) from influencing the 

identification of substructures. Free energy differences between pairs of configurations (i, j) 
were estimated according to the relative frequencies of the classified snapshots,

2Two contacts are adjacent if each residue in the first contact is an immediate neighbor of one of the residues in the second contact; for 
example (i, j) is adjacent to (i, j + 1) and (i + 1, j + 1).
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ΔFi j = − kBTlog Ni/N j , (1)

where Ni is the total number of snapshots assigned to configuration i, kB is the Boltzmann 

constant, and T is the absolute temperature. For comparison with theories based on one-

dimensional free-energy landscapes, we also calculated the free-energy landscape as a 

function of the number of native heavy-atom contacts50 using a 4.5 Å cutoff distance,

F(x) = − kBTlogN(x) + const . , (2)

where N(x) is the total number of snapshots in which the number of native contacts falls in 

the range [x − Δx/2,x + Δx/2). This one-dimensional free-energy landscape is shown in 

Figure 2a, where the bin width Δx is taken to be 4 native contacts.

The central object of the topological configuration model is the rate matrix T for transitions 

between topological configurations. Ideally, one should determine the transition rates either 

from the free-energy barriers or the mean first passage times between configurations, but 

accurate calculations of this type are not possible given the available simulation data. 

Instead, we simply assumed a symmetric form that enforces detailed balance for the forward 

and backward rates between configurations i and j,

T i j = k0exp −
ΔF ji
2kBT i ≠ j, (3)

for pairs of configurations (i, j) that differ by the addition or removal of a single 

substructure; the diagonal elements of the matrix are then T ii = − ∑ j ≠ i T i j. The prefactor 

k0 is the same for all transitions and is left as an adjustable parameter that scales all barrier 

heights between configurations equivalently. However, due to the assumed separation of 

timescales, we know that k0 should be slow compared to the average rate of native-contact 

formation. Then, given the matrix T, it is straightforward to calculate the overall folding rate, 

kfold; the committor associated with each configuration i, pfold,i; the probability of finding a 

trajectory in a specific configuration i on a transition path, mi
AB; and the folding fluxes 

between adjacent states i and j, f i j
AB, using transition-path theory.51 These quantities will be 

used throughout our analysis. We shall show that, despite not undertaking detailed 

calculations of the individual barrier heights, this model produces remarkably accurate 

transition-path statistics. Furthermore, alternative choices for the form of the rates given in 

Eq. (3), such as a Metropolis function,52 do not change the qualitative nature of our results. 

We also note that all timescales determined directly from the atomistic simulations are 

accelerated relative to experiments, in part due to the elevated temperature at which the 

simulations were conducted.42

Jacobs and Shakhnovich Page 5

J Phys Chem B. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



General properties of topological configuration free-energy landscapes

In addition to a separation of timescales, our previous analysis37 of this model made two 

general predictions that hold up when comparing with simulation data. First, the Boltzmann-

weighted ensemble of microstates associated with each topological configuration is 

predicted to be unimodal when projected onto a one-dimensional coordinate. For example, 

the free energy as a function of the number of native contacts is unimodal for all topological 

configurations, as shown by the labeled colored curves in Figure 2a, suggesting that there 

are no significant free-energy barriers between microstates within each configuration. 

Consequently, it is reasonable to approximate the projection of each configuration onto this 

order parameter using a Gaussian distribution with the estimated mean, ⟨x⟩i, and variance, 

x2
i − x i

2, where the subscripts indicate averages over all snapshots classified as 

topological configuration i, as shown in Figure 2b. This approximation will be used in the 

discussion of hidden Markov modeling below.

Second, in the case of proteins such as Ubiquitin with little structural symmetry, the free 

energies of the various topological configurations are relatively heterogeneous, which results 

in a small number of high-probability transition paths through the network. By applying 

transition-path theory51 to the rate matrix T, we calculated pfold for each configuration and 

the folding flux between configurations on transition paths. Figure 2c shows that there is a 

nearly one-to-one correspondence between the predicted pfold and the number of native 

contacts when we consider only those configurations that are likely to be visited on 

transition paths, even though this order parameter played no role in the transition-path theory 

calculations. This observation is consistent with the fact that the number of native contacts is 

a good reaction coordinate for identifying the ensemble of transition states, where pfold = ½, 

from simulated Ubiquitin transition paths.50 However, knowing the location of the transition 

state on an order parameter is, in general, not sufficient to predict the transitionpath 

dynamics. In addition, any one-dimensional projection almost invariably hides some of the 

intermediate free-energy barriers on transition paths that play an important role in the 

transition-path dynamics.53,54

Statistical analyses

Distribution of transition-path transit times

As an initial test of the model, we examined the predicted distribution of transit times 

between the unfolded and folded ensembles. For two-state proteins, transit times are orders 

of magnitude smaller than the characteristic waiting time until a folding or unfolding event 

occurs.13,15,55,56 Nevertheless, recent advances in single-molecule experiments15,34 have 

made it possible to measure these brief trajectories. Although experimental measurements 

have confirmed that the distribution of transit times has an exponential tail as expected for 

stochastic barrier-crossing processes, the shape of the distribution generally disagrees with 

the predictions of one-dimensional landscape theories.34–36 In particular, the measured 

distributions are typically much broader than expected for a one-dimensional landscape with 

a harmonic barrier.
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To compare the predictions of the one-dimensional (1-d) and topological configuration 

models, we used kinetic Monte Carlo (kMC) simulations57 to sample transition paths 

between absorbing states of a rate matrix, T. We first calculated the distribution of transit 

times for the 1-d native-contacts landscape shown in Figure 2a. To this end, we discretized 

this landscape between the unfolded and folded free-energy minima into 150 bins (such that 

Δx = 4 native contacts) and constructed a tri-diagonal transition matrix, T1-d. We assumed 

the symmetric form

T(x, x ± Δx)
1 − d = k0exp − F(x ± Δx) − F(x)

2kBT , (4)

with T(x, x)
1 − d = − T(x, x − Δx)

1 − d + T(x, x + Δx)
1 − d . Because the transit times are inversely proportional 

to the transition-matrix prefactor k0, transit-time distributions for different models can be 

compared by scaling tAB according to the mean transit time, ⟨tAB⟩. In this way we can see 

that the predicted distribution of transit times, p(tAB), between the folded and unfolded free-

energy minima xA and xB (Figure 2c) is relatively narrow, with a coefficient of variation of 

0.39 and an exponential tail (Figure 3a). Alternatively, we can fit the decay constant of the 

exponential tail, 𝜔-1, in order to compare with the theoretical distribution for 1-d harmonic 

barrier crossings, PAB
harm ωt; ΔF† ,58 where the shape parameter ΔF† is the height of the 

barrier (Figure 3b). The simulated distribution of 1-d transit times agrees well with this 

harmonic prediction using the barrier height ΔF† = 5.37kT determined directly from the 

empirical 1-d landscape (Figure 2a), despite the fact that this landscape is not perfectly 

harmonic.

We then repeated these calculations using the topological configuration rate matrix defined 

in Eq. (3). The resulting distribution of transit times (Figure 3a) also has an exponential tail, 

but is substantially broader, with a coefficient of variation of 0.91. We find that the 

distribution of transit times obtained from the MD simulations, which has a coefficient of 

variation of 1.21 ± 0.45, is considerably closer to the distribution derived from the 

topological configuration model than the distribution derived from the 1-d model. (The 

maximum likelihood ratio for the two models given the ten MD transit times is 1019). When 

comparing the transit-time distribution predicted by the topological configuration model 

with the harmonic prediction PAB
harm ωt; ΔF† , the best fit is obtained with a shape parameter 

ΔF† that corresponds to a one-dimensional landscape with a 0.43kT barrier (Figure 3b). 

Interestingly, this order-of-magnitude difference between the actual barrier height3 and that 

returned by a fit to the harmonic theory is reminiscent of the discrepancy found in 

experimental measurements.34

The striking difference between the shapes of these transit-time distributions is primarily a 

consequence of the intermediate barrier crossings, as opposed to the multidimensionality of 

the network model. For example, by simulating transition paths that only traverse the 

3Note that the barrier on the minimum free-energy path through the topological configuration network is also greater than 5kT.
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quasione-dimensional minimum free-energy path through the configuration network, we 

obtained a similar distribution of transit times (Figure 3). To explore this reasoning further, 

we constructed two toy 1-d landscapes with the same barrier height and number of bins as in 

the empirical 1-d landscape (Figure 4a). In the first landscape, the single barrier is, to a good 

approximation, harmonic, while in the second landscape, there are five intermediate barriers. 

We then computed T1-d using Eq. (4) and simulated the transition paths for these toy models 

via kMC. As expected, the presence of the intermediate barriers significantly broadens the 

transit-time distribution, resulting in a coefficient of variation of 0.47 for the intermediate-

barrier landscape versus 0.36 for the single-barrier toy landscape (Figure 4b). It is also 

possible to coarse-grain the dynamics over the intermediate-barrier toy landscape by 

calculating the mean first passage times between the local free-energy minima (Figure 4a). 

Simulating the transition paths for this coarse-grained model results in a good agreement 

with the full intermediate-barrier toy landscape (Figure 4b). Although the difference 

between the transit-time distributions for these particular toy models is smaller than that 

shown in Figure 3, this comparison clearly demonstrates that the presence of intermediate 

barriers on the transition paths tends to broaden the distribution of transit times.

Distribution of finite-time displacements on a one-dimensional order parameter

As a second statistical test, we examined distributions of finite-time displacements on a one-

dimensional order parameter. Using the number of native contacts as the order parameter, we 

measured displacements, Δx, given a lag time Δt on all transition-path trajectories in the 

atomistic MD simulations. We considered lag times ranging from 1ns, which is longer than 

the typical time required for the formation of a single native contact, to ∼ 100ns, which is 

much shorter than the mean transit time, 2.43 μs, observed in the MD simulations. After 

verifying that Ubiquitin transition paths exhibit subdiffusive motion over this range of lag 

times,59 meaning that ⟨[Δx(Δt)]2⟩ ∝ (Δt)p with p < 1, we sought to determine whether, for a 

given lag time, the distribution of frequent, small displacements is predictive of larger 

jumps. By averaging over all MD transition-path trajectories and removing the net 

directional motion, (xB − xA)/tAB, we find that the vast majority of displacements, for which 

|Δx | ≤ 2 ⟨Δx(Δt)2⟩, are well described by Gaussian distributions over the entire range of lag 

times. However, larger displacements are much more frequent than predicted by the tails of 

the Gaussian distributions, regardless of the lag time. This ‘fat-tailed’ behavior is shown in 

Figure 5a, where the distribution for each lag time is scaled according to its root-

meansquared displacement and compared to a unit Gaussian distribution indicated by the 

black dashed line.

This unusual feature is naturally predicted by the timescale separation in the topological 

configuration model, since the distribution of one-dimensional displacements is narrower for 

fluctuations within a configuration than for transitions from one configuration to another. To 

illustrate this idea, we compare the expected displacement associated with a step between 

configurations, ⟨(σi
2 + σ j

2)1/2⟩, with the average size of a fluctuation within a configuration, 

σi
2 , where the averages are taken over all configurations and weighted by mi

AB, the 

probability of finding a transition-path trajectory in any configuration i (Figure 5b). The 

contribution from transitions between configurations, shown by colored dotted lines in 
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Figure 5b, increases with the lag time, since the probability of moving from configuration i 
to j within a finite time Δt is given by the matrix exponential [exp(ΔtT)]ij. As a result of 

these larger displacements, the tails of the distribution are always outside of the unit 

Gaussian distribution, suggesting that the fat-tailed behavior observed in the MD simulation-

derived distributions is also indicative of relatively rare intermediate barrier crossings.

To test this hypothesis, we analyzed the distributions of finite-time displacements obtained 

from simulated transition paths over the two toy landscapes shown in Figure 4a. By scaling 

the distributions according to their root-mean-squared displacements and compar-ing with a 

unit Gaussian distribution (Figure 5c,d), we find that only the landscape with intermediate 

barriers results in a qualitatively similar fat-tailed distribution. The singlebarrier toy 

landscape, by contrast, results in large displacements being less frequent than predicted by a 

Gaussian distribution. We therefore conclude that the relative enrichment of large 

displacements within lag times of a few tens of nanoseconds is a likely consequence of 

intermediate barrier crossings in the MD-simulated transition paths.

Likelihood comparison between predicted and simulated transitionpath trajectories

Finally, we tested whether the transition-path trajectories observed in the MD simulations, 

when projected onto a one-dimensional coordinate, are representative of the transition-path 

ensembles predicted by the topological configuration model. To do so, we treated this 

stochastic process as a hidden Markov model with a discrete state space of topological 

configurations. In this model, transition paths traverse the discrete state space in accordance 

with the rate matrix T, but we assume that we can only observe the instantaneous projection 

of each state s onto the 1-d coordinate x. With the exception of the transition-matrix 

prefactor k0, both the transition probabilities between states and the topological 

configuration-dependent probabilities of observing a given number of native contacts, p(x|s), 

are completely determined by quantities calculated from the equilibrium MD simulation 

data. We first removed all configurations in the topological configuration network that are 

not likely to be visited on transition paths (less than 1% of predicted folding flux) to guard 

against overfitting. We then used the standard Viterbi algorithm60,61 to determine the unique 

sequence of configurations, {sl}, that maximizes the log likelihood of the observed time 

series {xl} for each transition-path trajectory,

⟨logL⟩ = n−1 ∑
l = 1

n
log p xl sl eΔtT

sl − 1, sl
, (5)

where the index l runs over all consecutive snapshots on each transition path, and we have 

normalized the log likelihood to remove the trivial dependence on the total trajectory length 

n.

A representative maximum likelihood fit, using the fixed transition rates and emission 

probabilities defined in Eq. (3) and Figure 2b, respectively, is shown in Figure 6a, where the 

apparent separation of timescales between high-frequency oscillations and slower, step-like 

behavior can be easily discerned by eye. Furthermore, the log likelihood of most probable 
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path, ⟨logLmax⟩, is only weakly dependent on the transition-matrix prefactor, k0. (Figure 6b). 

Analyzing one frame per nanosecond, the maximum of ⟨logLmax⟩ is found at a value of k0 

that results in a predicted folding rate, kfold, of approximately 1 × 10-6 frames. Importantly, 

this folding rate agrees well with the empirical folding rate that we calculated directly from 

the mean in the full MD trajectories, kfold
MD ≃ 1.3 ms−1 (Figure 6b,inset).

We then performed an analogous hidden Markov analysis for the 1-d landscape model with a 

constant diffusion coefficient. In this case, the discrete states {x} are bins of width Δx, the 

rate matrix is given by Eq. (4), and the Gaussian emissions p(x s = x) are assumed to have a 

standard deviation of Δx. For example, a representative maximum likelihood fit, assuming a 

bin width of Δx = 16 native contacts, is shown in Figure 6a. Unlike the topological 

configuration model, we find that the log likelihood of the most probable path in the 1-d 

model is strongly dependent on the transition-matrix prefactor, k0. Furthermore, the 

maximum with respect to k0 corresponds to a folding rate that is orders of magnitude greater 

than that determined from MD simulations. This means that, in order to generate a transition 

path with the observed high frequency fluctuations on the empirical 1-d landscape, k0 has to 

be tuned to a point where the predicted rates of folding and unfolding events are 

unrealistically fast. The topological configuration model does not suffer from this 

contradiction, since the separation of timescales between the fast motions within a 

topological configuration and slower transitions between configurations is an intrinsic 

feature of the model.

To ensure a fair comparison between these models, we calculated the expected values of the 

log likelihood for transition paths generated directly by both models,

log L model = ∑
s

ms
ABlog ⟨p(x |s)⟩⟨(eΔtT)s′, s⟩ , (6)

where the expectation values for the emission and transition probabilities are 

⟨p(x |s)⟩ ≡ ∫ −∞
∞ p(x s)2dx and ⟨[exp(ΔtT)]s′, s⟩ ≡ ∑s′ [exp(ΔtT)]s′, s

2, respectively, in each 

state s. Fixing k0 to match the MD folding rate, Figure 6c shows that the log likelihood of 

the most probable path determined by fitting the MD data is consistent with the expected log 

likelihood for the ensemble of transition paths generated by the topological configuration 

model. This result is independent of temporal coarse-graining, i.e., down-sampling the 

trajectory x(t) by averaging over a moving window of width Δt. By contrast, temporal 

coarse-graining has a significant effect on the difference between the best-fit and expected 

log likelihoods for the 1-d landscape model when k0 is fixed according to the MD folding 

rate, since increasing Δt preferentially removes high frequency fluctuations. This difference 

is also sensitive to the landscape bin width Δx, since increasing Δx reduces the number of 

distinct states and consequently slows the rate of transitions between adjacent states. As a 

result, increasing the bin width results in an effective separation of timescales on the 1-d 

landscape, albeit without a first-principles justification. Only by introducing a separation of 

timescales through a post hoc combination of temporal coarse-graining of the trajectories 
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and spatial coarse-graining of the 1-d landscape is it possible for the 1-d model to generate 

transition paths that are consistent with those observed in the MD simulations (Figure 6c).

In conclusion, this hidden Markov analysis highlights the importance of a separation of 

timescales for reproducing the transition-path trajectories observed in atomistic MD 

simulations. In particular, the co-occurrence of fast fluctuations in the number of native 

contacts and infrequent folding events is naturally captured by the topological configuration 

model, as seen by the agreement between the log likelihoods of the fitted and predicted 

transitionpath trajectory ensembles. One-dimensional landscape models that lack an 

intermediate timescale, by contrast, require that the trajectories observed in MD simulations 

be smoothed substantially in order to conform to the predicted transition-path dynamics.

Discussion

We have shown that a theoretical model of protein folding, which emphasizes an interme-

diate timescale associated with transitions between distinct configurations of partial native 

structure, accurately predicts multiple statistical properties of the stochastic dynamics of 

folding transition paths. By using equilibrium simulation data to construct an approximate 

rate matrix for transitions between topological configurations, we demonstrated that the 

transition-path ensembles generated by this model have broad transit-time distributions that 

are consistent with both all-atom simulations and experimental observations. We then 

showed that the non-Gaussian distributions of finite-time displacements that are predicted by 

this model qualitatively match all-atom simulation results. Lastly, we demonstrated that this 

model can reconcile rapid local fluctuations on a one-dimensional order parameter with a 

slow overall rate of folding, two seemingly contradictory features that are simultaneously 

observed in simulated transition-path trajectories. Most importantly, all predictions of the 

topological configuration model were made without the use of any dynamical information.

The intermediate timescale in the topological configuration model is predicted to arise due 

to local free-energy barriers that separate transient states with distinct sets of native-like 

loops.37 In this work, we assumed that the rates of transitions between states could be 

approximated using a simple formula that satisfies detailed balance. However, a more 

accurate approach would involve the calculation of the rates between adjacent topological 

configurations in the all-atom model. Such an approach might benefit from recent advances 

in Markov state modeling,62,63 although, in this application, the definitions of the states 

would be as-sumed a priori on the basis of the native structure. Nevertheless, it is remarkable 

that we are able to obtain qualitatively accurate results for a variety of statistical tests using a 

highly simplified Markov model and the estimated free energies of the predicted topological 

configurations. This success indicates that the statistical analyses that we considered depend 

to a greater extent on the presence of intermediate barriers than on their precise heights, 

provided that these barriers are comparable to the thermal energy (≳ kBT) and are thus 

kinetically relevant. Generalizing beyond Ubiquitin, we anticipate that accounting for this 

intermediate timescale is likely to be especially important in the context of large proteins, 

which tend to have complicated native topologies. Transition-path analyses of small, 

ultrafast-folding proteins,64 by contrast, are less likely to benefit from the coarse-graining 

strategy described here, since these proteins typically contain only one or two native-state 
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loops whose formation dominates the overall folding rate. The lower probability of 

encountering substantial free-energy barriers on folding transition paths, which are needed to 

assume approximately Markovian transitions between intermediate configurations, suggests 

that models of diffusion over a single harmonic barrier may be more appropriate in these 

particular cases.

To compare our approach with commonly used one-dimensional models, we assumed a 

projection onto the number of native contacts and a constant diffusion coefficient. The 

number of native contacts has been shown to be a good reaction coordinate in the sense that, 

for many small proteins, it can be used to locate the transition state from transition-path 

trajectories with high probability.50 The results presented here are not inconsistent with this 

notion of a good reaction coordinate when a single pathway through the network of 

topological configurations dominates, as shown by the similarity between the committors 

predicted by the two models. Furthermore, if one were to account for coordinate-dependent 

diffusion, it is likely that these two approaches would lead to similar predictions for the 

transition-path dynamics, since existing methods for fitting coordinate-dependent diffusion 

coefficients often reveal the existence of intermediate barriers that were hidden by the 

projection onto the original reaction coordinate.31 However, to carry out such an analysis, 

dynamical informa-tion is always required in some form,25 meaning that the underlying 

landscape is not, by itself, truly predictive.

The topological configuration model that we have examined here differs in a number of 

important ways from alternative models of folding intermediates that have been proposed 

previously. Unlike the early hierarchical model of Ptitsyn65 and the more recent ‘foldon’ 

hypothesis,66 the assembly of native-like intermediates need not lead to a more negative free 

energy at every step. At the same time, we have not assumed that the free energy decreases 

only upon incorporation of the final native-like substructure, as proposed in a recent 

‘volcano’ model of folding.67 By contrast, the highest point on the minimum free-energy 

path through the network of topological configurations is determined by the free energies of 

the various configurations and the barriers between them, which depend, in turn, on the 

temperature and solvent conditions.37 The topological configuration model also suggests a 

natural definition of a folding pathway68 at the level of topological configurations while 

allowing for alternative, yet less probable, pathways.

Finally, this theoretical analysis has a number of implications for experimental investigations 

of protein-folding transition paths. The transit-time and finite-time displacement 

distributions that we have discussed can now be measured directly in single-molecule 

experiments. However, to distinguish between alternative theoretical models, it would be 

most useful to analyze high-resolution experimental transition-path measurements using 

hidden Markov models in order to detect and characterize transient folding intermediates. 

Using established non-parametric methods,69,70 it should be possible to assess both the 

number of distinct transient states and any separation of timescales objectively. Furthermore, 

by combining such analyses with structure-based models, like the type discussed here, it 

should be possible to extract more detailed information regarding the underlying free-energy 

landscape from these measurements. In this way, continued advances in single-molecule 
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measurements can be used to improve predictive landscape-based models of protein-folding 

transition paths, in particular for large proteins with complex native-state topologies.

Conclusion

We have shown that the introduction of an intermediate timescale, which is faster than 

native-contact formation but slower than the typical time for folding an entire protein, can 

qualitatively alter the statistics of protein-folding transition paths. We proposed that this 

intermediate timescale is associated with the assembly of native-like loops, and we used this 

principle to build a coarse-grained free-energy landscape for Ubiquitin from equilibrium 

atomistic simulation data. Without relying on any dynamical information from simulations, 

we showed that this model predicts distributions of transit times and finite-time 

displacements that are consistent with simulated transition paths, but differ qualitatively 

from the predictions of a one-dimensional model of diffusion on an empirical free-energy 

landscape. We also used a hidden Markov analysis to demonstrate that this model generates 

transition paths that agree with both the dynamics and kinetics inferred from reversible 

folding simulations. Our results suggest that the analysis of single-molecule transition-path 

trajectories may be improved by accounting for intermediate free-energy barriers, which are 

a fundamental aspect of the complexity of folding large biomolecules.
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Figure 1: 
Definition of topological configurations for the protein Ubiquitin. (a) A map of the residue–

residue native contacts determined from a crystal structure (PDB ID: 1ubq). Substructures, 

comprising sets of at least six adjacent native contacts, are colored and labeled. Native 

contacts that are not part of any substructure are shown in gray. (b) A schematic topological 

configuration free-energy landscape showing a single pathway between the completely 

unfolded, ‘∅,’ and native, ‘abcdefg,’ configurations. These configurations are separated by 

free-energy barriers and thus interconvert on a slower timescale than the formation of 
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individual native contacts. Selected configurations are illustrated below, where stretches of 

disordered residues are indicated by dashed lines.
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Figure 2: 
Comparison of the topological configuration and one-dimensional (1-d) free-energy 

landscapes. (a) Projections of the free-energy surfaces onto the number of native contacts. 

Selected curves corresponding to distinct topological configurations (solid colored lines) are 

labeled; the 1-d projection F(x), with bin width Δx = 4 native contacts, is shown by the 

dashed black line. (b) The unimodal projections of the topological configurations onto the 

number of native contacts can be characterized by Gaussian distributions with the indicated 

means (squares) and standard deviations (error bars). The dotted lines indicate allowed 

transitions between configurations that differ by exactly one substructure. (c) The 
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committors, pfold, associated with each configuration (squares), projected onto the number 

of native contacts. Selected configurations are labeled, and the predicted folding fluxes 

through the network of states are indicated by the widths of the gray lines; fluxes less than 

5% have been omitted. For comparison, the dashed black line shows pfold(x) predicted by 

the 1-d landscape, where the vertical dotted lines indicate the boundaries of the transition-

path region, xA and xB. In all panels, the configurations are colored according to their 

estimated free energies, Fi = −kBT logNi, with blue and red indicating low and high free 

energies, respectively.
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Figure 3: 
Distributions of transition-path transit times, p(tAB), for the models of Ubiquitin folding 

shown in Figure 2. (a) The distributions calculated via kinetic Monte Carlo simulations of 

the 1-d native contacts landscape model, the topological configuration model, and the quasi-

one-dimensional minimum free-energy path through the topological configuration network. 

To compare the shapes of the distributions, all transit times are scaled according to the mean 

transit time, ⟨tAB⟩, for each model. Also shown are the ten transit times observed in all-atom 

MD simulations. (b) The same three distributions were fit to the theoretical distribution for a 

harmonic barrier, PAB
harm, in order to estimate the decay constant, 𝜔-1 of the exponential tail. 

The transit-time distribution calculated from the empirical 1-d landscape agrees well with 

the theoretical distribution using the empirical barrier height, 5.37kT, while the distribution 

calculated from the topological configuration model can only be fit by PAB
harm if we set the 

shape parameter ΔF† equal to a much lower barrier height of 0.43kT.
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Figure 4: 
Distributions of transition-path transit times for two one-dimensional toy landscapes. (a) The 

two toy free-energy landscapes, with a single harmonic barrier [blue empty circles; F(x) ∝ 
Acos(2πx/151)] and five intermediate barriers [red filled circles; F(x) ∝ Acos(2πx/151) 

+ 2kT cos(10πx/151)], respectively. The maximum barrier height and number of discrete 

states were chosen to match the empirical 1-d landscape shown in Figure 2a for each toy 

landscape. Coarse-graining (CG) the intermediate-barrier landscape by calculating the mean 

first passage times between local free-energy minima results in the six-state model shown by 

red empty squares. (b) The transit-time distributions for the two toy landscapes, with all 

times scaled by the mean transit time, ⟨tAB⟩, for each model. The single-barrier landscape 

has a transit-time distribution that is narrower than the theoretical prediction, PAB
harm, for this 

barrier height (black dashed line), while the intermediate-barrier transit-time distribution and 

its coarse-grained approximation are significantly broader.
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Figure 5: 
Distributions of finite-time displacements on the 1-d native contacts order parameter, 

averaged over the transition-path ensemble. (a) The distribution of displacements Δx after a 

lag time Δt observed in all-atom MD transition paths. The distributions are centered, such 

that ⟨Δx⟩ = 0, and scaled by the root-mean-squared displacement at each lag time. The 

frequent small displacements are well described by a Gaussian distribution with a unit 

standard deviation (black dashed line); however, larger displacements are much more 

frequent than predicted by the tails of this Gaussian distribution. Colors correspond to the 

lag time, in units of nanoseconds, as shown by the scale bar on the right. (b) The predicted 

distribution of displacements corresponding to transitions between configurations in the 

topological configuration model (dotted lines) is broader than a Gaussian distribution fit to 

the transition-path-ensemble-averaged fluctuations within individual configurations, leading 

to similar fat-tailed behavior. The lag times are scaled by the slowest timescale of the MD 

simulations, kfold
MD −1

, for comparison with panel a. (c–d) Distributions calculated from 

kinetic Monte Carlo simulations of transition paths on the two toy landscapes shown in 

Figure 4a. Only the intermediate-barrier landscape (panel d) reproduces the fat-tailed 

behavior observed in the MD simulations.
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Figure 6: 
Comparison of transition-path trajectories from atomistic MD simulations and trajectories 

generated by theoretical models. (a) The maximum-likelihood transition paths (red solid 

lines) through the discrete states of the topological configuration and 1-d landscape models 

given a representative MD transition-path trajectory, projected onto the number of native 

contacts, x (blue lines). For the topological configuration model, the expected fluctuations 

(i.e., the standard deviations of the Gaussian approximations in Figure 2b) within the most 

probable states are shown by red dashed lines. (b) The dependence of the per-frame log 

Jacobs and Shakhnovich Page 24

J Phys Chem B. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likelihood of the most probable sequence of states on the transition-matrix prefactor, k0. This 

rate is scaled by the folding rate predicted by the model, kfold, for comparison with the 

estimated MD folding rate, kfold
MD (black dashed line). The maximum of ⟨logLmax⟩ for the 

topological configuration model coincides with the MD folding rate (inset). (c) Comparison 

between the log likelihood of the most probable sequence of states and the expected log 

likelihood for each model, ⟨logL⟩model (see text). When fitting to the 1-d model, the 

agreement between these quantities depends strongly on the spatial coarse-graining, Δx, of 

the landscape and temporal averaging of the MD transition-path trajectories over time 

windows of width Δt. Error bars indicate the standard error of the mean.
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