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Abstract

The dynamic oscillations of tropomyosin molecules in the azimuthal direction over the surface of 

the actin filament during thin filament activation are studied here from an energy landscape 

perspective. A mathematical model based on principles from nonlinear dynamics and chaos theory 

is derived to describe these dynamical motions. In particular, an energy potential with three wells 

is proposed to govern the tropomyosin oscillations between the observed regulatory positions 

observed during muscle contraction, namely the blocked “B”, closed “C” and open “M” states. 

Based on the variations in both the frequency and amplitude of the environmental (surrounding the 

thin filament system) driving tractions, such as the electrostatic, hydrophobic, and Ca2+-dependent 

forces, the tropomyosin movements are shown to be complex; they can change from being simple 

harmonic oscillations to being fully chaotic. Three cases (periodic, period-2, and chaotic patterns) 

are presented to showcase the different possible dynamic responses of tropomyosin sliding over 

the actin filament. A probability density function is used as a statistical measure to calculate the 

average residence time spanned out by the tropomyosin molecule when visiting each (B, C, M) 

equilibrium state. The results were found to depend strongly on the energy landscape profile and 

its featured barriers, which normally govern the transitions between the B-C-M states during 

striated muscle activation.
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1. Introduction

Tropomyosin (Tm) dynamical motions over the surface of an actin filament play an 

important role in the process of striated thin filament activation and have been hypothesized 

to be a key effector in regulating muscle contractions. For instance, the Tm-chain exhibits 

unique characteristics [1–6], which have been shown to affect the stability of the actin 
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filament and modulate its interaction with the surrounding motor proteins. Additionally, Tm 

has the ability to oscillate between distinct regulatory locations in response to binding of the 

different thin filament activators [7–9]. The dynamics of the Tm regulatory movements is 

believed to be complex owing to the inherent nonlinearities, flexibility, and cooperativity in 

the structure of the thin filament proteins and in the surrounding activation forces [10–13]. 

These structure determinates could allow for different parts of a Tm molecule to effectively 

exist in different (B-C-M) states, and a Tm molecule to influence, and be influenced by, the 

B-C-M state of the nearest-neighboring Tm molecules.

Tm is a coiled-coil regulatory protein that binds head-to-tail to the adjacent Tm molecules to 

form a continuous chain. This chain is constrained at a particular angular position slightly 

away from the surface of the actin filament by electrostatic forces. This setting allows Tm to 

oscillate in the azimuthal direction (ϕ) with respect to the longitudinal axis of actin. 

Therefore, Tm is generally considered to be a flexible chain, as shown by several recent 

myofilament mechanistic models [14–18]. These models were developed based on the path-

integral theory of a continuous flexible chain [19], which was used to derive the nonlinear 

elastic energy governing the azimuthal movements of Tm. These models used a stochastic 

approach based on the standard Monte Carlo algorithm, and Tm was assumed to slide over 

actin, without rotating around its own axis, with an elastic energy that depends only on the 

bending mode/stiffness of Tm (but not the torsional stiffness). These models have 

successfully predicted the angular positions spanned out by the Tm-chain and regulated by 

Ca+1 availability during the process of thin filament activation. However, their applicability 

in describing how Tm alternates between angular locations is limited, and they cannot be 

used to track the intrinsic Tm dynamical motions between regulatory positions.

Currently, there are two debated hypothetical mechanisms (sliding vs. rolling) proposed to 

describe Tm motions on the surface of actin. The sliding mechanism suggests that Tm 

translates over a relatively flat region and assumes that there are no major changes in the 

structural configurations of either Tm or actin [9, 17, 20]. In contrast, the rolling hypothesis 

posits an axial rotation/deformation of the Tm-chain about its axis [21, 22]. In addition to 

the sliding and rolling hypotheses, D. Sousa and his co-workers have recently proposed an 

alternative mechanism (rocking) that might better explain the actual Tm movements 

specifically between the C and -M states [23]. The rocking motion model was proposed 

based on a detailed Cryo-EM structural study, which showed that the C- and M-states are 

very close to each other and therefore are likely to transition between equilibrium positions 

via a rocking displacement.

In all motion scenarios (sliding, rolling and rocking), the Tm-chain undergoes distinct 

movements to uncover the myosin-S1 binding sites located on the surface of the actin 

filament. These motions are characterized by three equilibrium positions, namely: the 

blocked position “B” (binding sites are blocked), closed position “C” (weak binding is 

permissible), and the open position “M” (strong binding of S1). These maneuvers are set by 

a well-established mechanism, commonly known as the three-state-model (B-C-M) of 

McKillop and Geeves [9]. While the three-state-model describes the equilibrium regulatory 

states of Tm, the intrinsic mechanism by which Tm-chain oscillates between these states 

remains incompletely understood.
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Recently, Tm dynamical movements on the surface of the actin filament were explained 

using an “energy landscape” perspective [24–27]. Specifically, in a troponin (Tn)-free model 

(only F-actin and Tm being considered), reconstructions from electron microscopy 

experiments supplemented by computational chemistry simulations were used to predict the 

energy barrier between various Tm regulatory positions. Results of these studies 

successfully predicted the azimuthal displacements of Tm and its associated energy 

landscape potential, the latter shown to exhibit only a single energy minimum with a fairly 

broad well. Orzechowski and co-workers [26] hypothesized that, when the rest (i.e., Tn and 

myosin) of the myofilament structure is considered, this single-well potential landscape will 

deform, allowing for multiple wells with various energy barriers to form. Thus, trapping of 

Tm into one of the three (B-C-M) regulatory positions will be controlled mainly by energy 

separations between the multi-well features in the entire myofilament energy landscape.

These energy landscape results [24–27] provide a useful platform that can be used to better 

understand the mechanistic role of Tm dynamics during muscle activation. However, the 

exact spatio-temporal mechanisms governing how the Tm-chain moves over the actin 

surface and which energy landscape it follows remain unresolved, hindering the complete 

understanding of Tm dynamics. One of the important unanswered questions is whether Tm 

oscillates between the distinct three (B-C-M) regulatory states with simple harmonic modes, 

or with chaotic dynamic patterns or completely random behavior.

In this study, we propose a novel mathematical model that explains Tm dynamical motions 

on the surface of the actin filament using principles from nonlinear dynamical systems, 

chaos theory, and the recent energy landscape hypothesis/findings [24–27]. The Tm 

oscillations between the three observed regulatory equilibrium states (B-C-M) are modelled 

using energy potential with multiple wells [28]. Each well in the energy landscape profile is 

hypothesized to mimic one of the regulatory positions (B-C-M) proposed by the three-state-

model [9]. The model assumes that switching process between these conformational states is 

inherently deterministic. The Jacobian and Lyapunov methods are then used to study the 

system’s local and global stability. A bifurcation analysis using Melinkov function is also 

used to find conditions (parameter values) that signify Tm transitions from simple harmonic 

oscillation to chaotic behaviors. We demonstrate that Tm movements over the actin surface 

may exhibit periodic, aperiodic, and chaotic behaviors during muscle contraction.

2. Methods

Consider the situation when the Tm molecule moves azimuthally over the surface of the 

actin filament during the thin filament activation process. These movements eventually lead 

to global conformational changes that uncover the myosin-binding sites, hence facilitating 

muscle contraction. In general, the equation that govern the dynamics of this motion can be 

derived from the momentum balance using a stochastic approach, which can be given in a 

non-dimensional form according to Langevin’s equation as,

Ẍ + ζẊ + ∇V(X) = ∑F(t) (1)
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where the superscript (·) denotes derivatives with respect to time, ∇ is the standard gradient 

operator, X is the activation coordinate vector, and ζ is damping coefficient. V(X) is a multi-

well energy potential used to govern Tm regulatory motions between its equilibrium 

positions. Σ F(t) =T(t) + N(t) is the total driving force vector. T(t) =[Tr, Τϕ,Tz] combines all 

the environmental forces that surrounds the thin filament and induce distinct Tm motions 

along the reaction coordinates. N(t) = [Nr, Νϕ,Nz] is a fluctuation force vector due to thermal 

noise, which is normally modeled by a Gaussian white noise distribution, which has a zero 

mean and satisfies the fluctuation-dissipation theorem,

< N(t) > = 0 & < N(t)N(s) > = 2ζkBTKδ(t − s) (2)

where kB, TK, and δ are the Boltzmann constant, temperature in Kelvin, and the Dirac delta 

function, respectively. The present analysis extends the work by Earley [8] and generalizes 

his approach and hypothesis by assuming that Tm could alternate between regulatory states 

not only harmonically but also in a chaotic fashion. The model development is supported by 

the following important findings/facts from the literature; i) during thin filament activation 

process, Tm oscillates between three well-known equilibrium states, blocked “B”, closed 

“C”, and open “M” [9], ii) these Tm movements can be explained from energy landscape 

perspective [26,27]. The model details are given in the following subsections.

Energy landscape: Tm dynamics as governed by a three-well potential

The potential mechanical energy stored in motor proteins can be described by an energy 

landscape profile [29]. This interaction energy profile is normally used to find the system’s 

equilibrium positions and governs the motions between these positions. Moreover, according 

to the Lagrangian-Hamiltonian mechanics principles, the spatial gradient (derivative w.r.t the 

interaction coordinate) of this potential gives rise to a stiffness force term that contributes to 

the overall traction (inertial, damping, and external-driving) acting on the system.

In modeling Tm motion dynamics, it is well accepted that the Tm azimuthal position ϕ over 

the surface of actin filaments is controlled by the free Ca2+ concentration and the 

interactions between the actin filament, the troponin complex (TnC, TnI, TnT), and the 

myosin head sub-fragment (S1). This dynamic environment around the Tm chain is 

hypothesized to follow a multi-well energy landscape that governs Tm’s oscillations 

between the observed three-equilibria positions on the actin surface. Reconstruction of the 

exact topological form of this energy potential profile based on experimental data has not 

been possible yet, and is considered a major challenge. Instead, a pre-assumed (i.e., 

theoretically-based), well-posed and biophysically reasonable energy potential profile that 

mimics the above mentioned (B-C-M) motions is used here. Our proposed approach is given 

as a first step toward investigating and understanding the fundamental dynamics of the Tm 

complex oscillations seeking a new class of myofilament models.

Herein, we assume that the azimuthal position of Tm ϕ on the surface of actin filament is 

governed purely by a potential function V(ϕ) with three-wells. Each well is hypothesized to 

be consistent with the three-state model [9] and refers to one of the B-C-M positions. These 

distinct positions are explained as follows: (i) The blocked state “B” (ϕ = ϕ -) refers to a 
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situation where the cytosolic Ca+2 ions are absent or very low, the troponin-T(TnT) binds to 

tropomyosin forming interlocking troponin-tropomyosin complex, and the troponin-I(TnI) 

binds to actin holding this complex in place. (ii) The closed state “C” (ϕ = ϕ o) is formed 

when Ca+2 becomes available and binds to troponin-C(TnC). (iii) The open state “M” (ϕ = ϕ
+) is established when the myosin bind to the thin filament and forming cross-bridges and 

power stroke. These distinct regulatory locations and the hypothesized energy potential are 

schematically shown in Fig. 1 A & B respectively. An expression to this profile can be given 

by

V(ϕ(t)) = 1
2αϕ2 + 1

4 βϕ4 + 1
6γϕ6 (3)

where, α, β, and γ are arbitrary parameters given to control the shape, the activation 

barriers, and the critical (stable/unstable) points of the proposed energy landscape profile. 

Ideally, these free parameters can be used to match the proposed profile with an 

experimentally reconstructed profile, when the latter becomes available. Moreover, they can 

be used to draw connections between the transition rates and the activation energy barriers 

via Gibbs relations. For example, when moving from blocked to closed states, the transition 

rate can be given as k
B+ = exp −ΔVB C /RT  where ΔVB↔C is set by the values of α, β, 

and γ, respectively. However, in this study we focus on identifying the angular motions of 

Tm from a nonlinear dynamical point of view at a fixed energy barrier height and for a given 

excitation force, rather than focusing on the actomyosin chemo-mechanical (ATP 

Hydrolysis) process. Therefore, these parameters are kept constant.

We focus our attention on the azimuthal coordinate only and assume that fluctuations in the 

azimuthal direction are bounded and are much smaller than axial fluctuations. In other 

words, the system is assumed to be inherently deterministic rather than random [30]. 

Additionally, the environmental forces[8] along this direction are assumed to be smooth and 

slow function in time. Therefore, a deterministic mapping to the forcing term in the 

Langevin equation can be rewritten by replacing the Gaussian white noise with a 

deterministic chaotic dynamics. In other words, we are seeking a model response induced by 

deterministic forces only along the azimuthal direction.

The deterministic version of the Langevin equation(1) that governs the azimuthal movement 

of Tm on the actin’s surface can be given by

ϕ̈ + ζϕ̇ + dV(ϕ)
dϕ = Tϕ(t) (4)

It should be emphasized that, although the system is subjected to thermal fluctuations, we 

have followed a deterministic modeling approach [30], which has been used previously to 

model ionic-channel kinetics based on chaotic theory. Since we are interested in modeling 

the collective dynamics of a strand of Tm molecules (one of two such strands on each thin 

filament where each strand is formed by Tm molecules joined “head to tail”), we represent 
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that structure herein by a single lumped inertial body with a total mass equal to the sum of 

all Tm molecules that regulate the thin filament activation. Therefore, the inertia of this 

lumped Tm body is assumed to be important and comparable with the damping effect, hence 

the inertial effect (the acceleration term) is kept in the equations. It should also be noted that 

the damping coefficient ζ (given in a non-dimensional form) is also an important parameter 

in the model and is believed to strongly influence the thin filament dynamics. For instance, 

experimental observations have already demonstrated a critical dependence of thin filament 

regulatory unit dynamics on solvent viscosity [31].

The term dV
dϕ  is included to account for the traction induced by the energy profile of the Tm 

body. Herein, we chose to use a non-dimensional formulation since the exact mathematical 

form of the driving forces is not fully known. The surrounding environmental driving 

tractions (forces) are given by the source term T, and are induced by the thick and thin 

filaments electrostatic and hydrophobic force interactions [14, 15, 32], and by the Ca+2-

dependent forces exerted by the Troponin-complex proteins. These external effectors can be 

lumped together and assumed to vary harmonically, i.e., Ίϕ(t) = To cos(𝜔t) with excitation 

frequency ω and amplitude To. Using equations (3–4), we obtain:

ϕ̈ + ζϕ̇ + αϕ + βϕ3 + γϕ5 = Tocos (ωt) (5)

The proposed potential profile is symmetric in shape with three wells and five critical (stable 

and saddle) points. Therefore, the term dV
dϕ  can be rewritten in a simplified form as

dV
dϕ = αϕ + βϕ3 + γϕ5 = ϕ ϕ2 − ϕo

2 ϕ2 − ϕx
2 (6)

Equation (5) can now be rewritten as

ϕ̈ + ζϕ̇ + ϕ ϕ2 − ϕo
2 ϕ2 − ϕx

2 = Tocos (ωt) (7)

where, ϕ = 0, ± ϕ o, and ± ϕ x are the system critical points. The stable points are found to be 

located at ϕ = 0 and ± ϕ o. Each stable point is assigned to a tropomyosin conformational (B-

C-M) state. Additionally, there are two unstable (saddle) points located at ± ϕ x < ± ϕ o, 

which mark and control the trapping energy barriers required for transitions between the Tm 

regulatory states. The stable point located at ϕ = 0 is chosen such that it represents the closed 

“C” state. The other two wells are chosen to be located at ϕ o = +1, and represent the 

blocked “B” and open “M” states, respectively. The coefficients in equation (3) control the 

shape of the energy potential V(ϕ) profile and its critical points locations. By applying 

simple algebra manipulations, these coefficients can be related to the locations of the system 

critical points as: α = ϕ x2, β = -(1 + ϕ x2), and γ = 1, which renders the shape of the 

potential V(ϕ) to depend only on the locations of the saddle points ± ϕ x, as shown in Fig. 2 

A. It should be noted that although we are proposing a symmetric energy profile to describe 
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the Tm dynamics, the analysis is kept general to accommodate other complex anharmonic 

( i.e., deviation from being harmonic and symmetric) energy landscape profiles with variable 

energy barriers to account for the Ca+2 transients during thin filament activation.

The phase portrait (ϕ − ϕ̇) for the undamped (i.e., ζ = 0) and unperturbed system (i.e.,T = 0) 

is presented in Fig. 2B. This plot clearly shows two distinct orbits related to the saddle 

points, namely the homoclinic and heteroclinic manifolds. The homoclinic orbit connects 

each saddle point with itself, while the heteroclinic orbit connects the two saddle points to 

each other. These orbits are important because they form the separatrix between each energy 

well i.e., between Tm’s conformational states. These manifolds can be very sensitive to any 

disturbances and/or fluctuations in the system parameters because of the inherent 

nonlinearities in the system. Therefore, the stability and bifurcations of both homoclinic and 

heteroclinic orbits are hypothesized to control the Tm’s dynamical behavior and used herein 

to identify whether Tm behaves as a simple harmonic oscillator or moves with other possible 

complex chaotic patterns. Thus, a system stability analysis is required.

Local and global stability analysis

In order to determine the stability requirements of the above Tm dynamical model, equation 

(7) is rewritten as two ordinary differential equations in the phase plane

ϕ̇ = ψ

ψ̇ = − ζψ − ϕ ϕ2 − ϕo
2 ϕ2 − ϕx

2 + Tocos(ωt)
(8)

To study the local and global stability, we first consider the unforced scenario (the forcing 

term is set to zeros i.e., T = 0),

ϕ̇ = ψ

ψ̇ = − ζψ − ϕ ϕ2 − ϕo
2 ϕ2 − ϕx

2 (9)

The local stability analysis around the equilibrium points of the linearized form of the above 

system (Eq. 9) can be determined by firstly calculating the Jacobian matrix J and finding its 

eigenvalues. Analyses have shown that there exist three sinks (stable points); one of them is 

located at the origin (0,0) with eigenvalues of λ = 1
2 (−ζ ± ζ2 − 4ϕx

2) with Re(λ) < o, and 

two other points located are at (0,± ϕ0) with eigenvalues of λ = 1
2 (−ζ ± ζ2 − 8(1 − ϕx

2)) with 

Re(λ) < o. Also, there are two saddle (unstable) points located at (0,± ϕx). The 

corresponding eigenvalues at the saddle points are λ = 1
2 (−ζ ± ζ2 − 8ϕx

2(1 − ϕx
2)). The 

corresponding eigenvalues at the saddle points are λ = 1
2 (−ζ ± ζ2 − 8ϕx

2(1 − ϕx
2)).

Furthermore, the global stability of the system can be obtained by calculating the Lyapunov 

function L, which should be positive definite for a globally stable system. In our proposed 

Tm-dynamical system model, Lyapunov function can be obtained easily since the system is 
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Hamiltonian H and having a total energy (kinetic and potential) that is equal to L. Lyapunov 

function for the above system can be given as

L = H = 1
2ψ2 + 1

2ϕx
2ϕ2 − 1

4 1 + ϕx
2 ϕ4 + 1

6ϕ6 (10)

Differentiating the above expression for L with respect to time and using equation (9) yields 

L̇ = − ζψ2, which is always negative for positively damping coefficient i.e., ζ > 0 and for 

non-zero velocity i.e., ψ ≠ 0. This analysis suggests that the global solutions to the present 

system are always stable (bounded) for any choice of system parameters, provided that the 

system is not driven by external forces i.e., T = 0. However, linearized theory analysis 

suggests that, the system is still globally bounded for a small forcing amplitude To. Owing 

to the fact that the thin filament is composed of complex structures of multi-subunit 

machinery proteins that interact with each other in a nonlinear fashion, Tm can exhibit a 

multitude of dynamical responses such as for instance periodic, aperiodic, chaotic, or even 

behave in a completely random fashion. Therefore, it is important to determine a set of 

criteria that identify the possible responses of the Tm dynamical system. Melnikov’s 

function [33] is the approach that we follow to find the conditions which mark transitions to 

chaos or other aperiodic system responses.

Conditions for bifurcation and chaotic motions

Nonlinear systems are in general sensitive to fluctuations in the main model parameters. In 

our analysis, parameters such as the damping coefficient ζ, excitation frequency ω, and 

driving amplitude To are expected to have influence on the Tm transitions from one position 

to another and its general dynamical responses. In order to study the effects of these 

parameters, Melnikov [33] theory is used to find bifurcation conditions and transitions to 

chaos [34]. Melnikov function M is considered to be a fundamental theory in bifurcation 

analysis and commonly used tool in nonlinear dynamics studies to determine the existence 

of chaos induced by a small perturbation to a smoothed Hamiltonian system, similar to the 

one derived in this study. In this theory, a first order approximation is used to determine the 

distance between the stable and unstable manifolds of the perturbed system. This makes it 

possible to find the criteria for the existence of transverse intersection points in the sense of 

Poincare’ maps, which imply the existence of fractal basin boundaries and thus a 

“horseshoes” structure of chaos.

To derive the criteria for the onset of chaos in our model, we use the Melnikov function M 
along with the Hamiltonian H expression given by equation (10). The first step in this 

analysis is to find expressions for both homoclinic (orbits that connect each saddle point to 

itself) and heteroclinic (orbits that connect two saddle points) trajectories. Therefore, we 

consider the unforced system given previously by equation (9). Let ζ = ϵζ , with 0 ≤ ϵ ≤ 1, 

and drop (ˆ) for convenience
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ϕ̇ = ψ

ψ̇ = − ϵζψ − ϕ ϕ2 − ϕo
2 ϕ2 − ϕx

2 (11)

Considering the unperturbed system (i.e., ϵ = 0), expressions for both homoclinic and 

heteroclinic orbits [34] can be derived and given respectively as

(ϕ, ψ)ho = ±
2ϕxcosh( f 1t

2 )
f 2 + cosh( f 1t) , ±

2 f 1ϕx f 1( f 2 − 1)sinh(
f 1t

2 )

2( f 2 + cosh( f 1t))
3
2

(12)

(ϕ, ψ)he = ±
2ϕxsinh( f 1t

2 )
− f 2 + cosh( f 1t) , ±

2 f 1ϕx f 1(1 − f 2)cosh(
f 1t

2 )

2(− f 2 + cosh( f 1t))
3
2

(13)

where f1 and f2 are functions of the stable (ϕ = ±φ x) and saddle (φ = ± φx) points, which can 

be identified using the potential landscape used in the model. These functions can be given 

as f 1 = ϕx
2 2γ f 3

2 − 1  and f 2 =
5 − 3 f 3

2

3 f 3
2 − 1

 where f 3 =
ϕo
ϕx

, and γ = 1 is the coefficient of the 

ϕ6 term in our prescribed potential. The “±” sign refers to the separatrix manifold which 

separates two orbits in phase space plane. In order to derive a condition for the onset of 

chaotic response, the perturbed system (i.e., ϵ ≠ 0) is considered, and we apply again the 

Melnikov function for both the homoclinic and heteroclinic orbits

M t* x = ∫
−∞

∞
( − ζψ x

2 + Toψ xcos ω t − t* dt (14)

where the subscript (x = ho or he) stands for being either on a homoclinic or a heteroclinic 

trajectory. A homoclinic or heteroclinic bifurcation occurs when M(to)x has a simple zeros 

and changes its sign. Using first order approximation, the Melnikov function can be 

obtained. The calculations lead to the following conditions for appearance of fractal basin 

boundaries and hence onset of chaotic responses. For the homoclinic orbit, i.e., cases at 

which Tm moves into the “B” or “M” state, we have

To ↓ho ≥
ζϕx f 1

2

32ωπ f 2 + 1 sin 2ω/ f 1

2 f 2 + 1
1 − f 2

2arcsin f 2 − π /2 + f 2 + 2 (15)
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while for the heteroclinic orbit, i.e., the case in which the Tm moves into the middle-well 

“C-state”, we have

To ↓he ≥
ζϕx f 1

2sinh 2ω/ f 1
8ωπ f 2 + 1

2 f 2 + 1
1 − f 2

2arcsin f 2 + π /2 + f 2 + 2 (16)

In the above conditions, equal signs indicate the onset of bifurcations for both homoclinic 

and heteroclinic trajectories. The critical values derived from these conditions at a given 

damping ζ can serve as a guide to estimate the parameters range at which the system 

undergoes transition to chaotic response. These conditions are depicted in Fig.3 A&B in 

both the (ω - To) and (ζ - To) planes respectively. The onset of chaotic behavior occurs in 

the parameter range above the homoclinic and heteroclinic bifurcations curves.

Numerical simulations

We next investigated, using numerical simulations, the sensitivity of the system to model 

parameters and used the analysis to reveal the inherent dynamic behavior of the system. The 

parameters and their associated value ranges that are responsible for inducing chaotic 

responses were determined as follows: The analytical expressions derived above were used 

to conduct numerical simulations of the Tm dynamical system described by equations (8). 

Specifically, we have used grids composed of 50 × 50 points in both (ω, To) and (ζ, To) 

planes to study the system responses. The bifurcation bounds obtained analytically and 

given by the inequality equations (15–16) were used as a guide to examine both periodic and 

aperiodic responses. Additionally, at each grid point we calculated the Lyapunov exponent to 

determine the onset of chaos. A system is chaotic if and only if the Lyapunov exponent 

attains a positive value i.e., all neighboring motions diverge exponentially from the 

equilibrium points.

The governing equations (8) were then integrated in time to study all possible Tm dynamic 

responses when it moves over actin surface during the thin filament activation process. In all 

studied cases herein, the system was assumed to be driven harmonically by the 

environmental/surrounding forces induced by the interactions between the myofilament 

proteins. These forces represent the thick filament electrostatic forces, thin filament 

hydrophobic forces, and Ca2+-dependent activation forces associated with the Tn-complex. 

The initial conditions were chosen such that Tm was assumed to reside in the closed “C”-

state and had zero angular velocity. In other words, at t = 0, φ and ψ were set to zeros for all 

the simulated cases. A fixed time step dt = 1/fs and a sampling frequency fs = 1000 Hz were 

used. We run multiple cycles (N =10000), each cycle having a period T = 2π/ω. The first 

3000 cycles were ignored in the analysis to avoid transient effects. Data were analyzed using 

time series, frequency response, and phase portrait approaches, as well as the Poincare’ 

maps, a well-known technique to characterize the behavior of dynamical systems in the two-

dimensional phase plane. In our analysis, the Poincare’ section was first chosen to satisfy the 

condition ((ϕ, ψ, t)| t(mod T) = to). The Poincare’ map was then obtained by finding the 

intersections of solutions of the forced system with the Poincare’ section, which was then 

used to classify the system responses. For instance, if motion is periodic, then its Poincare’ 
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map shows only a finite number of points (a single point corresponds to a period-1 behavior; 

2 points correspond to period-2 motions, etc.). However, when motion becomes chaotic 

(non-periodic but bounded responses), the corresponding Poincare’ map contains infinite 

number of points. Results that highlight these scenarios in the context of Tm motions are 

provided below.

3. Results

The analytical expressions (Eqs. 15–16) that describe the system’s bifurcations were firstly 

used to identify parameter ranges where periodic and aperiodic behaviors take place. 

Because of the low order approximation used in the analytical derivation, it cannot be used 

to exactly locate points where chaos occurs. Therefore, we next complemented the analytical 

study with numerical simulations to validate the analytical results and to explore a wide 

range of the system responses, including chaotic motions. Results from these parameter 

sweeps in the (ω - To) and (ζ - To) planes are plotted in Fig. 3 for three values of ϕx = 0.4, 

0.5, 0.6 respectively. The “+” symbol indicates the occurrence of chaos. These were 

obtained by using Poincare’ maps after many forcing cycles and ignoring the transient 

phases. The solid lines in this figure mark the border between regions of periodic and 

aperiodic responses.

The overall system behavior were found to strongly depend on the damping coefficient ζ, 

excitation frequency ω, and amplitudes To of the driving force. Therefore, three cases, 

namely periodic, period-2, and chaotic oscillations are presented below (only for ϕx = 0.5) to 

demonstrate that Tm dynamics can exhibit a wide range of dynamical responses during its 

motions over the surface of the actin filament.

Periodic motions

Here, we show that Tm can oscillate between the B-C-M states in a periodic fashion during 

the process of thin filament activation. This particular behavior has found to takes place only 

at specific system parameters. For instance, when the forcing frequency, amplitude, and 

damping coefficient are chosen to be ω = 0.5, To = 0.1, and ζ = 0.3, a global periodic 

response is observed. The time series response for the Tm’s angular positions φ over a few 

cycles and after ignoring the transient cycles is shown in Fig.4 A. The inset on the top offers 

a closer look at the response signal and is given to show the system’s periodicity. The 

frequency response shows a single peak at ω = 0.5, which is identical to the driving 

(excitation) frequency, as shown in Fig. 4B . The system’s phase portrait is shown in Fig. 

4C . This portrait suggests that if Tm is initially located in the closed “C” state, after 

transient cycles, Tm converges to or lands onto a periodic orbit. This periodic orbit is 

characterized by a limit cycle oscillations with frequency equal to the actuation/driving force 

frequency. The Poincare’ map is shown in Fig. 4D. Clearly, there is only a single point in the 

map, which indicates that the system exhibits a period-1 dynamics. These results imply that 

Tm could move between the regulatory positions on the surface of actin filament in a 

periodic manner and behave globally as a simple harmonic oscillator.
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Period-2 dynamics

The second scenario results are provided to show that Tm can also move over the actin 

surface with two distinct frequencies, fundamental and super-harmonic, and thus undergo 

period-2 dynamics. The parameters for this case are found to be ω = 0.2, To = 0.24, and ζ = 

0.3. Results of simulations are depicted in Fig. 5. The time series for the Tm position is 

shown in Fig. 5 A for multiple cycles. The inset at the top shows the quasi-periodicity 

response. In Fig. 5 B, we depict the frequency content of the time series signal; two peaks 

located at ω = 0.2 and 0.4 are observed. The first frequency corresponds to the system’s 

fundamental harmonic frequency, which is equal to the system’s forcing frequency. The 

second frequency represents the super-harmonic feature of the system. The frequency 

response indicates that the Tm chain could deviate from being a simple harmonic oscillator 

and behave in aperiodic fashion with super-harmonic frequencies. The corresponding phase 

portrait is presented in Fig. 5 C showing that Tm could oscillate locally around both B and 

M wells with a super-harmonic frequency, then alternate between both states with the 

fundamental frequency. The period-2 behavior is rendered in the Poincare’ map is shown in 

Fig. 5 D. Two points exist in the map, showing that the system obeys a period-2 dynamical 

response, implying that Tm motion repeats itself exactly every two periods that are set by 

the external environmental forces.

Chaotic behaviour

Finally, we show a situation where Tm movements exhibit chaotic (non-periodic but 

bounded) oscillations over the actin surface. Based on parameter sweeps, the following 

forcing parameters and damping coefficients are obtained for this case: ω = 0.75, To = 0.25, 

and ζ = 0.3. The time series for the Tm positions ϕ is shown in Fig. 6 A. The inset at the top 

of this figure provides a closer look at the signal and clearly shows a bounded yet non-

periodic response known as chaotic behavior. This chaotic response suggests that Tm 

movements can be altered by small changes in its initial configurations or in the surrounding 

driving forces. The frequency response for this scenario is presented in Fig. 6 B, which 

shows that the Tm dynamic in this case is characterized by multiple subharmonics preceding 

the fundamental frequency ω = 0.75. This suggests that Tm could switch between its 

conformational states with various frequencies. In the phase portrait that is presented in Fig. 

6 C, one can clearly see that motions for this particular set of conditions are indeed chaotic. 

The corresponding Poincare’ map has multiple points that form a Duffing-like “horseshoe” 

chaotic pattern, as shown in Fig. 6 D.

Results from the cases examined above suggest that Tm sliding motions over the surface of 

actin filament during activation might not be simple harmonic oscillations, as suggested by 

Earley [8], but also could be more complex and exhibit long-term persistent chaotic 

responses. Furthermore, Tm can have different residency time at a specific conformational 

(B-C-M) state. The residency metric is controlled by the Tm dynamic motions in response to 

surrounding forces. The calculation of the probability density function of Tm’s residency in 

each state is provided in the next subsection.
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The effects of ϕχ on the Tropomyosin motions

Here we investigate the effects of varying ϕo on Tm dynamical motions. A numerical 

simulation protocol similar to the above was employed for different values of ϕx = 0.4, 0.5, 

0.6. The time series responses for the Tm’s angular positions ϕ over a few cycles are shown 

in Fig. 7 A for periodic, period-2, and chaotic cases. Results show that when Tm moves as a 

simple oscillator, ϕx has no effect on its behavior. However, this changes when Tm moves 

with period-2 or in chaotic manner, where ϕx plays a role in the motion responses. A 

comparison between the phase portrait and the Poincare’ maps for each ϕx value is presented 

in Fig. 7B. These results suggest that ϕx can affect Tm’s chaotic behavior as it alternates 

between the three equilibrium states. Furthermore, the locations of the saddle (unstable) 

points are different for different values of ϕx, which eventually can influence the onset of 

aperiodic or chaotic motions. We conclude that although all the potential profiles used herein 

were symmetric, the locations of the unstable points can nonetheless control the dynamics of 

the Tm movements.

Tropomyosin residency in the B-C-M states

The probability distribution function (PDF) for the Tm’s angular position ϕ is calculated in 

order to estimate how often Tm resides in one of its conformational B-C-M states. The 

procedure for these calculations is summarized in the following steps. First, the response of 

the angular displacement ϕ is divided into three regions that mark each state: i) the first 

region (R1 : min ≤ ϕ < −0.5) represents a situation where Tm resides in blocked “B” state, ii) 

the second region (R2 : −0.5 ≤ ϕ ≤ 0.5) corresponds to Tm being located in the closed “C” 

state, iii) The third region (R3: 0.5 < ϕ ≤ max) represent the case when Tm is located in the 

open “M” state. Second, after ignoring transient effect, the time-series data are used to score 

the residence time interval occupied by each B-C-M state within each cycle.

The collected residency scores are then averaged over the entire number of cycles. The PDF 

for all the three studied cases, periodic, period-2, and chaotic dynamics, is shown in Fig. 8A 

for ϕx = 0.4, 0.5, 0.6 respectively. Results demonstrate that, in both periodic (i.e., ω = 0.5) 

and period-2 (i.e., ω = 0.2) cases, the PDF profiles have distinct two quasi-Gaussian 

distributions over the “B” and “M” states and flat distribution over the “C” state. In the third 

case, when the chaotic scenario is considered, these Gaussian-like peaks are smeared out, 

suggesting that Tm has equal tendency to reside in any of the three states. It should be noted 

that, these results are strong function of the proposed energy landscape profile, and are 

expected to vary when other potentials with Ca2+-dependent energy barriers are used.

The PDF are also used to estimate the residence probability Px occupied by each state, using 

numerical integration over each regulatory interval as follows

Px = ∫
ϕx

PDF(ϕ)dϕ, x = B, C, M (17)

where, [ϕx] represents an integration interval (the residency borders) assigned to each state. 

For instance, to calculate the probability of Tm residing in the “C” state, we use an interval 
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bounded by ϕC ϵ [−0.5, 0.5]. Similarly, for “B” and “M” states, the intervals are chosen such 

that ϕΒ ϵ [min, −0.5), and ϕΜ ϵ (0.5, max] respectively. Integration is performed using the 

quadrature rule subject to the condition; Σ Px =1.

In Fig. 8B , we show the residence probability calculations for the three simulated cases. In 

the periodic (period-1) case, results demonstrate that Tm has about 40% probability to reside 

in the “C” state compared to that of about 30% for both “B” and “M” states. Therefore, if 

Tm undergoes simple harmonic oscillations, there will be high tendency to slide into the 

blocked “B” state or into the open “M” state with equal probability. This is valid for all the 

simulated cases for different ϕx values, which confirm that ϕx has no effect on the Tm 

dynamics when moving as a simple oscillator. These results are consistent with the time 

series shown in Fig. 7A.

In the period-2 case, when ϕx = 0.4 is used, Tm has about ∽18% probability to reside in the 

“C” state, ∽34% in the “B” state, and ∽48% in the “M” state. In this particular scenario, Tm 

will be trapped in the “M” state with higher affinity. Finally, when the chaotic case is 

considered, results have shown that Tm has almost equal residency probability for residing 

in any of the (B-C-M) conformational states. It should be noted that for scenarios other than 

periodic responses, these distributions can be changed by changing the locations of the 

saddle points; this can be accomplished by using different values of φχ, or when using 

asymmetric energy landscape profiles.

Although, it is difficult to draw clear, exact and direct connections between the predicted Tm 

dynamical patterns and the various muscle contraction under physiological circumstances. 

The results shown in Figs. 7 & 8 suggest that Tm motions over actin surface could follow 

different complex oscillatory mechanisms. These Tm dynamics are then expected to 

regulate, for instance, both force - Ca+2 sensitivity and twitch characteristics. Moreover, 

under disease (e.g., myofilament point mutations) conditions, these dynamical patterns could 

be altered in a way such that they can strongly affect the thin filament activation process.

Ca2+-dependency and asymmetric representation of the energy landscape profile

In this part, we show a possible extension of our approach to include Ca2+-dependency, thus 

expanding our model capability. We hypothesize that during the thin filament activation 

process, the energy landscape barriers that control the Tm motions vary dynamically with 

the cytosolic Ca2+ availability. Moreover, this potential profile could also account for the 

possible symmetry breaking as Tm moves between equilibrium positions on the actin 

surface. The hypothesis is shown schematically in Fig. (9) A, where P {·} is the probability 

of being in one of the B-C-M states. This Ca2+-dependent and asymmetric energy landscape 

profile can be prescribed as

V Asym(ϕ(t)) = αϕ2 − μ Ca2 +, nH, Ca50 ϕ3 + βϕ4 + γϕ6 (18)

where α, β and γ are arbitrary coefficients that denote the locations of the landscape critical 

points. μ is a Ca2+-dependent “activation coefficient” that is used herein to break the 
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symmetry of the energy profile, Eq.(1). This activation coefficient is assumed to be governed 

by a Hill-type equation, such as

μ Ca2 + = Ca
nH

Ca
nH + Ca50

nH
− 1

2 (19)

where nH and Ca50 refer to the Hill’s index and the half activation, respectively. It should be 

noted that, for the half activation condition, μ reaches zero and the energy profile becomes 

symmetric, Eq.(1). The distribution of the activation coefficient μ as a function of the Ca 

concentrations pCa (pCa = - log10(Ca), with Ca measured in [μ M]) for different Hill indices 

is shown in Fig. (9)B. Similarly, in Fig. (10) we show the variations of the asymmetric 

energy landscape as a function of pCa values. As illustrated, the energy barriers are 

dynamically variable, mimicking the role of Ca+2 during thin filament activation. For 

instance, when Ca+2 concentration is low (pCa = 7), the energy barrier (ΔV(ϕ)B⇀C) for the 

B-attractor is the lowest among the states, so that Tm covers the myosin head-binding sites 

on the actin surface, suggesting an inactivation state as shown by the point (A) in Fig. (10). 

As Ca+2 rises (pCa = 6–4), this energy barrier evolves to facilitate the Tm transition to the 

C-state, as shown by the points (B, C and D). At high Ca+2 (pCa = 3), the energy barrier 

(ΔV(ϕ)C⇀M) associated with the M-state becomes the lowest, facilitating Tm residency 

between F-actin groves. Under this condition, a full activation (i.e., M) -state is obtained and 

stronger twitches are produced (see point (E) on the same graph).

The Ca+2-dependent (asymmetric) energy landscape hypothesis offers a more biophysically-

realistic model, which can be further extended to construct a complete myofilament model, 

which is beyond the scope of this paper. Finally, it should be noted that the α, β and γ 
coefficients are arbitrary and can be used as fitting parameters to further control the energy 

profile’s critical points, hence producing an experimentally testable model.

DISCUSSION

In the last two decades, significant efforts have been dedicated to resolve the structural 

components of Tm and its dynamical motions over the actin surface, aiming to better 

understand its role during muscle contractions [1, 24, 35–43, 43–46]. Results from these 

studies suggest that individual Tm molecules have low affinity to actin, however the affinity 

is increased when Tm molecules are connected together to form a continuous chain that 

wraps around the actin filament [47–49] Also, Tm floats at a distance of 8–12 A° from the 

actin’s surface, controlled by electrostatic forces [37, 50, 51]. These structural settings grant 

Tm the opportunity to oscillate in the circumferential direction when activated in response to 

the surrounding biochemical effectors [52, 53].

Energy landscape is a dynamical approach which has been proposed recently to explain Tm 

motions over the surface of actin filaments during activation [24–27]. Orzechowski and his 

colleagues [26] contemplated the impact of the observed Tm’s movements on the thin 

filament activity using energy principles. This has been primarily accomplished by 

examining the Tm-actin potential profile determined from in-vitro solution studies and 
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supported by in-silico computational simulations. They have found that: i) in the absence of 

troponin-complex and myosin, Tm follows an energy landscape with a single-well. This 

potential has a fairly broad shape with a distinct minimum and there is no an “obvious” low 

energy barriers that connect the regulatory states of the filament to each other. ii) Trapping 

Tm in the blocked “B”, closed “C”, and open “M” positions will requires additional 

structural and energetic input from the binding of troponin and myosin, which is expected to 

deform the Tm-actin energy landscape.

Because of the exact topology (e.g., energetic barriers, shape asymmetry, and bias between 

equilibrium points) of the energy landscape profile that governs the mutual interactions 

between the thin filament regulatory proteins is not fully known yet. In this study, we have 

attempted to formulate and extend the work in [24–27] using mathematical modeling. A 

generic energy landscape potential that mimics the well-established Tm’s regulatory states is 

proposed. Our modeling strategy has been built on the basis of the remarkable findings 

above [26] and has extended the singlewell energy potential via the introduction of a three-

well energy landscape to account for the existence of and energy inputs from the 

surrounding proteins. Additionally, the proposed energy profile is hypothesized to mimic the 

existence of the B-C-M regulatory positions, which are used in our analysis as stable 

equilibrium points.

Although we used a pre-assumed energy profile, our analysis was kept general to 

accommodate any biophysically detailed or “realistic” energy profile that might emerge 

from in-vitro experimental studies of the entire complex of myofilament regulatory proteins. 

A realistic energy landscape would imply finding an experimentally-based and anharmonic 

potential profile with non-equal energy barriers (asymmetry profile), the latter governing the 

transition processes between the observed regulatory states. Additionally, this profile should 

be dynamically variable and depending strongly on the Ca+2 availability in the cytosol. An 

example of our hypothesis to this realistic/asymmetric energy landscape as a function of Ca

+2 is given by equation 18 and shown in Fig. 10.

Moreover, both the shape and the properties of any realistic energy landscape are expected to 

be sensitive to mutations expressed in the myofilament proteins, hence Tm dynamics could 

be altered by these mutations. Orzechowski and his colleagues [26, 27] explained the direct 

influence of mutations on Tm motions using the energy landscape hypothesis. Although they 

focused on the Tm-actin system (i.e., troponin free model), their results showed that the 

energy landscape approach is a promising tool to assess the effects of several Tm mutations, 

and thus it can be used-principles to potentially relate the initial stages of myopathy to 

changes in thin filament stability and regulation as it is governed by a healthy or distorted 

energy profile. The relationships between mutations, Tm dynamics, and energy landscape 

could add important characteristics to our energy landscape-based model, which it can be 

extended to study these inter-relationships via the nonlinear potential function term ν(ϕ).

Our results suggest that Tm could alternate between its equilibrium positions not only as a 

simple harmonic oscillator, but also chaotically. These motion responses are controlled 

mainly by the energy profile morphology and the surrounding activation forces. The 

prescribed potential profile ν(ϕ) has chosen such that it has equal potential energy barriers to 
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avoid biasing the system response toward a specific state rather than having equal 

probability of being or visiting all the states. For instance, although we have used a 

symmetric energy profile, which theoretically should guide Tm to have equal occupancy of 

being trapped in either “B” or “M” states. However, due to the system complexity, Tm’s 

dynamical behaviors spanned out various responses such as periodic, period-2 and chaotic 

oscillatory motions between its equilibrium positions.

The different oscillatory behaviors of Tm are controlled predominantly by the nonlinearity 

(expressed here via the multi-well energy landscape) in the system and the degree of 

fluctuations in the surrounding driving forces. An inquiry into the character of these motions 

can enhance our mechanistic understanding of the role of Tm in muscle contraction. 

Specifically, if Tm moves in a periodic manner, its residence time (state-occupancy) in both 

blocked and open states would be equal. This suggests that, for small amount of non-

linearity and the driving force amplitude, Tm could switch between its equilibrium states as 

a simple harmonic oscillator.

When Tm moves with a period-2 dynamics or chaotically, the residence time in one of these 

states can significantly vary depending on the perturbations in the environmental forces 

surrounding the thin filament system. It should be noted that the residence time associated 

with each oscillatory behavior depends strongly on the energy landscape topology i.e., 

whether it is symmetric or asymmetric. Furthermore, depending on the surrounding 

fluctuations in the force magnitudes and frequency, Tm could changes its dynamical motions 

accordingly, within the same contraction cycle. For instance, it can start to move as a simple 

harmonic oscillator and then can change to a chaotic movement during the rest of the 

contraction cycle.

The results presented here could be useful in explaining recent experimental Cryo-EM 

structural data [23, 46], thus enhancing our mechanistic understanding of the Tm motions 

during thin filament activation. For instance, the recent experimental (Cryo-EM) study by 

[23] has suggested that there are two different mechanisms explaining the trajectory of Tm 

as it moves between the C- and M-state positions. According to the first one, Tm moves 

across the F-Actin face from the B-state position, past its binding site in the M-state to the 

C-state position, and then slides back into the tightly bound configuration where it binds to 

myosin, i.e. the M-state. The second mechanism hypothesizes that Tm slides from the B-

state to the C-state, where tight myosin binding is blocked by steric interactions between 

myosin and Tm. Upon a slight rotation around the Tm helix that remains bound to F-Actin, 

Tm rocks over to facilitate myosin binding.

This experimental data can be qualitatively explained by our model based on the energy 

landscape framework as follows: For the first mechanism, starting from the B-state 

equilibrium position and upon activation, Tm might gain a very high potential energy which 

causes Tm to slide over a manifold with a large momentum passing through the M-state, i.e., 

without settling at that state. At this point, Tm losses momentum and jumps on another orbit 

with a lower energy level that eventually results in landing at the C-position, and then slides 

back to the M-state seeking equilibrium, where energy is minimized. This motion can 

symbolically be given by (B-C-M-C-M), where the nonbold letters refer to the “skipping” 
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positions on the actin while Tm is trying to reach equilibrium. This behavior is not a 

periodic motion but rather falls within the chaotic behavior suggested here. For the second 

motion mechanism, “C-M Rocking, [23]”, transition between B and C states can be done via 

normal sliding motion with various dynamics. However, owing to geometric constraints (C 

and M are very close to each other), the transition from C to M states can only fall within the 

periodic behavior, hence Tm moves between C and M as a simple harmonic oscillator. This 

can be tested by designing an energy landscape with C and M equilibrium positions that are 

close to each other relative to their distance to the B position. Overall, in the two scenarios, 

our results and the Cry-EM data suggest that Tm moves between its conformational states 

with various dynamical behaviors.

Despite being difficult to draw an exact connection between the predicted Tm dynamical 

patterns and the myofilament contraction under various physiological circumstances. Our 

results suggest that Tm motions over the actin surface could follow different complex 

oscillatory patterns. These Tm dynamical patterns are expected to play a major role in 

regulating, for instance, both the force - Ca+2 sensitivity and the twitch characteristics. 

Moreover, under disease (e.g., myofilament point mutations) conditions, these dynamical 

patterns could be altered in a way such that they can strongly affect the thin filament 

activation process.

In conclusion, this study provides, for the first time to the best of our knowledge, a 

simplified mathematical model to study Tm oscillations over the surface of actin filaments 

during muscle activation using nonlinear dynamics and chaos theory. The present analysis is 

expected to be useful in better understanding the dynamics of the Tm motions from an 

energy landscape perspective [26,27]. Furthermore, this model can be developed further to 

draw connections between Tm dynamics, energy landscape morphology, and the related 

cardiomyopathies.

MODEL LIMITATIONS AND POSSIBLE EXTENSION

The main focus of the present study was to develop a mathematical model that can describe 

the Tm dynamics over the surface of actin filament during muscle contraction rather than to 

study the usual myofilament’s mechanical (i.e., predicting force-Ca2+ sensitivity and/or 

twitch dynamics) properties. In order to gain a basic understanding of the Tm nonlinear 

dynamical behavior when governed by a multi-well energy potential, the Langevin equation 

was simplified by replacing the fluctuations term with a deterministic form of the driving 

forces. However, the analysis could be extended to include stochasticity owing to the 

surrounding fluctuations using the Brownian ratchet theorem.

The model does not include the Tm flexibility and cooperativity that allow for different parts 

of a Tm molecule to possibly exist in different (B-C-M) states, and a Tm molecule to 

influence, and be influenced by, the B-C-M state(s) of the nearest-neighboring Tm 

molecules [5, 10–12]. Therefore, the governing equations in this study were derived only for 

a single thin filament regulatory unit (RU: Tm-Tn-A7), which is normally composed of a 

single Tm, a single Tn-complex and 7-actin’s monomers and lacks flexibility and 

cooperativity of activation seen in full length filaments. To overcome this limitation and to 

account for nearest-neighboring interactions between RUs due to Tm-Tm overlap, the 
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present model could be extended by writing a coupled system of equations for all the RUs in 

the thin filament. Normally 26 RUs are used to spatially resolve the thin filament, see [54–

56].

Finally, with these possible extensions (stochasticity and spatially coupled 26-RUs) the 

present model permit a more complete representation of myofilament dynamic based on the 

energy landscape and principles of nonlinear dynamics and chaotic theory.
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Figure 1: 
Schematic diagram of the model components and tropomyosin transition states as described 

by an energy landscape profile during muscle activation. (A) The structure of myofilament 

main components and tropomyosin’s regulatory positions. (B) Tropomyosin dynamics as 

governed by a multi-well potential mimicking the three-state (B, C, M) model.
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Figure 2: 
The energy landscape profile with a multi-well topology proposed to govern tropomyosin 

dynamics in the azimuthal direction (ϕ): (A) The effect of saddle point locations (ϕχ) on the 

potential profile. (B) Phase portrait for the unforced and undamped Tm dynamical system 

along with its stable (B-C-M) conformational states.
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Figure 3: 
Analytical and numerical simulations that show parameter ranges where chaotic behavior 

can occurs for various values of ϕx = 0.4, 0.5, and 0.6 respectively. Conditions from the 

bifurcation analysis for both homoclinic and heteroclinic orbits are obtained analytically 

using Melnikov function and are represented by the solid lines. The “+” signs refer to 

chaotic conditions that were obtained numerically. Simulations were performed with Tm 

positioned initially in the closed “C”-state: (A) The frequency-amplitude plane (ω - To) at ζ 
= 0.3. (B) The damping-amplitude plane (ζ - To) at ω = 0.75.
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Figure 4: 
Periodic response exhibited by Tm movements over the surface of actin filament. In this 

particular scenario, Tm molecules behave as simple harmonic oscillators during striated 

muscle activation. Results shown herein are obtained for values ω= 0.5, ζ = 0.3, and To = 

0.1. These parameters were chosen based on conditions obtained previously and shown in 

Fig. 3: (A) Tm’s angular positions over multiple cycles after ignoring transient response. (B) 

Frequency response of the time series obtained using Fourier analysis; it shows that Tm 

moves with a frequency similar to the excitation frequency. (C) Phase portrait demonstrating 

that Tm converges to limit cycle oscillations. (D) The Poincare’ map showing that periodic 

(i.e., period-1) response indeed occurs.

Aboelkassem and Trayanova Page 26

Prog Biophys Mol Biol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Period-2 response, where Tm oscillates with two frequencies. Parameters for this scenario 

were found numerically as ω= 0.2, ζ = 0.3, and To = 0.24. A) Tm’s angular positions over 

many cycles. (B) Frequency response showing that Tm can oscillate with two (fundamental 

and super-harmonic) frequencies. (C) Phase portrait shows that Tm could move between 

regulatory states with two frequencies. (D) The Poincare’ map have two points only, 

confirming the existence of period-2 behavior.
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Figure 6: 
Chaotic response, where Tm can oscillate with complex patterns (Yet, it is not a random 

motion) due to the system nonlinearity. Its dynamical response is so sensitive to initial 

conditions and to any small perturbations. Parameters for this scenario were found 

numerically ω= 0.75, ζ = 0.3, and To = 0.24: (A) Tm’s angular positions over many cycles. 

(B) Frequency response showing that multiple frequencies are involved in the Tm motions. 

(C) Phase portrait demonstrating that Tm could move chaotically between regulatory states. 

(D) The Poincare’ map have many points that are distributed in a “horseshoe” pattern, which 

indicating the existence of chaotic responses.
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Figure 7: 
The effects of ϕx on Tm dynamical responses as it alternates between equilibrium positions: 

(A) The Tm’s azimuthal position as a function of the simulated time during periodic, 

period-2, and chaotic cases. (B) The phase portrait and the Poincare’ maps for the chaotic 

case only.
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Figure 8: 
Tm residence times in each state as measured by the probability distribution functions (PDF) 

for various values of ϕx = 0.4, 0.5, and 0.6 respectively. Results are given for the periodic (ω 
= 0.5 ), period-2 (ω = 0.2), and chaotic (ω = 0.75) cases: (A) The probability distribution 

functions (averaged over entire cycles) show occupancy by each conformational (B,C,M) 

state. (B) The probability for each state calculated by integrating each probability 

distribution function over the corresponding range.
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Figure 9: 
Hypothetical asymmetric energy landscape as a function of Ca-concentrations: (A) A 

schematic showing how the energy potential varies as Ca2+ increases during thin filament 

activation along with the probability of being in one of the conformational (B,C,M) states. 

(B) A Hill-like activation coefficient μ(Ca2+) as a function of pCa levels for different Hill’s 

indexes, used to introduce asymmetry in the energy landscape profile.

Aboelkassem and Trayanova Page 31

Prog Biophys Mol Biol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
The Ca2+-dependency of the modified energy potential VAsym(ϕ) to account for the 

asymmetry characteristics that are needed for a realistic thin filament activation. Profiles are 

calculated at different values of pCa i.e., at different values of the activation coefficient μ. 

Asymmetry is biased toward B-sate and M-state at lower and high Ca2+ levels respectively. 

This asymmetry is relaxed at moderate Ca2+ levels mimicking the C-sate. A pure symmetric 

energy profile can be recovered at μ = 0.5 i.e., pCa=5.5 i.e., at half activation.
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