
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Classical Pauli repulsion: An anisotropic,
atomic multipole model

Cite as: J. Chem. Phys. 150, 084104 (2019); doi: 10.1063/1.5081060
Submitted: 13 November 2018 • Accepted: 23 January 2019 •
Published Online: 22 February 2019

Joshua A. Rackers1 and Jay W. Ponder2,a)

AFFILIATIONS
1Program in Computational and Molecular Biophysics, Washington University, School of Medicine,
Saint Louis, Missouri 63110, USA

2Department of Chemistry, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA

a)Author to whom correspondence should be addressed: ponder@dasher.wustl.edu

ABSTRACT
Pauli repulsion is a key component of any theory of intermolecular interactions. Although Pauli or exchange repulsion has its ori-
gin in the quantum mechanical nature of electrons, it is possible to describe the resulting energetic effects via a classical model
in terms of the overlap of electron densities. In fact, closed shell intermolecular repulsion can be explained as a diminution of
election density in the internuclear region resulting in decreased screening of nuclear charges and increased nuclear-nuclear
repulsion. We provide a concise anisotropic repulsion formulation using the atomic multipoles from the Atomic Multipole Opti-
mized Energetics for Biomolecular Applications force field to describe the electron density at each atom in a larger system.
Mathematically, the proposed model consists of damped pairwise exponential multipolar repulsion interactions truncated at
short range, which are suitable for use in compute-intensive biomolecular force fields and molecular dynamics simulations.
Parameters for 26 atom classes encompassing most organic molecules are derived from a fit to Symmetry Adapted Pertur-
bation Theory exchange repulsion energies for the S101 dimer database. Several applications of the multipolar Pauli repulsion
model are discussed, including noble gas interactions, analysis of stationary points on the water dimer potential surface, and the
directionality of several halogen bonding interactions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081060

I. INTRODUCTION

The beauty of classical physics models is not that they
work for describing most of our world but rather why they
work. While it is necessary for physics-based models to be
accurate and predictive, these qualities alone are not suffi-
cient. A true classical model must also be interpretable; that is
to say, it must be a derivable approximation from first princi-
ples. Good classical models of everyday phenomenon are not
just lucky; they are the true limiting behavior of fundamen-
tal physical laws. Nowhere is this principle more essential or
more often forgotten than in molecular modeling. To solve dif-
ficult questions such as drug binding specificity or nanotube
formation, fields from biology to materials science have come
to rely on molecular mechanics models, or force fields, to gen-
erate hypotheses and make predictions. These predictions are
only as good as the model used to make them, meaning that

every part of the force field must contain a sufficient level
of accuracy. In particular, one of the most important parts of
any force field is the term responsible for intermolecular Pauli
repulsion. This term, which also goes by the names “steric” or
“exchange” repulsion, is too often described as a mysterious
“quantum mechanical (QM)” force. This could not be farther
from the truth.1–3 This paper intends to show that intermolec-
ular Pauli repulsion is a simple consequence of Coulomb’s law
and furthermore that this interpretation leads to an accurate
classical model of Pauli repulsion.

The level of model accuracy needed is always a function of
its intended use. For force fields, this standard is referred to as
“chemical accuracy,” which we define here as a fidelity in com-
puted energies to within 1 kcal/mol. While this requirement
is not universal, and higher accuracy may well be required
for many applications in molecular interactions, a particular
example will serve to rationalize its importance. A primary,
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current use for biomolecular force fields is prediction of drug
binding affinities. Because of the relation ∆G = RT log(KD), at
room temperature, every order of magnitude in the binding
affinity translates into 1.36 kcal/mol in the free energy of bind-
ing. This is of great practical importance since a factor of
10 variance in a drug’s binding affinity can be the difference
between a medicine that hits a specific target and the one that
binds non-specifically. One of the most important factors to
achieving this level of accuracy for atom-based force fields is
anisotropy. Work with the AMOEBA (Atomic Multipole Opti-
mized Energetics for Biomolecular Applications) force field
has shown that adding atomic anisotropy via multipoles is
an excellent way to make molecular mechanics models more
accurate. Atomic multipoles are necessary to accurately pre-
dict the electrostatic potential around drug-like molecules4
and they are needed to reproduce hydrogen bond geome-
tries in water,5 proteins,6 and nucleic acids.7 Recent work
with AMOEBA, in the SAMPL6 challenge, showed that this
more accurate model produces generally more accurate bind-
ing free predictions than its fixed charge counterparts.8 All of
this indicates that to reach the goal of “chemical accuracy,” the
next generation of force fields will need to account for atomic
and molecular anisotropy.

While the importance of anisotropy is broadly recognized
for the electrostatic portions of molecular mechanics models,
it is widely overlooked in the other terms, particularly Pauli
repulsion. The repulsion term is acutely important because
in most force fields it is the only consistent source of pos-
itive energy in the system. This means that in the delicate
balance between attraction and repulsion that exists in all
condensed phase systems, the repulsion term shoulders the
burden for most of the second half of that equation. In the
canonical, minimum energy water dimer, for example, ab initio
Symmetry Adapted Perturbation Theory (SAPT) energy
decomposition calculations show that while the electrostatic,
induction, and dispersion contributions to the interaction are
all negative, the exchange-repulsion is the only source of pos-
itive energy in the system.9 Despite this, nearly all common
biomolecular force fields including AMOEBA use relatively
simple, isotropic repulsion schemes. Most commonly these
are the 1/r12 repulsive Lennard-Jones potential, a Bucking-
ham exponential form or, in the case of AMOEBA, Halgren’s
buffered 14-7 potential. Strong evidence is emerging that
these isotropic Pauli repulsion functions may not be accurate
enough to ensure “chemical accuracy” in biomolecular appli-
cations. Recent work by Anthony Stone has shown a strong
angular dependence of the Pauli repulsion energy in halogen
bonding interactions.4 Furthermore, these sigma hole inter-
actions are vitally important to the drug discovery process,10
and evidence has emerged that this angular dependence is a
large source of the selective binding geometries of sigma hole
associated drug candidates.10–14 In order to meet the stan-
dard needed for predictive biomolecular applications, we will
need an accurate, physics-based, anisotropic Pauli repulsion
model.

This work aims to present a classical Pauli repulsion
model that is anisotropic and efficient to compute. In previ-
ous work, we have shown that a rough model of atomic charge

density can dramatically improve the accuracy of electrostatic
and dispersion models for short-range intermolecular inter-
actions.15 Here we will show that this same simple density
formulation, coupled to an atomic multipole model, yields a
classical, physics-based model for Pauli repulsion. In addition
to providing a qualitatively different level of accuracy com-
pared to standard isotropic empirical models, this model also
dispenses with the customary mysticism surrounding repul-
sion models. There is no attempt to write off another empirical
model in terms of “quantum mechanical forces”; this model
simply accounts for the loss in nuclear screening, relative to
their isolated, unperturbed states, which molecules experi-
ence when their charge densities start to overlap. We will go
about this in four stages. First, we will build out the theory
underlying the model and its classical electrostatic interpre-
tation. Second, we will describe the methods of the study.
Third, we will demonstrate the accuracy of our Pauli repul-
sion model against benchmark SAPT data. And lastly, we will
present pertinent discussion and conclusions.

A. A brief history of Pauli repulsion models
Well before the advent of modern quantum mechan-

ics, scientists understood that molecules repel each other at
short-range. Johannes van der Waals won a Nobel Prize in
1910 for “his work on the equation of state for gases and
liquids,” which postulated intermolecular interactions as the
source of deviations from the ideal gas law.16 It was not until
the statement of the Pauli exclusion principle by Wolfgang
Pauli in 192517 that physicists understood the explanation for
the repulsive intermolecular interactions that keep molecules
separated. The first model to approximate this Pauli repul-
sion phenomenon is due to Sir John Lennard-Jones, a man
whose name is indelibly linked to the field of molecular mod-
eling. Lennard-Jones first proposed a general polynomial form
of the van der Waals potential in 192418 and suggested the now
canonical 6-12 formulation in 1931.19 While the 1/r6 attractive
term was taken from London’s earlier work on dispersion,20
the 1/r12 repulsive term was chosen primarily out of conve-
nience. Empirically, Lennard-Jones found that the 1/r12 term
provided an adequate estimate of the repulsive forces between
closed-shell atoms near equilibrium. It is worth noting that
Lennard-Jones himself had no illusions about the limitations
of such a functional form. In his 1931 lecture, he acknowl-
edges that for simple systems exchange energies fall off as
e−αr/r. The Lennard-Jones potential, however, in its canoni-
cal form has been enormously influential. It was used in some
of the very first molecular dynamics simulations of biological
molecules21 and continues to be the van der Waals function
of choice for most popular biomolecular force fields includ-
ing Amber (Assisted Model Building with Energy Refinement),
CHARMM (Chemistry at HARvard Macromolecular Mechan-
ics), GROMOS (GROningen MOlecular Simulation), and OPLS
(Optimized Potential for Liquid Simulations).

The next significant model function for intermolecular
repulsion proposed was the simple exponential. Credited to
Max Born and Joseph Mayer (1932),22 and Richard Buckingham
(1938),23 this function has the form A e−αr. Both papers built on
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the work of John Slater, who in 1928 worked out the repulsive
force between two helium atoms.24 Slater found the repul-
sive force to be exponential of the form P(r) e−αr, where P(r) is
a polynomial. Slater proposed, however, that to a reasonable
approximation P(r) could be replaced with a constant. Born
and Mayer tested this hypothesis on ionic cubic lattices, and
Buckingham extended their work to ab initio noble gas inter-
molecular forces. It is interesting to note that Lennard-Jones
himself actually played a significant role in the development
of these models. He, in fact, was responsible for communicat-
ing Buckingham’s 1938 paper to the Royal Society. Despite its
more substantial theoretical underpinnings, the Buckingham
or Born-Mayer exponential functions have been less widely
utilized in biomolecular force fields. Notably, the MM2, MM3,
and MM4 force fields, designed for accurate conformational
analysis and gas phase thermodynamics of hydrocarbons and
simple organics, use an exponential repulsion function; how-
ever, wide-spread adoption for biomolecules was hampered in
part due to the increased computational cost of exponential
evaluation.25–27

There is one additional contribution to the class of simple,
isotropic repulsion models that did not come until much later.
In 1992, Thomas Halgren introduced the so-called “buffered
14-7” potential in an effort to raise the level of accuracy
of van der Waals functions for organic and biomolecular
force fields.28 This function introduced the idea of buffer-
ing constants to fix the known systematic short-range over-
repulsive nature of the canonical Lennard-Jones function.
Halgren revisited the rare gas repulsion calculations that had
guided Lennard-Jones’s, Born and Mayer’s, and Buckingham’s
model development with modern electronic structure meth-
ods and found that the buffered 14-7 form produced better
fits than the 12-6 or exp-6 models he tested against. While
the model yields good agreement with ab initio data, Hal-
gren makes no attempt to justify it theoretically other than to
present it as a perturbation on top of the accepted Lennard-
Jones form. Henceforth it has commonly been accepted as a
simple solution to the known problem of the excessive stiff-
ness of the 1/r12 repulsive wall. Despite its lack of rigor-
ous theoretical justification, this model has been used with
some success in the Merck molecular and the AMOEBA force
fields.29–31

While these three models account for the vast major-
ity of Pauli repulsion terms in biomolecular force fields,
there are a large number of “boutique” molecular mechan-
ics repulsive functions tailored to modeling specific types of
compounds. Often intended for specific, high-accuracy appli-
cations, these models are frequently anisotropic with a larger
number of parameters. While we shall refrain from dissect-
ing every known such potential function, a handful of mod-
els are notable. Anthony Stone proposed a water model
with an atom-atom exponential repulsion that varied accord-
ing to the relative local geometries of the interacting water
molecules.32 Similarly, Misquitta and Stone developed a site-
site anisotropic repulsive potential for pyridine that utilizes
distributed densities to generate atomic repulsive “shape”
parameters that enter the exponential.33 In another example,
the SAPT-5s water model uses an isotropic repulsive potential

with a polynomial prefactor but requires a number of off-atom
sites for accuracy.34 Lastly, an anisotropic short-range model
that includes Pauli repulsion along with other short-range
effects has been used to model polycyclic aromatic hydrocar-
bons.35

While the early models of Pauli repulsion acknowledged
the general exponential nature of the term, it was not until
the 1960s that more rigorous justification and specific func-
tional dependence were provided. In 1961, Lionel Salem pub-
lished the foundational paper for what would come to be
known as the “orbital overlap” model of Pauli repulsion. Salem
worked out the repulsive force experienced by two interacting
helium atoms subject to the Hellmann-Feynman Theorem and
showed that the repulsion energy can be accurately modeled
by S2/R, where S is the overlap integral between the inter-
acting orbitals and R is the distance between the atoms.36
Not only did he derive this dependence from first principles,
but he also showed numerically that such an approximation
is quite good for the He dimer example. This work was fol-
lowed by further validation by Musher and Salem;37 Murrell,
Randic, and Williams;38 and Murrell and Shaw.39 The basis of
this model is classical electrostatics. Salem showed unequiv-
ocally in the case of helium that the repulsive interaction
experienced at close approach is caused by a depletion in
electron density in the overlap region that de-screens the
nuclei from each other, causing internuclear repulsion. Fur-
thermore, Salem illustrated that the magnitude of this deple-
tion is proportional to the square of the orbital overlap integral
(S2). Because of the essential problem of defining an orbital
in a classical force field, this framework for repulsive mod-
els has been less widely used. Two notable exceptions are
the SIBFA (Sum of Interactions between Fragments) and EFP
(Effective Fragment Potential) models. The SIBFA repulsive
potential depends on the overlap between atom centers, bond
centers, and lone pairs, as well as a prefactor that accounts for
the relative orientation of the interacting pairs.40,41 EFP uses
monomer LMOs (Localized Molecular Orbitals), which makes
the potential transferable but too expensive for large-scale
biomolecular simulations.42,43

The final class of Pauli repulsion models that merits con-
sideration is “density overlap” models. In 1976, Kita, Noda, and
Inouye performed molecular beam experiments with Cl−-X
and Br−-X, where X = He, Ne, and Ar, and found that the
repulsive energy was proportional to Ω, the density overlap
integral.44 In 1981, Kim, Kim, and Lee arrived at the same con-
clusion upon examination of experimental noble gas repul-
sion data.45 This observation was first turned into a molec-
ular mechanics model by Wheatley and Price, whose use of
anisotropic atomic densities yielded an anisotropic repulsion
model.46 This model influenced Stone’s original work on the
water model mentioned above. It is also the basis for the Pauli
repulsion term in the GEM (Gaussian Electrostatic Model)
force field47–50 and recent force fields developed by Schmidt
and co-workers.51,52 Although this model seems to match
experimental data well, it has little in the way of theoret-
ical grounding. Despite its seeming similarity to the orbital
overlap model, the density overlap model has a fundamental
unit problem. This will be discussed in greater detail at the

J. Chem. Phys. 150, 084104 (2019); doi: 10.1063/1.5081060 150, 084104-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

end of Sec. II. Notwithstanding theoretical considerations, the
density overlap model has been parameterized to meet a range
of modeling needs.53–58 Section II will shed more light on the
nature of this model’s empirical success.

This history of Pauli repulsion models shows no clear con-
sensus as to which functional form is best. The choice of model
has posed two typical trade-offs: first, between computational
speed and model accuracy and, second, between model trans-
ferability and number of parameters. These trade-offs, how-
ever, are not endemic to Pauli repulsion models. Here we
present an orbital overlap model that sidesteps both of them.
The result is a fast-to-compute, anisotropic, transferable Pauli
repulsion function.

II. THEORY
An explanation of any Pauli repulsion model must start

with a basic understanding of the Pauli exclusion principle.
The Exclusion principle is a consequence of two simple facts:
electrons are fermions and they are indistinguishable. Let us
consider a system of two electrons, with wavefunctions, φA(x1)
and φB(x2). Since these electrons are indistinguishable, we
must be able to swap labels and still end up with the same
density. One can see that for the simple solution,

φ(x1, x2) = φA(x1)φB(x2), (1)

this condition is not met since it is not necessarily true that

φA(x1)φB(x2) , φA(x2)φB(x1). (2)

However, since both sides of Eq. (2) are solutions to the
Schrodinger equation, we can use a linear combination to
produce the total wavefunction,

Φ(x1, x2) = φA(x1)φB(x2) ± φA(x2)φB(x1). (3)

The positive and negative versions of Eq. (3) correspond
to symmetric and antisymmetric wavefunctions, respectively,
and define the difference between bosons and fermions.
Because electrons in nature are always observed to have anti-
symmetric wavefunctions, they are classified as fermions. The
requirement that fermionic wavefunctions be antisymmetric
is the essence of the Pauli exclusion principle. For an antisym-
metric wavefunction if φA = φB, the total wavefunction, Φ, goes
to zero, meaning that no two electrons may occupy the same
state.

To illustrate how the Pauli exclusion principle leads to
Pauli repulsion between molecules, let us consider the case
of the helium dimer. As the simplest closed-shell dimer, He2
provides a natural, general example for the repulsion between
molecules. Our derivation will closely follow that of Salem’s
1961 paper. All equations to follow are presented in atomic
units, with 4πε0 = 1.

Consider two helium atoms separated by a large distance
such that they do not interact. In this case, the two atoms have
distinct wavefunctions, φA and φB where both are real, spher-
ically symmetric, exponentially decaying functions. If these
two atoms are brought close enough to each other to interact,

the total wavefunction, now a mix of φA and φB, must remain
antisymmetric because of the Pauli exclusion rule. One way
to do this is to construct orthonormal molecular orbitals from
linear combinations of the atomic orbitals (LCAO),

ψg = (2 + 2S)−1/ 2(φA + φB),

ψu = (2 − 2S)−1/ 2(φA − φB),
(4)

where S is the overlap integral,

S =
∫
φAφBdv, (5)

needed for normalization. These molecular orbitals fulfill our
requirement that the total wavefunction,

Ψ = ψg(x1)ψu(x2) − ψu(x1)ψg(x2) = −Ψ, (6)

be antisymmetric.
After enforcing the Pauli exclusion rule, we can deter-

mine the total density that this antisymmetric wavefunction
defines for the interacting helium dimer. It is worth noting that
this is slightly different than the exact density because it lacks
polarization effects. However, since the effect of polarization
is small for the helium dimer. The density is simply the square
of the wavefunction,

ρ = Ψ ∗ Ψ = ψ2
g + ψ2

u (7a)

=
Z

(1 − S2)

(
φ2
A + φ2

B + 2SφAφB
)
, (7b)

where Z is the nuclear charge. When S, the overlap inte-
gral, is small, we can approximate the prefactor in a binomial
expansion,

1
1 − S2

= 1 + S2 + S4 + · · ·. (8)

This gives us a good approximation to the total density,

ρ̃ = Z
(
φ2
A + φ2

B

)
− 2ZSφAφB + ZS2

(
φ2
A + φ2

B

)
+ · · ·, (9)

where terms of order S3 or higher are dropped out. It is
worth noting that this is slightly different than the exact den-
sity because it lacks polarization effects. However, since the
effects of polarization are small for the helium dimer (as shown
by Salem), this approximate density is accurate enough to
ground a qualitative description of Pauli repulsion.

Equation (9) gives us an approximation of the true elec-
tron density of the helium dimer. Let us compare this result
to the density that would have resulted if we had not imposed
the Pauli exclusion principle,

ρ0 = Z
(
φ2
A + φ2

B

)
. (10)

It is clear that this reference density differs from the true
density of Eq. (9). It is also clear from the preceding deriva-
tion that the difference between the two is entirely due to
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the imposition of the Pauli exclusion principle. We can cal-
culate this difference by subtracting the true density from the
reference,

∆ρ = ρ0 − ρ̃ = 2ZSφAφB − ZS2
(
φ2
A + φ2

B

)
. (11)

This gives us the change in density caused by the Pauli exclu-
sion principle. Figure 1 shows how we can understand this
change qualitatively.

There are two contributions to the change in density from
the two terms in Eq. (11). The first term represents a deple-
tion of electron density in the overlap region between nuclei,
indicated by the red shaded region of Fig. 1(a). And the second
term represents an accumulation of electron density around
centers A and B, indicated by the green shaded regions of
Fig. 1(a). The validity of this spatial decomposition is shown
in Fig. 1(b). Coupled Cluster Singles-and-Doubles (CCSD) den-
sity difference calculations on the helium dimer show a clear
pattern of depletion in the internuclear space accompanied
by an accumulation near the nuclei. It is useful to note that
since

r
d

r
a

A

B

FIG. 1. Change in electron density for interacting helium dimer. (a) Representation
of the density difference between the interacting and superimposed non-interacting
densities. The green and red regions denote areas of electron accumulation and
depletion, respectively, upon enforcement of wavefunction antisymmetry. The dis-
tances ra and rd represent characteristic distances to each region from nucleus A.
(b) Density difference from ab initio calculations. The difference between CCSD
densities of the interacting and non-interacting dimers at an internuclear dis-
tance of 1.8 Å is shown as a contour plot. Values shown are in thousandths of
electrons/bohr3.

∫
∆ρdv = 0, (12)

these two changes are exactly equal in magnitude but oppo-
site in sign. Of particular importance is the magnitude of the
depleted charge in the overlap region. For the helium dimer
shown in Fig. 1(b) with an internuclear separation of 1.8 Å
(0.64 times the consensus He vdW diameter of 2.8 Å), the
total depleted charge is only 0.01 e–. This depletion, how-
ever, is the dominant contributor to the total SAPT repul-
sion energy of ∼5 kcal/mol. In fact, if one simply computes
Coulomb’s law between the nuclei and the depleted “positive”
charge located at the midpoint between the two nuclei, the
result is ∼7 kcal/mol, a slight overestimate of the repulsion
energy.

In addition to the qualitative description of how the den-
sity changes upon imposition of the Pauli repulsion prin-
ciple, we can quantitatively assess how this change affects
the energy of the system. The change in energy for nucleus
A is

∆EA = EA(ρ0) − EA(ρ̃) = Z
∫
∆ρ

r
dv = Z

(∫
∆ρd
r

dv −
∫
∆ρa
r

dv
)
,

(13)

where ∆ρd and ∆ρa are the changes in density due to deple-
tion and accumulation, respectively. Plugging in the two terms
from Eq. (11), we find the change in energy,

∆EA = Z
(
2ZS

∫
φAφB
r

dv − ZS2
∫
φA
r
dv − ZS2

∫
φB
r
dv

)
(14a)

= Z
(
2ZS

∫
φAφB
rd

dv − ZS2
∫
φB
ra

dv
)
, (14b)

where the middle term of 14a is identically zero by symme-
try. Equation (14b) introduces the notation for r illustrated
in Fig. 1. The first integral in Eq. (14b), for small overlaps, is
approximately zero everywhere except in that small overlap
region. Similarly, the second integral of Eq. (14b) is approxi-
mately zero for all of space except the local density of atom B.
One can see from Fig. 1 that generally rd < ra, meaning that the
depletion term of Eq. (14b) outweighs the accumulation term,
leaving

∆EA ≈ 2Z2S
∫
φAφB
rd

dv (15)

as a good approximation of the change in energy due to the
Pauli exclusion principle. In his original paper, Salem con-
firmed the validity of this approximation for the helium dimer
in the region of small overlap, showing that the energy of the
depletion term is over 10 times larger than the accumulation
term at the van der Waals minimum. Since we are concerned
only with small overlaps, a further reasonable approximation
is to assume rd to be constant,

rd =
R
2

, (16)

where R is the internuclear distance. Plugging this into
Eq. (15),
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∆EA ≈
Z2S
R

∫
φAφBdv (17)

simplifies the integral to give our final result,

UPauli =
Z2

R
S2. (18)

This is the simple energy difference caused by the imposition
of the Pauli repulsion principle on our unperturbed reference
state.

Equation (18) constitutes the “Orbital Overlap” model of
Pauli repulsion, and it is remarkable for three important rea-
sons. First, it gives us a clear definition of Pauli repulsion.
There is no mysterious “quantum force” that drives molecules
apart—Eq. (18) reveals that the repulsion caused by enforc-
ing the Pauli exclusion principle is electrostatic. The form
of Eq. (18) bears a striking resemblance to Coulomb’s law,
U = qi qj/R, only with a factor of S2 modulating the inter-
action. This similarity is not an accident. Figure 1 shows
quite clearly that the main effect of requiring the wave-
function to be antisymmetric is a net loss of electron den-
sity, relative to the reference state, in the area between the
two nuclei. This leads to an electrostatic repulsion between
nuclei that is proportional to the overlap squared. Second,
the form of Eq. (18) fits the asymptotic behavior we expect
from a Pauli repulsion function. It is positive everywhere,
making it indeed repulsive. Moreover, since S is proportional
to an exponential, the repulsion energy goes to zero at a
long range and becomes large when molecules strongly over-
lap. Third, the orbital overlap model lends itself to molec-
ular mechanics models because of how it was derived. The
above derivation relies on a choice of reference state, in
this case the unperturbed electron densities of the sepa-
rated helium atoms. This is exactly analogous to the strategy
of most molecular mechanics models. Partial charges, mul-
tipoles, polarizabilities, etc., are all assigned to molecules in
force fields as gas-phase monomer properties. In other words,
the unperturbed molecular electron density is also the “refer-
ence state” of molecular mechanics, making the orbital overlap
model inherently consistent with the rest of the force field
model.

This orbital overlap model of Pauli repulsion is by no
means new, but it has not been widely taken up by molec-
ular mechanics models. The reason for this is the challenge
of determining the S2 term for a classical model. Models like
SIBFA and EFP have taken the strategy of explicitly calculating
molecular orbital overlaps to directly obtain S2. These models
are certainly accurate and have the feature of giving realistic
anisotropic repulsion, but they can be too slow for large-scale
molecular dynamics simulation and pose problems for param-
eterization of biological macromolecules. An alternative is to
use an empirical model of orbital overlap, but this leaves open
the question of how to determine parameters defining the
anisotropy. We present here a novel approach to this issue—
an anisotropic model of Pauli repulsion can be faithfully con-
structed from the anisotropy encoded in an atom’s multipole
moments.

A. Multipole overlap Pauli repulsion
A model for orbital overlap requires some method for

describing the electron distribution around a molecule. Pre-
vious work has shown that a simple, hydrogen-like model of
charge density can be used to accurately predict the electro-
static interactions of dimers at a short-range.15 In this model,
the point Coulomb potential, V = q/r in atomic units, was
replaced by

V(r) =
q
r

(1 − e−αr), (19)

where α is a parameter introduced to describe the width
of the electron density. For the present model, we modify
this slightly, as suggested by Slipchenko and Gordon.59 The
potential generated by the electron of a hydrogen-like atom
is

V(r) =
q
r

[
1 − (1 + Zr)e−2Zr

]
, (20)

where Z is the nuclear charge. The form of Eq. (20) differs
slightly from Eq. (19), suggesting a better approximation for
the model,

V(r) =
q
r

[
1 −

(
1 +

1
2
αr

)
e−αr

]
, (21)

which more accurately captures the asymptotic behavior of
the potential. From this potential, we wish to build a model
electron distribution. To do this, we can apply Poisson’s
equation,

∇2V = −4πρ, (22)

to obtain the charge density that generates the potential of
Eq. (19),

ρ(r) =
qα3

8π
e−αr. (23)

The density, however, does not directly give the information
we need. In order to use the orbital overlap model of Pauli
repulsion, we must have a model for orbitals. To get from a
density model to an orbital model, we apply

ρ = φ ∗ φ. (24)

If we impose the restriction that the orbitals be real, then we
are left with model pseudo-orbitals,

φ =
√
ρ =

√
qα3

8π
e
−αr

2 . (25)

It is important to be clear about the purpose of these model
orbitals. What we are interested in for Pauli repulsion is the
regime of small overlap. Correspondingly, these orbitals are
simply meant to approximate the form of the outermost extent
of an atom’s electron distribution.

Within this pseudo-orbital model, we can evaluate the
overlap integral between interacting orbitals, A and B,

S =
∫
φAφBdv =

√
qAqBα3

Aα
3
B

8π

∫
e
−αArA−αBrB

2 dv. (26)

J. Chem. Phys. 150, 084104 (2019); doi: 10.1063/1.5081060 150, 084104-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Performing the integration according to the method of Coul-
son60 and refactoring yield the result

S =

√
qAqBα3

Aα
3
B

R
fdamp(R), (27)

where,

fdamp(R)

=




√
R
α3

*
,
1 +
αR
2

+
1
3

(
αR
2

)2
+
-
e
−αR

2 , αA = αB

1

2X3
√
R

[
αA(RX− 2αB)e

−αBR
2 +αB(RX + 2αA)e

−αAR
2

]
, αA , αB

X =
(
αA
2

)2
−

(
αB
2

)2

.

(28)

There are two important features to note about S. First, it
is asymptotically exponential, matching our general intuition
about orbital overlap. Second, it depends on the respective
atomic multipoles of A and B. We can elucidate this fact by
writing S2 in “Coulombic” form,

S2 = qATpauliqB, (29)

with

Tpauli =
α3
Aα

3
B

R
f2
damp. (30)

Equation (29) represents the charge-charge overlap term of
our Pauli repulsion model. If we wish our model to be isotropic,
we simply stop here and compute the repulsion energy
according to Eq. (18). However, for multipolar force fields,
we are not bound to simply using the charge-charge compo-
nent of the overlap. Following the example of Slipchenko and
Gordon,59 we can show how to compute the charge-dipole
and higher-order multipole terms for orbital overlaps as well.

Consider the overlap at distance, R, of a charge density, Q,
with a finite dipole, µ, where the dipole is represented by two
equal and opposite charges, q− and q+, separated by a distance,
d. For this interaction,

S2
charge−dipole = S2

Q−q− + S2
Q−q+

= QTpauli

(
R −

d
2

)
q− + QTpauli

(
R +

d
2

)
q+. (31)

If we define the dipole moment,

µ = qd, (32)

then Eq. (31) becomes

S2
charge−dipole = Qµ

Tpauli

(
R + d

2

)
− Tpauli

(
R − d

2

)
d

. (33)

If we take the limit as d→ 0, then

S2
charge−dipole = Q

∂Tpauli

∂R
µ. (34)

Note that this is exactly analogous to the derivation of the
electrostatic multipole interaction,

Uelectrostatic = qATqB + qA∇TµB − µA∇TqB + µA∇∇TµB + · · ·

with T =
1
R

, (35)

where the only difference is the kernel, T.
In the same way, we can compute S2 for arbitrary order

multipole orbital overlaps. In the current model, we shall take
this through quadrupole-quadrupole repulsion, yielding

S2
total = qATpauliqB + qA∇TpauliµB − µA∇TpauliqB + µA∇2TpauliµB

+ qA∇3TpauliΘB − ΘA∇
3TpauliqB + µA∇4TpauliΘB

−ΘA∇
4TpauliµB + ΘA∇

5TpauliΘB. (36)

This is the source of anisotropy in our model. Rather than
introducing any new parameters, we simply use the shape
of the atom encoded in the multipole moments to tell us
about the anisotropy of repulsion. This result provides a total
multipole overlap model of Pauli repulsion,

Upauli =
KAKB

R
S2
total. (37)

The parameter, K, is introduced to set the relative sizes of dif-
ferent atom classes. This model will be referred to throughout
the remainder of the paper as the “Multipolar Pauli Repulsion”
model. A variant that uses only the first, charge-charge term of
Eq. (36) will also be discussed. We refer to this as the “Isotropic
Pauli Repulsion” model.

We intend to use this model on a broad array of compli-
cated biomolecular intermolecular interactions. To determine
the parameters, particularly K, that accurately describe these
interactions, we have chosen to use ab inito SAPT exchange
repulsion calculations to generate reference data. It should
be noted that this is technically an approximation. While our
derivation relies on a Hellmann-Feynman theorem analysis of
density differences, the SAPT exchange repulsion term has
no associated density. This approximation, however, is nec-
essary, accurate, and consistent with our model. The SAPT
exchange repulsion energy is a direct approximation of the
energy increase required to antisymmetrize the wavefunc-
tions of two monomer reference states—exactly the quantity
that our model is built to reproduce.

B. A note on “density overlap” models
The other major class of overlap models for Pauli repul-

sion utilizes density overlap. In these models, the Pauli repul-
sion energy is modeled as

Upauli = KijΩ, (38)

where

Ω =

∫
ρiρjdv. (39)

This model is supported with some experimental evi-
dence,45,61 but it has serious flaws as an interpretable model
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for Pauli repulsion energy. This can be simply illustrated
with straightforward dimensional analysis.Ω is the one-center
integral of two densities which means that it has dimension (in
atomic units),

Ω =
e
a3

0

e
a3

0

a3
0 =

e2

a3
0

. (40)

These are not the units of a Coulombic energy (e2/a0 in atomic
units). Although Kij can be given units that yield an energy,
this does not make the model Coulombic since the term is a
constant that does not depend on distance. This is a prob-
lem for two reasons. First, it makes the model inconsistent
with the Hellmann-Feynman (Electrostatic) theorem. Accord-
ing to the Hellmann-Feynman theorem, every intermolecular
force is the result of applying Coulomb’s law to a change in
electron density. This dimensional analysis demonstrates that
there exists no Hellmann-Feynman-based justification for the
density overlap model of Pauli repulsion since any such ratio-
nale must necessarily be Coulombic. It should be noted that
there are other Pauli repulsion energy models that do not have
Coulombic interpretations as well, with the simple Lennard-
Jones model among them. However, these models are, by and
large, unitless which means that they do not suffer from the
second and more important reason that the density over-
lap model is problematic—the density overlap model has the
wrong distance dependence. Since the density overlap is pro-
portional to charge squared over distance cubed, applying the
electric constant no longer gives units of energy but energy
over distance squared. This is problematic because this for-
mulation now explicitly depends on the unit chosen for dis-
tance. A consequence of this is that the radial dependence
of the Pauli repulsion energy will be qualitatively incorrect.
This is illustrated in Fig. 2 for the case of helium dimer repul-
sion. Both the S2/R and density overlap models are governed
largely by exponentials, as shown by the nearly straight lines
on the semi-log plot. However, the slope of the density overlap
exponential function clearly differs from the SAPT exchange
repulsion.

A simple model system explains this difference in radial
dependence of the S2/R and density overlap curves. If we
assume that both atoms have an isolated electron density
described by Eq. (23) (∼e−αr), the resulting Pauli repulsion
energies of the density overlap and S2/R models, respectively,
will be

Udensity overlap = Kij

∫
ρiρjdv = Kij

qiqj

(8π)2
π

α3

(
1 + αR +

1
3

(αR)2
)
e−αR

(41)

and

US2/R = Kij
1
R

(∫
φiφjdv

)2

= Kij
1
R

qiqj

(8π)2
(8π)2

α6

(
1 +

1
2
αR +

1
12

(αR)2
)2

e−αR. (42)

For this simple model, the arguments of the exponentials of
both models are identical due to the orbital overlap, S, being

FIG. 2. Radial dependence of the S2/R (blue) and density overlap (red) models for
the helium dimer. The repulsion energy of both models computed from monomer
wavefunctions determined with the aug-cc-pVQZ basis set is compared to the
SAPT2+ repulsion energy (magenta) and plotted on a semi-log scale. The pro-
portionality constant of each model was fixed to reproduce the SAPT repulsion
energy at 2.4 Å. The SAPT exchange repulsion curve is almost entirely obscured
by the S2/R curve. While the slope of the S2/R curve matches that of the SAPT
repulsion energy, the slope of the density overlap curve does not.

squared. This explains the similarities in the curves in Fig. 2.
However, the R-dependent, polynomial prefactor of Eq. (41)
clearly differs from Eq. (42). It is this difference that causes
the radial divergence illustrated in Fig. 2. We will further illus-
trate this phenomenon in Sec. IV with additional noble gas and
water dimer calculations.

Despite this incorrect radial functional dependence, the
density overlap model can still provide a serviceable empiri-
cal model. There are two ways that this has been performed
in prior efforts. The first is to choose the Kij proportionality
for a representative interaction distance. Since, like the orbital
overlap model, the density overlap model is dominated by an
exponential term, if the K constant is chosen for a suitable
interaction distance, the radial error may not become large
within the range sampled in application. The other method
is to include a distance dependent prefactor (1/R, 1/R2, etc.)
in the function. This has been proposed by Nyeland and co-
workers.62–64 These models explicitly address the units of the
function, albeit empirically, and have been shown to be valid
over a wider range of interaction distances than the pure
density overlap model.

As opposed to unitless models like Lennard-Jones or
Buckingham functions which sidestep the question, the orbital
overlap model explicitly satisfies the dimensional analysis test.
If we take Eq. (36) and for simplicity, only consider the charge-
charge term of S2 (the same holds for the higher-order terms),
this gives,

Upauli =
e2

a0
, (43)
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the atomic units of a Coulomb energy. This is fully consis-
tent with the Hellmann-Feynman theorem interpretation of
the Pauli repulsion energy. It is also what we should expect,
given that the derivation of the orbital overlap model is built
on a set of electrostatic interaction arguments. This makes the
multipole overlap Pauli repulsion model interpretable and, as
we shall show in Sec. IV, this interpretability bestows on the
model some measure of transferability.

III. METHODS
A. Parameterization

To fit the multipole Pauli repulsion model, we utilized
the previously published S101x7 database.65 This database is
meant to capture intermolecular interactions that are impor-
tant for biomolecular applications and has been used to
parameterize electrostatics and dispersion models.15,66 The
database contains 101 unique sets of molecular dimers with
seven different points along the dissociation curve at 0.7,
0.8, 0.9, 0.95, 1.0, 1.05, and 1.1 times the equilibrium dis-
tance. See Ref. 65 for a complete description of the gener-
ation of database geometries. We augmented the database
with a set of methane and formaldehyde homodimers with
geometries generated in the same manner. We used the
publicly available SAPT2+ energy decomposition analysis cal-
culations we previously published to extract the exchange
repulsion (Pauli repulsion) energy of each dimer pair in the
database. The SAPT2+ exchange repulsion energies were com-
puted using the so-called S2 approximation which has been
previously shown to be accurate for biomolecular fragment
interactions.67

To fit the parameters of our model, we defined 26 unique
atom classes. These classes are assigned according to the
qualitative chemical environment of each atom and are listed
in Table I. They are adopted from the atom classes used in a
previously published study of van der Waals energies of the
S101x7 database.68

For each atom class, the model as defined by Eq. (36)
requires three parameters: the size of the atom, K, the shape of
the atom, α [as defined in Eq. (25)], and the number of valence
electrons, q [as defined in Eq. (36)]. The purpose of K and α

is straightforward; together they set the strength and shape
of the exponential repulsion between atoms. The purpose of q
as a parameter is slightly more nuanced. In point force fields
(charge-only or multipolar), the atomic charges are a combi-
nation of the nuclear charge with the net electronic charge on
that atom. This definition will not work for our model because
only the electrons are involved in overlap. Furthermore, since
we are only interested in the region of small overlaps, it does
not make sense to use all of the electrons on each atom, as
only the outermost part of the electron density is involved in
overlap. Thus, the parameter, q, is best thought of as the max-
imum (not necessarily an integer) number of electrons that
are involved in overlap for a particular atom. This turns out
to be an important parameter because it sets how anisotropic
the Pauli repulsion of a specific atom will be. A large q will
make the first, isotropic term of Eq. (36) large, while a small

TABLE I. Atom classes and parameter values for the anisotropic multipole Pauli
repulsion model. Classes are taken from those in Ref. 68.

N Pauli repulsion class K α q

1 H (nonpolar) 2.25 4.63 1.00
2 H (nonpolar, alkane) 1.82 4.23 1.00
3 H (polar, N–H/N aromatic) 1.11 4.21 1.00
4 H (polar, O–H) 1.18 4.20 1.00
5 H (aromatic, C–H) 1.24 4.43 1.00
6 H (polar, S–H) 1.20 4.01 1.00
7 C (sp3) 2.62 4.64 3.41
8 C (sp2, alkene) 1.42 3.56 3.92
9 C (sp2, C==O) 1.31 3.50 2.02
10 C (aromatic, C–C) 1.37 3.77 4.00
11 C (aromatic, C–X) 1.37 3.70 3.70
12 N (sp3) 3.61 4.16 2.00
13 N (sp2) 4.62 4.27 2.15
14 N (aromatic) 3.93 4.40 2.48
15 O (sp3, hydroxyl, water) 3.57 4.74 3.00
16 O (sp2, carbonyl) 1.43 4.14 6.00
17 O (O− in AcO−) 1.19 3.77 5.87
18 O (O− in HPO4

−2) 1.25 3.73 5.82
19 O (O− in H2PO4

−) 1.47 4.02 5.75
20 O (O in H3PO4) 1.63 4.15 5.78
21 P (phosphate) 1.74 4.40 4.98
22 S (sulfide, R−SH) 3.40 3.62 3.39
23 S (sulfur IV, DMSO) 1.52 3.33 6.00
24 F (organofluorine) 1.38 4.72 5.05
25 Cl (organochloride) 1.91 3.76 5.91
26 Br (organobromine) 2.02 3.52 6.63

q will make the first term small relative to the higher-order
anisotropic terms. To prevent overfitting, q for all hydrogen
atoms is set to be the negative of the total number of electrons
(−1.0 plus the partial charge). Additionally, q for heavy atoms is
constrained to lie between 2 and the number of valence elec-
trons of the element. For the isotropic Pauli repulsion model
[only using the first term of Eq. (36)], q is set to be the number
of valence electrons since in the isotropic model, q and K are
redundant.

It is important to emphasize what is not being fit in this
model. The dipole and quadrupole moments of each atom
are taken directly from the Distributed Multipole Analysis
(DMA) based procedure detailed in the appendix of Ref. 69.
This does two important things. First, it makes the multipo-
lar Pauli repulsion model consistent with the AMOEBA model
and future AMOEBA-like models. In particular, this means
that the model can be used along with previously published
AMOEBA-like electrostatics15 and dispersion66 models. Sec-
ond, this insulates the Pauli repulsion model from the most
common problem of anisotropic repulsion models: overfit-
ting. The dipole moment of each atom has three independent
components, and the traceless quadrupole has five. Empiri-
cally fitting these parameters would result in a massive over-
fitting problem. Past anisotropic models have either fit very
specific models (e.g., water) to large datasets32,33 or used
explicit atomic orbitals.40,43 This model sidesteps the trou-
bles associated with both of those approaches by using the
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multipoles that come from directly fitting the electrostatic
potential around a molecule.

Because the Pauli repulsion energy exhibits strong expo-
nential character, we choose to perform a natural log fit to
obtain parameters for the multipolar and isotropic Pauli repul-
sion models. To do this, we minimized the residual, log (SAPT
Exchange)–log (model), for each dimer data point in the S101x7
dataset using a Levenberg-Marquardt least squares routine
in the Tinker molecular mechanics package.70 This prevents
the closest, but rarely accessible, dimer points from bias-
ing the fit. A third model, termed vdW2017, was also fit. This
model uses the AMOEBA standard buffered 14-7 functional
form,

UvdW = Ureplusion + Udispersion = εij

(
1 + δ
ρij + δ

)7*.
,

1 + γ
ρ7
ij + γ

− 2+/
-
, (44)

where δ and γ are global shape parameters, and ε and ρ

are set by the Waldman-Hagler and arithmetic combining
rules, respectively, as suggested in Ref. 68. All four param-
eters were allowed to vary in the fit with ε and ρ for
each atom being set by the same atom classes presented
in Table I. Additionally, a fixed “hydrogen-reduction factor”
of 0.9 was applied to all hydrogens as described in Ref. 31.
Equation (44) can be split into a positive and a negative part
which represent the contributions to repulsion and disper-
sion, respectively. However, since the buffered 14-7 parame-
ters for the two terms are not independent, a (non-natural log
weighted) least squares fit was carried out that simultaneously
minimized (SAPT exchange–vdW2017 repulsion) and (SAPT
dispersion–vdW2017 dispersion) for each dimer data point.
In both fits, S101 dimers including the triple-bonded ethyne
molecule were excluded as was performed previously, elimi-
nating the S101 class for sp-hybridized carbon from the fitted
parameters.

B. Computational details
The multipolar and isotropic Pauli repulsion models have

been implemented in publicly available versions of the Tin-
ker molecular mechanics package.70–72 It is worth noting for
future force field development that the additional overhead
to compute the multipolar Pauli repulsion model on top of
an existing multipole electrostatic calculation is small. As the
similarity between Eqs. (35) and (36) suggests, the interme-
diate quantities necessary for energy and forces are largely
identical between the two models.

Lastly, we explored calculating the orbital overlap and
density overlap directly from quantum mechanical calcula-
tions. Since the components of interacting dimers each have
multiple occupied orbitals rather than single model pseudo-
orbitals, we must define S2 for this situation. Because we
are working with orthogonal molecular orbitals in the LCAO
(Linear Combination of Atomic Orbitals) convention, we use
the sum-of-squares definition,

S2 =

A∑
i

B∑
j

〈
ψi|ψj

〉2
, (45)

where the A and B represent the two monomers with sums
over i and j, the occupied orbitals on A and B, respectively.62
We express the occupied orbitals in terms of atomic basis
functions so that Eq. (45) is invariant under orthogonal trans-
formations of the molecular orbitals. The density overlap is
calculated on a grid according to Eq. (38). The QM orbital and
density overlap calculations using SCF monomer orbitals with
an aug-cc-pVDZ basis were performed using the Psi4NumPy
program.73

The computational cost of the multipolar Pauli repulsion
model was evaluated on a typical computer workstation. The
time to complete 100 energy and force calculations was mea-
sured using a four-core 3.4 GHz Intel Core i7 processor. The
tests were run on a 25 × 25 × 25 Å water box with 500 water
molecules. The cutoff distance for Pauli repulsion is set to 5
Å, and dispersion is handled via particle mesh Ewald summa-
tion.66 For comparison, models including the Halgren buffered
14-7 potential were also included. For these calculations, a van
der Waals cutoff distance of 10 Å is used. To evaluate the cost
in the context of a generalized AMOEBA-like model, timings
are also presented that include polarization with the induced
dipole convergence criteria set to 10−5 D RMS.

IV. RESULTS
A. Noble gas dimers

To assess the validity of the orbital overlap model for
Pauli repulsion, we first considered the case of Pauli repul-
sion between noble gas dimers. Because they are neutral and
have spherical symmetry, noble gas dimers are a natural first
testing ground for a Pauli repulsion model. Specifically, we set
out to test the underlying assumption that the Pauli repulsion
energy should be proportional to S2/R. The results, plotted for
a range of distances of the neon and argon dimers, are plotted
in Fig. 3.

There are several features worth noting in Fig. 3. The first
is that for these simple systems the SAPT exchange repulsion
energy is clearly exponential. The plot reveals a near-linear
relationship between the internuclear distance and the nat-
ural log of the SAPT exchange repulsion energy. The second
noteworthy feature is the quality of the S2/R model energy
calculated from SCF monomer orbitals. This is not neces-
sarily surprising, given that the model was derived from the
ab initio Pauli repulsion of the helium dimer, but agreement
is remarkable, given that this estimate is obtained without the
need for dimer calculations. The third important item of note
is the poor quality of the density overlap approximation for
the Pauli repulsion energy. The distance-dependence prob-
lem addressed in Sec. II B is abundantly clear in this simple
example. The density overlap is evidently not proportional
to the Pauli repulsion energy for a meaningful range of dis-
tances for noble gas dimers. Although the rapid divergence
of the density overlap model at a long range for the neon
dimer is likely due to the use of the smaller aug-cc-pVDZ
basis set, the same qualitatively different radial dependence
is observed when the overlap is computed with a much larger
(aug-cc-pV5Z) basis set.
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FIG. 3. Comparison of QM monomer-based methods for estimating Pauli repulsion in noble gas dimers. The natural log of the repulsion energy is plotted against the dimer
separation distance to illustrate the exponential relationship. For a range of distances for Ne–Ne and Ar–Ar dimers, the S2, S2/R, and density overlap methods were tested
against SAPT exchange repulsion energy. The proportionality constant for each method was arbitrarily fixed to reproduce the middle value of the distance range (3.0 ang for
Ne–Ne and 4.0 ang for Ar–Ar). In both cases, the S2/R method is virtually indistinguishable from the SAPT result.

The final feature to point out regarding the noble gas
dimers is subtle but important. Also plotted in Fig. 3 are the
results for assuming that S2, as opposed to S2/R, is propor-
tional to the Pauli repulsion energy. The results show that
although the agreement might be close over a small range of
distances, the overall slope is slightly too small. This shows the
importance of the 1/R factor in the Pauli repulsion expres-
sion. There has been some discussion in the literature about
what, if any, function of R should precede S2 for Pauli repul-
sion.41,62 These results clearly indicate that 1/R is the correct
choice. As an empirical matter, of course, for more compli-
cated molecules, other choices can be made in the context of
a total energy model. However, these results show the S2/R
model to be the most natural fit to the fundamental Pauli
repulsion phenomenon.

B. S101x7 dataset
Having established the validity of the S2/R model for

noble gas systems, we set about determining whether the
model is appropriate for a more complicated dataset. The
S101x7 database was chosen to represent a range of biomolec-
ular dimer interactions and three models were fit: multipolar
Pauli repulsion, isotropic Pauli repulsion, and a buffered 14-7
model. As stated in Sec. III, the first two repulsion-only mod-
els were fit with natural log weighted least squares, while the
buffered 14-7 model, termed vdW2017, was fit to unweighted
SAPT dispersion and exchange repulsion data simultaneously.
The results of these fits are given in Table II and illustrated
in Fig. 4.

The results show the trade-off in accuracy that is taken
for using an isotropic model. The isotropic Pauli repulsion and
vdW2017 models exhibit similarly large errors for the S101x7
dataset of 2.37 kcal/mol and 2.66 kcal/mol, respectively. This
error is driven by the closest contact points in the dataset
but is still large for intermediate distances as well. Notably,
the vdW2017 model has an error of close to 1 kcal/mol for
points at equilibrium and beyond. To some extent, errors at
this distance for the buffered 14-7 potential are compensating
for the dispersion part of the function, but this comes at the
detriment of having a separate and interpretable Pauli repul-
sion model. The isotropic Pauli repulsion function root mean
square error, on the other hand, decays more rapidly with
distance.

The quantitative benefit of using an anisotropic Pauli
repulsion function is readily apparent from Table II and Fig. 4.
The multipolar Pauli repulsion model requires more terms
to compute, but it fits the S101x7 nearly twice as well as its
isotropic counterpart. The total RMSE (Root Mean Square
Error) is being driven almost entirely by the closest-range
points (0.7×) in the dataset. For intermediate and near-
equilibrium points, the multipolar Pauli repulsion model gives
errors of well under 1 kcal/mol. Because the fitting was per-
formed against log-transformed data, it is not surprising to
see this behavior. Moreover, this behavior should be consid-
ered desirable since the 0.7× points of the dataset largely fall
just outside of the realm accessed during molecular dynamics
simulation under ambient conditions. Figure 4 illustrates the
tighter fit to SAPT that is achieved with the anisotropic mul-
tipolar Pauli repulsion model. The results of these fits will be
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TABLE II. Root mean square error on the S101x7 dataset. Shown are the errors relative to SAPT exchange-repulsion. “Short-
Range” indicates data points at 0.7 times the dimer equilibrium distance. “Intermediate” indicates data points 0.8–0.95 times
the dimer equilibrium distance. “Long-Range” indicates data points at or beyond the dimer equilibrium distance. Note that all
values are absolute errors and not log-weighted.

Total RMSE Short-range RMSE Intermediate RMSE Long-range RMSE
(kcal/mol) (0.7) (kcal/mol) (0.8–0.95) (kcal/mol) (1.0–1.1) (kcal/mol)

Multipolar Pauli 1.71 4.14 0.99 0.37repulsion
Isotropic Pauli 2.37 5.68 1.46 0.44repulsion
vdW2017 2.66 5.94 2.02 0.83repulsion

used to evaluate the models for the remainder of the paper.
Tables showing the fitted parameters for the isotropic and
multipolar Pauli repulsion models, as well as the vdW2017
model are available in the supplementary material. We will
explore the factors contributing to the superior fit of the
multipolar Pauli repulsion model in Sec. V.

As can be seen from Fig. 4(a), there are some large errors
in the fitted S101 dataset, particularly for the isotropic and
vdW2017 models. Nearly all of these errors occur at the short-
range 0.7× points of the database where the absolute repul-
sion energy is very high. This is apparent from Fig. 4(b), which
shows the error of each point in the fits plotted against the log

FIG. 4. S101x7 Pauli repulsion energy. (a) Model Pauli
repulsion energy plotted against SAPT2+ exchange repul-
sion energy for all dimers. Both model and SAPT data
are plotted on natural log weighted access for clarity. The
dashed line indicates perfect agreement. (b) Model error
plotted against absolute (log-weighted) SAPT repulsion
energy.
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magnitude of the repulsion energy. All of the errors greater
than 5 kcal/mol occur when the SAPT repulsion energy is
greater than 50 kcal/mol. Additionally, many of the dimers
where the anisotropic multipole Pauli repulsion model pro-
duces the greatest reduction in the error fit with intuition.
Some of the largest decreases in error are for the DMSO-
DMSO dimer, dimers involving phosphate, and pi-pi stacking
interactions. These are all interactions with significant elec-
trostatic anisotropy (large dipole and quadrupole moments),
and the multipole Pauli repulsion model fits these data more
precisely.

As stated in the Introduction, it is important that a repul-
sion model be interpretable in addition to being accurate.
One simple measure of interpretability is the reasonableness
of the fitted model parameters. To assess the sensibility of
the parameters for the multipolar Pauli repulsion model, we
calculated an atomic “size” for each atom class defined in
Table I. The metric for size, presented in Table III, is the
atomic radius corresponding to an atom-atom homodimer
internuclear distance at which the repulsive energy reaches
1.0 kcal/mol. Because the multipolar Pauli repulsion model
is anisotropic, we only include the charge-charge portion of
the energy to cleanly separate the size from the orientational
dependence.

TABLE III. Atomic “size” for multipolar Pauli repulsion atom classes. The radius
is calculated as half the distance at which an atom-atom homodimer experiences
1.0 kcal/mol of repulsion energy. Only the charge-charge component of the repulsion
is included. This is equivalent to the repulsion energy of the homodimer averaged
over all possible dimer orientations at the standard distance.

N Pauli repulsion class Radius (Å)

1 H (nonpolar) 1.12
2 H (nonpolar, alkane) 1.16
3 H (polar, N–H/N aromatic) 1.01
4 H (polar, O–H) 1.03
5 H (aromatic, C–H) 1.00
6 H (polar, S–H) 1.08
7 C (sp3) 1.48
8 C (sp2, alkene) 1.73
9 C (sp2, C==O) 1.50
10 C (aromatic, C–C) 1.64
11 C (aromatic, C–X) 1.64
12 N (sp3) 1.58
13 N (sp2) 1.63
14 N (aromatic) 1.58
15 O (sp3, hydroxyl, water) 1.50
16 O (sp2, carbonyl) 1.64
17 O (O− in AcO−) 1.71
18 O (O− in HPO4

−2) 1.75
19 O (O− in H2PO4

−) 1.68
20 O (O in H3PO4) 1.66
21 P (phosphate) 1.55
22 S (sulfide, R–SH) 1.95
23 S (sulfur IV, DMSO) 2.02
24 F (organofluorine) 1.40
25 Cl (organochloride) 1.87
26 Br (organobromine) 2.05

Broadly, the sizes in Table III show a chemically intuitive
picture of atomic size. The sizes follow periodic trends, and
the differences across classes of the same element are rea-
sonable. We note that although similar to the “size” (radius)
parameter of the Lennard-Jones 12-6 or Halgren buffered 14-7
potentials, the size metric here should not be quantitatively
compared. The size parameters in those van der Waals func-
tions implicitly include the dispersion contribution in addition
to repulsion.

The S101x7 database provides extensive coverage for
biomolecular chemical space and the radial dependence
of interactions. The results of the fit show that using an
exponential-based function matches this radial dependence
better than the buffered 14-7 potential. The errors of the
isotropic Pauli repulsion and vdW2017 models are similar for
the closest (0.7×) points of the dataset. However, at distances
just past equilibrium, the errors in the isotropic Pauli repul-
sion model become asymptotically smaller compared against
the buffered 14-7 potential. This suggests radial scans of S101x7
are effective at determining the exponential parameter, α, and
the prefactor, K. The S101x7 database, however, contains rela-
tively less orientational information. This requires us to care-
fully consider the charge, q, parameters for heavy atoms that
are largely responsible for handling the angular dependence
of the multipolar Pauli repulsion model. In the following test
cases, we explore a variety of systems that specifically target
the angular degrees of freedom that are less sampled by the
S101 dataset.

C. Water dimers
Water is an important case in force field development, for

the reason that it is the solvent in which interesting biomolec-
ular phenomena usually occur. In addition to being impor-
tant for applications, water is also curious because of its
anisotropic repulsive properties. To examine the performance
of our model on this system, we shall consider three separate
series of water dimers: one in which water dimer dissocia-
tion is considered, one in which the “flap angle” (defined in the
inset of Fig. 6) of the water dimer is systematically varied, and
one which consists of 10 well-studied independent stationary
points on the water dimer surface.

Because water-water interactions are so important to the
end goal of biomolecular simulations, the quality of the fit
to the water dimer dissociation data of the S101x7 dataset
is instructive. Figure 5 shows the performance of a num-
ber of repulsion models against reference SAPT2+ exchange
repulsion energies plotted on a natural log scale.

The two Pauli repulsion models parameterized in this
work compare quite well with the SAPT2+ result. Both the
isotropic and multipolar Pauli repulsion models capture the
magnitude of the interaction as well as the shape across the
range of distances. This result is borne out by the S2/R com-
parison also shown in Fig. 5. Although this is less straight-
forward to compute for polyatomic molecules, we defined R
as the O–O distance and computed S2 according to Eq. (45)
with each monomer’s MOs. This measure is also in very
good agreement with the SAPT results, with the divergence
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FIG. 5. Water dimer dissociation Pauli repulsion. Water monomer geometries were
fixed at equilibrium and placed at distances from 0.7 to 1.1 times the equilibrium
O–H distance. The SAPT exchange repulsion curve is almost entirely obscured
by the multipole Pauli repulsion and isotropic Pauli repulsion curves. See text for
definition of S2/R and density overlap models.

at short range likely due to our neglect of the hydrogens in the
definition of R.

Also shown in Fig. 5 are the results from the QM density
overlap calculation. The proportionality constant, Kij, for this
model was chosen (as with the QM S2/R model) to reproduce
the SAPT repulsion energy at the equilibrium distance. One
can see that the quantitative agreement is comparably good
for this model. However, the density overlap model does show
the same characteristic distance dependence problem illus-
trated for the noble gas dimers; it is slightly too repulsive at
a short range and not repulsive enough at a long range. This
erroneous distance dependence arises due to the unit con-
sistency issue identified in Sec. II. It is worth noting that for
practical simulation purposes, this error in the radial depen-
dence may be tolerable, given other sources of error in a force
field.

Another important slice of the water potential energy
surface is the “flap angle” energy dependence of the water
dimer.74,75 High level ab initio calculations predict this angle
(θ in the inset of Fig. 6) to be 57◦.76,77 Typical 3- and 4-
site point charge force fields for water such as TIP3P, SPC,
and TIP4P generally predict a flap angle to be too flat78
(less than 57◦) due to their inability to reproduce the molec-
ular quadrupole moment of water. The opposite behavior
was observed by Ren and Ponder when developing the orig-
inal AMOEBA water model. Prior to their decision to scale
down the quadrupole moments, the AMOEBA water model
reproduced the molecular quadrupole moment very well but
predicted a flap angle of 70◦.31 A scaling of the quadruple
moments by 70% served to correct the angle. Electrostatics,
however, are only half of the story of the water dimer flap
angle. Figure 6 shows that, in fact, ab initio electrostatics do
strongly favor a flap angle of about 70◦.

FIG. 6. Water dimer “flap angle” SAPT energy decomposition analysis. While the
dispersion and induction components of the total energy are relatively flat across
this slice of the potential energy landscape, the electrostatic and exchange repul-
sion change substantially and in opposite directions. The two trends largely cancel
each other out in the total energy.

However, this does not correspond to the behavior of the
total energy surface, which is basically flat for angles from 45◦

to 70◦. To get this flat surface requires a compensating con-
tribution from Pauli repulsion, and indeed Fig. 6 shows that
as the flap angle is increased through this range, while the
electrostatic energy consistently becomes more negative, the
Pauli repulsion energy steadily trends more positive.

Which, if any, molecular mechanics models are capable of
capturing this kind of phenomenon? Shown in Fig. 7 are several
water dimer Pauli repulsion models evaluated for a range of
flap angle values.

FIG. 7. Water dimer “flap angle” Pauli repulsion. The isotropic models (isotropic
Pauli repulsion and vdW2017) clearly miss the sensitivity to angle change, while
the anisotropic models mirror the shape of the SAPT exchange repulsion.
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The multipolar Pauli repulsion model as well as the
QM-based S2/R and density overlap methods all reproduces
the shape of the angular dependence of the water dimer repul-
sion well. The multipolar Pauli repulsion model, despite not
being fit to any water angular dependence data (there are no
angular scans in S101x7), reproduces the SAPT data quite well.
This is due entirely to the natural description of anisotropy
that comes through the atomic multipoles. The fact that the
electrostatic and exchange repulsion curves in Fig. 6 are nearly
mirror images for a fixed distance is not a coincidence. The
interpretation of this result is that while the quadrupole inter-
actions become more attractive as the flap angle is increased,
this same overlap causes the repulsion to increase as well.
It is the same underlying change in overlap that is driving
both trends. This is again borne out by the ab inito S2/R
calculation (evaluated in the same way as before) which also
mirrors the SAPT result. Interestingly, the density overlap
model also does very well in describing this angular depen-
dence. This result makes sense because, in contrast to the
dissociation case, the distance between atoms for this slice
of the surface is largely unchanged throughout the scan. This
means that the density overlap distance dependence prob-
lem is hidden, while the accounting of anisotropy (in this
case implicitly through the density) gives the correct angular
trend.

What is apparent from Fig. 7, however, is that isotropic
Pauli repulsion models cannot capture the flap angle depen-
dence of the water dimer. Neither the isotropic Pauli repul-
sion model nor the vdW2017 model experiences any change
in the repulsion energy until the flap angle becomes large
enough that the hydrogen atoms of the acceptor molecule
swing around to feel the repulsion of the donor oxygen.
These models completely miss the quadrupole repulsion
effect responsible for the shape of the flap angle repulsion
curve.

The water dimer flap angle provides an excellent test
case for cancellation of errors in advanced force fields. As
force fields work to reproduce energy components individ-
ually, care must be taken to advance the physical models of
each part in concert. If the electrostatic model is advanced
to include anisotropy without including any such anisotropy
in the repulsion, the electrostatics part of the force field will
accurately capture that component of the energy. However,
for the flap angle degree of freedom, this will incur an error
in the total energy of over 2 kcal/mol over an area in which
the total energy should be essentially flat. Figure 7 shows
that no cancellation of error scheme for an isotropic repul-
sion model is sensitive to this degree of freedom; the only
way to correct it is to include anisotropy in the repulsion as
well. This is the reason why the original AMOEBA water model
deviated from the physically derived electrostatic model and
scaled down the quadrupoles. Having a fully anisotropic Pauli
repulsion function means that these components sit at the
same level of theory, and this in turn allows us to regain
sensitivity to cancellation of errors in the angular degrees of
freedom.

The angular dependence of Pauli repulsion is not only
apparent in the minimum energy water dimer. We also

considered the ten water dimer structures introduced by
Tschumper et al.77 Figure 8 shows the error, relative to
the SAPT2+ exchange repulsion energy for the multipo-
lar Pauli repulsion, isotropic Pauli repulsion, and vdW2017
models.

The multipolar Pauli repulsion model displays errors
of less than 1 kcal/mol for every dimer configuration. The
two isotropic models, however, suffer from large, nonran-
dom errors on several of the dimers. Both the vdW2017 and
isotropic Pauli repulsion models feature large and opposing
errors on dimers 6 and 8. This indicates an angular repulsion
dependence that an isotropic model is incapable of captur-
ing. In fact, we attempted to fit the isotropic Pauli repulsion
model directly to exchange repulsion energies of the ten
water dimers and found the same opposing errors for dimers
6 and 8.

Taken as a whole, all of the data presented for water
repulsion interactions tell a consistent story that not includ-
ing repulsion anisotropy on the water dimer potential energy
surface will incur errors of 1-2 kcal/mol for accessible dimer
configurations. It also shows that the multipolar Pauli repul-
sion model is capable of bringing those errors down to
∼0.5 kcal/mol. The ability of the model to predict angu-
lar dependence that is not in the fitting set, such as the
flap angle and dimers 2-10, suggests that the electrostatic
multipole description is a natural fit for Pauli repulsion
anisotropy.

D. The “sigma hole” effect
As stated in the Introduction, halogen bonding vis a

vis the so-called “sigma hole” effect is of particular inter-
est to biomolecular force fields. Over 35% of drugs in clini-
cal phase III trials contain at least one halogen atom.10 The
“sigma hole” terminology refers to the area of positive charge
found at the distal tip of the halogen atom in a halogen-
containing compound. It has long been accepted that this
feature suggests that the linear halogen B· · ·X–Y bonding
geometry characteristic of the “sigma hole” effect is driven
by electrostatics.79 Anthony Stone showed that this assump-
tion is only partially correct. Using simple model systems,
Stone showed that while electrostatics is indeed responsi-
ble for the overall attraction that causes halogen bonds to
form, Pauli repulsion is largely responsible for the character-
istic, often linear, geometry of these bonds.4 Given the impor-
tance of halogen bond interactions, we chose to consider a
range of test systems to assess the quality of the multipo-
lar Pauli repulsion model. We consider a pair of represen-
tative examples from Stone’s work, a halobenzene example
proposed by Nohad Gresh and co-workers,13 an acetone-
bromobenzene dimer suggested by Hobza and co-workers,80
and a drug-like dimer system from Alzate-Morales and
co-workers.12

From Stone’s work, we consider two representative
halogen bonding configurations: the “head-on” ammonia–ClF
dimer and the “from the side” ethene–ClF dimer. Figures 9
and 10 show the results for the models on ammonia–ClF and
ethene–ClF dimer, respectively.
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FIG. 8. Pauli repulsion energy error for ten water dimers.
The error (SAPT minus model) is plotted for each configura-
tion. The isotropic models exhibit errors of opposing sign for
dimers 5 and 6 vs. 8 and 9. The multipolar Pauli repulsion
model does not suffer from this constraint.

As the B· · ·X–Y angle varies away from linear for both sys-
tems, the ab inito Pauli repulsion rises sharply. The isotropic
models miss this entirely. For ammonia–ClF, the repulsion
energy of the isotropic Pauli repulsion and vdW2017 mod-
els is virtually flat throughout the scan, and for ethene–ClF,
these models only start to vary once the fluorine swings
around far enough to interact directly with the ethene
molecule. This indicates that isotropic Pauli repulsion mod-
els will miss the strong linear preference of these halogen-
bonded complexes. The multipolar Pauli repulsion model,
however, does not miss this angular effect. In both cases, the
anisotropic model correctly captures the immediate increase
in Pauli repulsion that occurs as the halogen bond deviates
from linearity. Although the multipole Pauli repulsion model

FIG. 9. Variation of the Pauli repulsion energy with respect to tilt angle (B· · · X–Y)
for the ammonia–ClF dimer. The N to Cl distance is fixed at 2.376 Å. The isotropic
Pauli repulsion and vdW2017 lines are indistinguishable.

underestimates the anisotropy of repulsion in both examples,
this is most likely a consequence of the DMA-based protocol
used for determining multipole moments. For Cl-F, the DMA
Cl dipole and quadrupole moments differ from those of sim-
ilar halogens in the S101 database. This is likely responsible
for the difference since the angular dependence of repul-
sion is driven by dipole and quadrupole interactions. How-
ever, the general qualitative agreement between the SAPT and
the multipolar Pauli repulsion model shows that a multipole-
based description of electrostatics works well to describe
the angular dependence of halogen bond repulsion in these
cases.

The concept that force field anisotropy is necessary to
accurately model halogen bonding is not new. Recent studies

FIG. 10. Variation of the Pauli repulsion energy with respect to tilt angle (B· · · X–Y)
for the ethene–ClF dimer. The C==C bond midpoint to Cl distance is fixed at
2.766 Å.
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using the AMOEBA force field81 as well as the SIBFA force
field13 have explored this idea. Both studies stressed the
importance of anisotropic electrostatics but largely neglected
a discussion about anisotropic repulsion. In particular, the
work of Gresh and co-workers studied the interactions of
halobenzene–water complexes. To examine the repulsive con-
tribution to these interactions, we chose the chlorobenzene–
water dimer as a test system. Figure 11 shows the halogen bond
angle scan for this system.

Although the energy variation is smaller for this system
since the O to Cl contact distance is long, at 3.33 Å, the model
trends are clear. The multipolar Pauli repulsion model mirrors
the immediate change in repulsion energy that is felt when
the complex deviates from linear. The two isotropic mod-
els, however, do not sense this effect. The energy of these
models is flat until a rotation of ∼60◦, where steric repulsion
begins.

Another useful test system for halogen bonding is bro-
mobenzenes interacting with acetone. A crystallographic sur-
vey by Auffinger and co-workers showed that of the halo-
gen bonded structures in the PDB, 70% involved a protein
backbone carbonyl oxygen and that of those structures, 94%
involved a halogen atom bonded to an aromatic or hetero-
cyclic aromatic ring.14 Hobza and co-workers proposed the
bromobenzene–acetone complex as a simple probe for exam-
ining this kind of important halogen bonding. We used this
probe to assess the quality of the carbonyl oxygen containing

FIG. 11. Variation of the Pauli repulsion energy with respect to the tilt angle
(B· · · X–Y) for the water-chlorobenzene dimer. The O to Cl distance is fixed at
3.33 Å.

halogen bond behavior of the multipolar Pauli repulsion
model. Shown in Fig. 12 is an angular scan of the acetone–
bromobenzene Pauli repulsion energy surface.

Clearly, while the multipolar repulsion model is not in
perfect agreement with SAPT, it is the only model that cap-
tures the angular dependence trend. The preference the
acetone–bromobenzene system shows for the linear config-
uration is being driven in no small part by this angular depen-
dence in Pauli repulsion. The multipolar Pauli repulsion model
gets this dependence qualitatively right. As expected, the
isotropic models miss this variation in the rotational degrees
of freedom.

The final example of halogen bonding we surveyed was
a model “drug binding” system of N-methylacetamide (NMA)
and chlorobenzene proposed by Alzate-Morales and co-
workers.12 This system was chosen to be a close approxima-
tion of a drug-like molecule interacting with a peptide back-
bone. Again, we performed SAPT calculations of the exchange
repulsion energy at a range of interaction angles and com-
pared these to the results from each model.

The results in Fig. 13 confirm the trend of the other test
cases. The multipolar Pauli repulsion model correctly picks up
the trends in both angular directions for the repulsion energy.
Since NMA is an asymmetric molecule, we performed a scan
from 80 to −40◦ and found that the multipolar Pauli repul-
sion model reproduces the increase in repulsion energy for
both positive and negative angular deviations. The isotropic

FIG. 12. Variation of the Pauli repulsion energy with respect to the tilt angle
(B· · · X–Y) for the acetone–bromobenzene dimer. The O to Br distance is fixed
at 3.15 Å.
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FIG. 13. Variation of the Pauli repulsion energy with respect to the tilt angle
(B· · · X–Y) for the NMA-chlorobenzene dimer. The O to Cl distance is fixed at
3.0 Å.

models both capture the beginning of steric repulsion that
occurs at each end of the angular scan but are not sensi-
tive to the anisotropic change in repulsion in the middle. The
anisotropy in the multipolar Pauli repulsion model is picking
up not only the increase in energy associated with rotating
away from linear but also the asymmetry about the O· · ·Cl–C
angle.

Much like hydrogen bonds, halogen bonds can be use-
ful tools for molecular design because they are strong and
exhibit a marked geometric preference. As has been shown
in previous work, much of this strength and some of the

geometry preference are expressed through the electrostatic,
dispersion, and polarization components of the intermolec-
ular energy. However, the component most responsible for
enforcing the generally linear geometry of halogen bonds is
Pauli repulsion. The tests presented in this section show that
no isotropic model (without employing off-atom repulsion
sites) is capable of reproducing this effect. Moreover, this sec-
tion shows that the electrostatic description of monomers
via atomic multipole expansions is sufficient to capture the
signature anisotropy of these interactions. It bears noting
that despite the repetitive feel of the angular halogen bond-
ing results shown, there are no anisotropic parameters being
fit. The differences in anisotropy, including the asymmetric
shape of the NMA–chlorobenzene well, are entirely deter-
mined by the ab initio derived atomic multipole moments of
the molecules. The results here show that for “sigma hole” type
interactions, the multipole moments can simultaneously pro-
vide a suitable description of both electrostatic and repulsion
anisotropy.

E. Computational cost
For any molecular mechanics model that aims to be use-

ful for biomolecular simulation, the computational cost must
be considered. In particular, for the multipolar Pauli repulsion
model, this is a matter of concern because multipole calcula-
tions are known to be computationally expensive. This model
is intended to be used in tandem with a multipole electro-
statics model; in particular, it is parameterized against the
AMOEBA multipole model, so we tested the computational
efficiency in that context. The results in Table IV show that
the additional cost for this model is minimal.

When the multipolar Pauli repulsion model is paired
with our previously published damped dispersion model, the
resulting calculations are around 20% slower than the cur-
rent standard AMOEBA buffered 14-7 van der Waals func-
tion. Furthermore, when this cost is put into the context of
the entire AMOEBA energy function, including polarization,
the extra cost becomes nearly negligible. The multipolar Pauli
repulsion and overlap damped dispersion combination yields
a model that is 5% slower than its buffered 14-7 counter-
part. Polarization is the costliest component of the AMOEBA
force field, so adding a slightly more expensive Pauli repulsion

TABLE IV. Computational cost of the multipolar Pauli repulsion model. Timings are for 100 energy and force evaluations in a
standard Open-MP parallel implementation in Tinker.

Time for 100 energy and
force evaluations (s)

AMOEBA electrostatics with charge penetration 1.7+ multipolar Pauli repulsion + dispersion
AMOEBA electrostatics with charge penetration + vdW2017 1.4
AMOEBA electrostatics with charge penetration + polarization 4.6+ multipolar Pauli repulsion + dispersion
AMOEBA electrostatics with charge penetration + polarization 4.4+ vdW2017
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function makes very little difference to the overall computa-
tional efficiency of the model.

We note here that this kind of computational efficiency
is predicated upon two important factors. First, it relies
upon using a multipole model for electrostatics. If one were
to deploy the multipolar Pauli repulsion model as a stand-
alone energy term, it would be an order of magnitude more
expensive than a standard van der Waals function. When it
is used with a multipole model, and given that the multi-
pole moments are constrained to be identical for the elec-
trostatics and Pauli repulsion models, a large amount of the
algebra to compute dipole and quadrupole forces is shared
between the two models. Second, the speed of the model
benefits greatly from employing cutoffs. The standard van
der Waals cutoff for the AMOEBA force field is 9–12 Å.
Because the multipolar Pauli repulsion model separates the
repulsive and dispersive contributions to the van der Waals
energy, it is free to use a much shorter cutoff. These tests
were performed with a conservative truncated cutoff of 5 Å,
but even better performance can be achieved by short-
ening this distance and employing a polynomial switching
function.

V. DISCUSSION AND CONCLUSIONS
Pauli repulsion is one of the most important parts of

any classical intermolecular potential energy model. In most
energy decomposition analyses, it is the only component of
the total energy that is always positive. This means that for
condensed phase systems, total models rely heavily on the
Pauli repulsion term to reproduce bulk phase data. For this
reason, it is important for a good Pauli repulsion model to be
both accurate and physically interpretable. We have presented
here the multipolar Pauli repulsion model as an option that
fulfills both of these aims.

Despite the terms in which it is often discussed, there is
nothing mystical about the phenomenon of Pauli repulsion. It
is true that the effect arises from the enforcement of the laws
of quantum mechanics, but the result can be fully understood
within a classical physics interpretation. The Pauli exclusion
principle demands the total wavefunction of an electronic sys-
tem be antisymmetric. If we take as our reference the unper-
turbed monomer wavefunctions of two interacting molecules,
then upon overlap, the enforcement of antisymmetry will lead
to a loss in electron density in the overlap region. That loss of
electron density, relative to the unperturbed reference state,
causes a straightforward Coulombic repulsion between the
two nuclei. The multipolar Pauli repulsion model presented
here follows this explanation and thus gives a classical physical
interpretation of this quantum mechanical effect. The elec-
trostatic nature of this effect is borne out by the success of
the model in reproducing the anisotropy of repulsion using
electrostatic multipole moments.

In addition to being physically interpretable, the multipo-
lar Pauli repulsion model is shown to yield good quantitative
fits to ab initio data. The model fits the S101x7 dataset to an
accuracy of 1.7 kcal/mol and fits the near-equilibrium points
of that dataset to an error of much less than 1 kcal/mol. This

fit spans a large range of chemical space, from hydrogen bonds
and halogen bonds to pi-pi interactions and charged species.
The results are shown to be transferable to systems outside
of the S101 set as well. Particularly, we have shown that the
multipolar Pauli repulsion model captures the angular depen-
dence of the repulsion energy associated with halogen bond-
ing at a range of contact distances. These test systems not only
show the transferability of the exponential parameters that
were fit but also justify the claim to atomic multipole param-
eters as a description of anisotropic electron distribution
overlap.

This work is certainly not the first to acknowledge the
importance of the anisotropy of repulsion in intermolecular
interactions, and the multipolar Pauli repulsion model is not
the first model to include such effects. What makes this model
noteworthy is that it circumvents two obstacles that have tra-
ditionally stood in the way of adopting anisotropic models:
parameter underdetermination and computational cost. Any
atomic anisotropic model (repulsive or otherwise) requires a
local frame and a set of parameters that obey the symmetries
of that frame. In the absence of any richer set of data, these
requirements mean that if one wishes to fit to intermolec-
ular energies, there will be a large number of parameters to
fit to a (usually small, depending on computational resources)
set of scalar values. This is a recipe for overfitting, and it is
the reason that anisotropic repulsive models have largely been
limited to specific systems for which large amounts of dimer
data can be generated. The multipolar Pauli repulsion model
evades this problem by constraining the parameters respon-
sible for conferring anisotropy on the model to those that are
derived from a much richer data source: the molecular den-
sity. The atomic multipolar parameters that are derived from
ab initio monomer calculations not only constrain the param-
eter space of the model to avoid overfitting, but moreover,
as shown in Sec. II, they do so through a series of theoreti-
cally justified approximations. The DMA multipoles come from
the same monomer wavefunction that is required to calcu-
late S2, and this model uses that information to its advantage.
This symbiosis not only stands the multipolar Pauli repul-
sion model on solid theoretical ground but also ameliorates
the concern of computational cost typically associated with
anisotropic models. Because the local frames and atomic mul-
tipoles are identical between the electrostatics and repulsion
models, there is very little additional overhead incurred when
using the multipolar Pauli repulsion model with a multipolar
electrostatics model. Timings show that the cost of imple-
menting a multipole-based repulsion model in an AMOEBA-
like force field is minimal. By avoiding the overfitting and cost
problems that have proved prohibitive, the multipolar Pauli
repulsion model presented here provides a blueprint of one
tractable way to include anisotropic repulsion in biomolecular
force fields.

Not every force field needs the level of detail pre-
sented in this model. There are undoubtedly applications for
which isotropic, point-based force fields are adequate for
predicting quantities of interest. In fact, even for calcula-
tions that will require more advanced force fields, the mul-
tipolar Pauli repulsion model, as presented here, is probably
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insufficient without additional tuning—several of the test cases
presented, despite qualitative agreement with SAPT, fall short
of accurately reproducing a truly ab initio potential energy
surface. All force fields, advanced or not, will require some
measure of error cancellation.

A final point of this paper is that in order to benefit from
cancellation of errors the level of detail across different parts
of the model must match. The water dimer data presented
here show this point nicely. If one uses an anisotropic multipo-
lar description of electrostatics that, inevitably, has some error
in the associated intermolecular angular degrees of freedom,
the only way to cancel that error is by having the other com-
ponents of the force field be sensitive to those same degrees
of freedom. The water dimer example shows that for this
important case (and likely many others) it is largely the Pauli
repulsion that provides the balancing force. This is specific
evidence of the broader truism in molecular modeling that a
theoretically “consistent” model is a good model. For a point
charge force field, it is possible that including an anisotropic
repulsion model might make the model worse by introduc-
ing error that cannot be canceled by other components of
the force field. Likewise, for force fields based on multipo-
lar electrostatics models, we suggest that the multipolar Pauli
repulsion model will not just be more accurate with respect to
energy decomposition analysis, and it will also confer the abil-
ity to achieve favorable cancellation of error across the total
model.

While the theoretical framework presented here is appli-
cable to any multipolar force field, the specifics of the param-
eterization and testing of the model are aimed at a particular
goal. The development of the next generation of the AMOEBA
force field is underway, and the multipolar Pauli repulsion
model has been constructed explicitly for that purpose. It is
intended to be used with a multipolar description of elec-
trostatics that includes our earlier work on charge penetra-
tion and in conjunction with our previously published overlap
damped dispersion model. The code that implements all of
these components in the Tinker molecular mechanics soft-
ware package is freely available on the web.70 Work com-
bining all of these components into a next-generation water
model and full biomolecular force field will be reported in due
course. The multipolar Pauli repulsion model provides a cheap,
intuitive, and interpretable way to put this important com-
ponent of the future force field on an equal footing with its
counterparts.

SUPPLEMENTARY MATERIAL

See supplementary material for tables containing the
isotropic and multipolar model parameters fit to the S101
database.
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38J. N. Murrell, M. Randić, and D. R. Williams, “The theory of intermolecular
forces in the region of small orbital overlap,” Proc. R. Soc. London, Ser. A
284, 566–581 (1965).
39J. N. Murrell and G. Shaw, “Intermolecular forces in the region of small
orbital overlap,” J. Chem. Phys. 46, 1768–1772 (1967).
40N. Gresh, “Energetics of Zn2+ binding to a series of biologically rele-
vant ligands: A molecular mechanics investigation grounded on ab initio
self-consistent field supermolecular computations,” J. Comput. Chem. 16,
856–882 (1995).
41J.-P. Piquemal, H. Chevreau, and N. Gresh, “Toward a separate
reproduction of the contributions to the Hartree-Fock and DFT
intermolecular interaction energies by polarizable molecular mechan-
ics with the SIBFA potential,” J. Chem. Theory Comput. 3, 824–837
(2007).
42J. H. Jensen and M. S. Gordon, “An approximate formula for the inter-
molecular Pauli repulsion between closed shell molecules,” Mol. Phys. 89,
1313–1325 (1996).
43J. H. Jensen and M. S. Gordon, “An approximate formula for the inter-
molecular Pauli repulsion between closed shell molecules. II. Application
to the effective fragment potential method,” J. Chem. Phys. 108, 4772–4782
(1998).
44S. Kita, K. Noda, and H. Inouye, “Repulsive potentials for Cl–R and Br–R
(R = He, Ne, and Ar) derived from beam experiments,” J. Chem. Phys. 64,
3446–3449 (1976).
45Y. S. Kim, S. K. Kim, and W. D. Lee, “Dependence of the closed-shell repul-
sive interaction on the overlap of the electron densities,” Chem. Phys. Lett.
80, 574–575 (1981).
46R. J. Wheatley and S. L. Price, “An overlap model for estimating the
anisotropy of repulsion,” Mol. Phys. 69, 507–533 (1990).
47J.-P. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, and T. A. Darden,
“Towards a force field based on density fitting,” J. Chem. Phys. 124, 104101
(2006).
48R. E. Duke, O. N. Starovoytov, J.-P. Piquemal, and G. A. Cisneros, “GEM∗:
A molecular electronic density-based force field for molecular dynamics
simulations,” J. Chem. Theory Comput. 10, 1361–1365 (2014).

49H. Gokcan, E. G. Kratz, T. A. Darden, J.-P. Piquemal, and G. A. Cis-
neros, “QM/MM simulations with the Gaussian electrostatic model, a
density-based polarizable potential,” J. Phys. Chem. Lett. 9, 3062–3067
(2018).
50G. A. Cisneros, “Application of Gaussian electrostatic model (GEM) dis-
tributed multipoles in the AMOEBA force field,” J. Chem. Theory Comput. 8,
5072–5080 (2012).
51M. J. Van Vleet, A. J. Misquitta, and J. R. Schmidt, “New angles
on standard force fields: Toward a general approach for treat-
ing atomic-level anisotropy,” J. Chem. Theory Comput. 14, 739–758
(2018).
52M. J. Van Vleet, A. J. Misquitta, A. J. Stone, and J. R. Schmidt, “Beyond Born–
Mayer: Improved models for short-range repulsion in ab initio force fields,”
J. Chem. Theory Comput. 12, 3851–3870 (2016).
53I. Nobeli, S. L. Price, and R. J. Wheatley, “Use of molecular overlap to pre-
dict intermolecular repulsion in N· · ·H–O hydrogen bonds,” Mol. Phys. 95,
525–537 (1998).
54J. B. O. Mitchell, J. M. Thornton, J. Singh, and S. L. Price, “Towards an
understanding of the arginine-aspartate interaction,” J. Mol. Biol. 226, 251–
262 (1992).
55J. B. O. Mitchell and S. L. Price, “The nature of the N–H· · ·O=C
hydrogen bond: An intermolecular perturbation theory study of the
formamide/formaldehyde complex,” J. Comput. Chem. 11, 1217–1233
(1990).
56G. M. Day and S. L. Price, “A nonempirical anisotropic atom–atom model
potential for chlorobenzene crystals,” J. Am. Chem. Soc. 125, 16434–16443
(2003).
57M. Tafipolsky and K. Ansorg, “Toward a physically motivated force field:
Hydrogen bond directionality from a symmetry-adapted perturbation the-
ory perspective,” J. Chem. Theory Comput. 12, 1267–1279 (2016).
58C. Domene, P. W. Fowler, M. Wilson, P. A. Madden, and R. J. Wheat-
ley, “Overlap-model and ab initio cluster calculations of ion properties in
distorted environments,” Chem. Phys. Lett. 333, 403–412 (2001).
59L. V. Slipchenko and M. S. Gordon, “Electrostatic energy in the effec-
tive fragment potential method: Theory and application to benzene dimer,”
J. Comput. Chem. 28, 276–291 (2007).
60C. A. Coulson, “Two-centre integrals occurring in the theory of molecular
structure,” Math. Proc. Cambridge 38, 210–223 (1942).
61H. Inouye and S. Kita, “Experimental determination of the repulsive
potentials between K+ ions and rare-gas atoms,” J. Chem. Phys. 56, 4877–
4882 (1972).
62P. Söderhjelm, G. Karlström, and U. Ryde, “Comparison of overlap-based
models for approximating the exchange-repulsion energy,” J. Chem. Phys.
124, 244101 (2006).
63C. Nyeland and J. P. Toennies, “Modelling of repulsive potentials from
atom charge density distributions: Interactions of inert gas atoms,” Chem.
Phys. Lett. 127, 172–177 (1986).
64E. Andreev, “On asymptotic calculation of the exchange interaction,”
Theor. Chim. Acta 28, 235–239 (1973).
65Q. Wang, J. A. Rackers, C. He, R. Qi, C. Narth, L. Lagardere, N. Gresh,
J. W. Ponder, J.-P. Piquemal, and P. Ren, “General model for treating
short-range electrostatic penetration in a molecular mechanics force field,”
J. Chem. Theory Comput. 11, 2609–2618 (2015).
66J. A. Rackers, C. Liu, P. Ren, and J. W. Ponder, “A physically grounded
damped dispersion model with particle mesh Ewald summation,” J. Chem.
Phys. 149, 084115 (2018).
67T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sher-
rill, “Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency
and performance for interaction energies,” J. Chem. Phys. 140, 094106
(2014).
68R. Qi, Q. Wang, and P. Ren, “General van der Waals potential for common
organic molecules,” Bioorg. Med. Chem. 24, 4911–4919 (2016).
69P. Ren, C. Wu, and J. W. Ponder, “Polarizable atomic multipole-based
molecular mechanics for organic molecules,” J. Chem. Theory Comput. 7,
3143–3161 (2011).

J. Chem. Phys. 150, 084104 (2019); doi: 10.1063/1.5081060 150, 084104-21

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<642::aid-jcc6>3.0.co;2-u
https://doi.org/10.1021/ja00046a032
https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p
https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<520::aid-jcc2>3.0.co;2-w
https://doi.org/10.1021/jp027815+
https://doi.org/10.1080/00268979200102541
https://doi.org/10.1021/acs.jctc.5b01241
https://doi.org/10.1063/1.1311289
https://doi.org/10.1021/ct9004883
https://doi.org/10.1098/rspa.1961.0206
https://doi.org/10.1063/1.1727159
https://doi.org/10.1098/rspa.1965.0081
https://doi.org/10.1063/1.1840933
https://doi.org/10.1002/jcc.540160705
https://doi.org/10.1021/ct7000182
https://doi.org/10.1080/00268979609482543
https://doi.org/10.1063/1.475888
https://doi.org/10.1063/1.432637
https://doi.org/10.1016/0009-2614(81)85080-4
https://doi.org/10.1080/00268979000100371
https://doi.org/10.1063/1.2173256
https://doi.org/10.1021/ct500050p
https://doi.org/10.1021/acs.jpclett.8b01412
https://doi.org/10.1021/ct300630u
https://doi.org/10.1021/acs.jctc.7b00851
https://doi.org/10.1021/acs.jctc.6b00209
https://doi.org/10.1080/00268979809483187
https://doi.org/10.1016/0022-2836(92)90137-9
https://doi.org/10.1002/jcc.540111014
https://doi.org/10.1021/ja0383625
https://doi.org/10.1021/acs.jctc.5b01057
https://doi.org/10.1016/s0009-2614(00)01389-0
https://doi.org/10.1002/jcc.20520
https://doi.org/10.1017/s0305004100021873
https://doi.org/10.1063/1.1676963
https://doi.org/10.1063/1.2206182
https://doi.org/10.1016/s0009-2614(86)80250-0
https://doi.org/10.1016/s0009-2614(86)80250-0
https://doi.org/10.1007/bf00533487
https://doi.org/10.1021/acs.jctc.5b00267
https://doi.org/10.1063/1.5030434
https://doi.org/10.1063/1.5030434
https://doi.org/10.1063/1.4867135
https://doi.org/10.1016/j.bmc.2016.07.062
https://doi.org/10.1021/ct200304d


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

70J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardere, M. J. Schnieders,
J.-P. Piquemal, P. Ren, and J. W. Ponder, “Tinker 8: Software tools for
molecular design,” J. Chem. Theory Comput. 14, 5273–5289 (2018).
71J. A. Rackers, “GitHub branch for tinkertools development,” [updated 2018;
cited], Available from: https://github.com/JoshRackers/tinker/tree/
amoeba2, 2018.
72J. W. Ponder, P. Ren, and J.-P. Piquemal, “GitHub site for tinkertools,”
[updated 2018; cited], Available from: https://github.com/TinkerTools,
2018.
73D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A.
M. James, J. B. Schriber, T. Zhang, B. Zhang, and A. S. Abbott, “Psi4NumPy:
An interactive quantum chemistry programming environment for refer-
ence implementations and rapid development,” J. Chem. Theory Comput.
14, 3504–3511 (2018).
74M. W. Mahoney and W. L. Jorgensen, “A five-site model for liquid water
and the reproduction of the density anomaly by rigid, nonpolarizable
potential functions,” J. Chem. Phys. 112, 8910–8922 (2000).
75P. Ren and J. W. Ponder, “Temperature and pressure dependence of the
AMOEBA water model,” J. Phys. Chem. B 108, 13427–13437 (2004).
76W. Klopper, J. G. C. M. van Duijneveldt-van de Rijdt, and F. B. van
Duijneveldt, “Computational determination of equilibrium geometry and

dissociation energy of the water dimer,” Phys. Chem. Chem. Phys. 2, 2227–
2234 (2000).
77G. S. Tschumper, M. L. Leininger, B. C. Hoffman, E. F. Valeev, H. F. Schaefer
III, and M. Quack, “Anchoring the water dimer potential energy surface with
explicitly correlated computations and focal point analyses,” J. Chem. Phys.
116, 690–701 (2002).
78W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M.
L. Klein, “Comparison of simple potential functions for simulating liquid
water,” J. Chem. Phys. 79, 926–935 (1983).
79K. E. Riley, J. S. Murray, J. Fanfrlík, J. Řezáč, R. J. Solá, M. C. Concha, F.
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