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Structural hierarchy, in which materials possess distinct fea-
tures on multiple length scales, is ubiquitous in nature. Diverse
biological materials, such as bone, cellulose, and muscle, have
as many as 10 hierarchical levels. Structural hierarchy confers
many mechanical advantages, including improved toughness and
economy of material. However, it also presents a problem:
Each hierarchical level adds a new source of assembly errors
and substantially increases the information required for proper
assembly. This seems to conflict with the prevalence of natu-
rally occurring hierarchical structures, suggesting that a common
mechanical source of hierarchical robustness may exist. How-
ever, our ability to identify such a unifying phenomenon is
limited by the lack of a general mechanical framework for
structures exhibiting organization on disparate length scales.
Here, we use simulations to substantiate a generalized model
for the tensile stiffness of hierarchical filamentous networks
with a nested, dilute triangular lattice structure. Following sem-
inal work by Maxwell and others on criteria for stiff frames,
we extend the concept of connectivity in network mechan-
ics and find a similar dependence of material stiffness upon
each hierarchical level. Using this model, we find that stiffness
becomes less sensitive to errors in assembly with additional lev-
els of hierarchy; although surprising, we show that this result
is analytically predictable from first principles and thus poten-
tially model independent. More broadly, this work helps account
for the success of hierarchical, filamentous materials in biol-
ogy and materials design and offers a heuristic for ensuring
that desired material properties are achieved within the required
tolerance.

network mechanics | evolution of biomaterials | structural hierarchy |
biophysics | soft matter

L iving systems organize across many distinct levels, span-
ning from molecular to macroscopic scales. Such hierarchical

arrangements endow organisms with many beneficial material
properties; they may have high strength-to-weight ratios, exhibit
strain stiffening, or be robust against fracture (1–5). A seeming
drawback of this approach, however, is the enormous amount
of information needed to specify the structure of highly hier-
archical tissues and the increased number of opportunities for
stochastic errors. Even for a self-assembled material, each hier-
archical level likely increases the number of local minima in
the free energy landscape, increasing the opportunity for kinetic
errors in assembly (6, 7). While one may reasonably fear that
this cascade of errors will undermine the reliable realization
of self-assembled hierarchical materials, structural hierarchy is
used effectively by organisms belonging to many diverse evo-
lutionary lineages (2, 8, 9). Such widespread success suggests
the presence of an underlying mechanism responsible for this
emergent robustness. However, the number of elements nec-
essary to describe a hierarchical structure grows geometrically
with the number of hierarchical levels; thus, a 10-level structure
is currently computationally inaccessible. While identification
of the underlying principles responsible for hierarchical robust-
ness would greatly aid in explaining the ubiquity of natural
hierarchical structures, this objective first requires developing a

mechanistic understanding of how each scale contributes to a
material’s overall properties.

To gain a foothold in the study of hierarchical materials
mechanics, we focus on a highly tractable model system: a tri-
angular lattice of nodes connected by harmonic springs. Frames
made of slender, elastic beams have long been of interest in tech-
nical mechanics (10–18) and the physics of living tissue (1–3, 9,
19–23), and recent work has demonstrated that fibers can gener-
ically emerge from diverse building blocks (24). Further, the
mechanics of elastic networks are easily interpretable through
the Maxwell counting heuristic; briefly, to constrain every degree
of freedom in the network, there must be 2d bonds per node,
where d is the dimensionality of the system (12, 25). While much
work has been done to characterize elastic networks constructed
with a single important length scale (10, 13–15, 26, 27), we
lack a general characterization of elastic networks constructed
with multiple disparate length scales; a priori, it is unclear how
Maxwell counting applies to hierarchical structures. Are there
distinct degrees of freedom associated with “large” nodes, just as
there are with “small” nodes? How do constraints on large and
small length scales compare? Identification of underlying mech-
anisms that make hierarchical structures robust first requires
developing a comprehensible hierarchical model.

Here, we introduce a model system with a nested, dilute tri-
angular lattice structure, in which distinct network connectivities
can be defined on multiple scales. We examine the dependence
of tensile stiffness on each of these connectivities and capture
this relationship with a simple model. Using this model, we
then assess the resilience of a hierarchical material’s mechanical
properties in the presence of random errors in assembly.

Significance

Structural hierarchy is ubiquitous in nature and an emerg-
ing trend in engineered materials. Despite their many virtues,
hierarchical materials also add complexity and dramatically
increase the opportunities for random errors in assembly.
Nonetheless, highly hierarchical tissues have evolved many
times in diverse lineages; this prevalence suggests a com-
mon source of mechanical robustness. In this work, we intro-
duce a tractable, model hierarchical lattice with controllable
attributes on each length scale. We find, contrary to intuition,
that adding additional levels of structure actually reduces the
relative variation in mechanical properties, despite an increase
in assembly errors. This finding informs our understanding of
the emergence of hierarchically structured biological materials,
while also offering a practical heuristic in materials design.
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Geometrical Characteristics of the Model System
We consider an extension of the well-studied dilute, triangu-
lar lattice in 2D. Nodes arranged in a triangular Bravais lat-
tice are connected to nearest neighbors, and bonds are then
removed at random such that some fraction, referred to as
the bond portion, p, remains. The infinite triangular lattice
has a connectivity of six bonds per node when p = 1, while
in 2D Maxwell counting dictates a minimum connectivity of
four bonds per node; thus, the infinite, dilute triangular lat-
tice should lose stiffness when p falls below 2

3
. Lattices of

finite size would require a slightly higher bond portion, due to
the presence of underconstrained nodes at the boundary. This
prediction has been thoroughly confirmed for ball-and-spring
networks, via simulation and mean-field theoretic approaches
(10, 13–15).

We create hierarchical triangular lattices through an iterative
process, in which the bonds of the lattice at one length scale are
in turn crafted from smaller-scale triangular lattices. In princi-
ple, this process can be iterated ad infinitum; in practice, if the
number of large bonds is held constant, the total number of
nodes grows geometrically with the number of hierarchical lev-
els. This places a practical limit on the number of levels that can
be considered in simulations. We have numerically constructed
and simulated lattices with one, two, and three levels of struc-
tural hierarchy (Fig. 1); bond portion is independently set on
each hierarchical level.

Hierarchical Model of Stiffness
We propose to model the stiffness of our networks by generaliz-
ing the scaling law proposed by Garboczi and Thorpe (10), for
a single-scale, diluted triangular lattice. Garboczi and Thorpe
(10) found that, for the ball-and-spring case, components of the
elastic constant tensor should have the form

K =

{
k p−pc

1−pc
, p≥ pc

0, p< pc
, [1]

where pc is the minimum bond portion necessary for marginal
stiffness, and k is the value of the modulus when the network is

A B

C

Fig. 1. (A) A dilute triangular lattice with one level of structure. Missing
bonds are indicated with dashed lines. (B) A two-level triangular lattice,
with each bond replaced by a smaller-scale, dilute triangular lattice. (C) An
extension to three levels of structural hierarchy.

fully connected. We propose to describe large-scale bonds using
an effective stiffness with the form of Eq. 1 and introduce plarge
and psmall, the portion of bonds retained on the large and small
scales. Because of the finite width of large-scale bonds, we do
not assume that the minimum small- or large-scale bond portions
needed for marginal stiffness are 2

3
. The stiffness of a large-scale

bond will be inherited from its small-scale structure, such that
the overall stiffness scales as

K = k
(plarge− pc,large)(psmall− pc,small)

(1− pc,large)(1− pc,small)
, [2]

where K is tensile stiffness and k is the stiffness for a network
fully connected on all scales. Now consider a general network
with N distinct length scales. The stiffness ki of bonds at scale i
will be inherited from the structure at scale i − 1, so that

ki ∝ pi−1− pc,i−1. [3]

The overall stiffness for some general number N levels of
structural hierarchy will then be

K = k
N∏
i=1

pi − pc,i
1− pc,i

. [4]

Simulation Procedure
Networks were simulated in 2D, with ball-and-spring interactions
between pairs of connected nodes. To measure stiffness, nodes
along the tops of networks were uniformly displaced along the
vertical direction, after which the y coordinates of the top and
bottom nodes were fixed. Next, the x coordinates of top and bot-
tom nodes, as well as both coordinates of all other points, were
relaxed using the fast inertial relaxation engine algorithm (28).
Each bond is modeled as a fiber that resists stretching with a 1D
stretching modulus, µ. Let each bond be a parametric curve r(s),
where s ranges from 0 to the length of the bond, and let ~u(s) be
a field describing the displacement of a point on the bond in the
strained state. The energy for a bond of length l is described by
the functional

U =

∫ l

0

µ

2

∣∣∣∣d~uds
∣∣∣∣2ds. [5]

A uniform, 1D stretching modulus of unity was assigned to each
bond, and nodes were relaxed until the rms residual force in the
network was less than 1× 10−10 in units of stretching modulus
in the case of the one- and two-level networks and 1× 10−9 in
units of stretching modulus for three-level networks. We extract
the tensile stiffness by fitting plots of elastic energy vs. strain to
parabolas.

Simulation Results
We simulated one-, two-, and three-level lattices with a wide
range of bond portions and measured their stiffness (Fig. 2).
Large-scale bonds are 10 small-scale bonds long and contain
three rows of small-scale bonds. Before comparing to our model,
we must identify each critical bond portion for one-, two-, and
three-level lattices.

For the one-level lattice, we recover the expected linear rela-
tionship between stiffness and bond portion (Fig. 2A). We find
the critical bond portion to be 0.670 (SI Appendix).

For the two-level lattice, we find that stiffness increases as
either the small or the large bond portion is increased (Fig. 2B).
To determine the threshold bond portion for the large (small)
scale, we find those points in bond portion space for which the
small (large) bond portion is equal to 1. We then fit a plot
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Fig. 2. (A) Simulated stiffness plotted vs. bond portion for one length scale.
(B) Heat map of simulated stiffness as a function of small and large bond
portion for a two-level network. Stiffness is plotted in simulation units,
as indicated in the key. (C) Heat map of simulated stiffness for a slice in
bond portion space for three-level networks with full connectivity on the
largest scale. Stiffness is plotted in simulation units, as indicated in the key.
(D) Heat map of simulated stiffness for a slice in bond portion space for
three-level networks with full connectivity on the smallest scale. Stiffness
is plotted in simulation units, as indicated in the key. (E) Stiffness normal-
ized by maximum stiffness for networks with one, two, and three levels of
structure.

of large (small) bond portion vs. stiffness and fit these data to
an equation of the form Eq. 1. We find that the critical bond
portions are 0.83 and 0.58 for the small and large scales, respec-
tively (SI Appendix). Initially, it may be surprising to find that
the critical bond portion on the large scale is less than 0.67.
However, as large-scale bonds are endowed with a finer-scale
structure, they acquire an effective bending stiffness, rather than
being governed strictly by harmonic, central force interactions.
Notably, networks with bonds possessing bending stiffness have
been demonstrated to be rigid even below the classic isostatic
point (14, 15). Thus, it is crucial that pc be directly measured and
not assumed from Maxwell counting.

For the three-level lattice, we find that stiffness increases as
any bond portion is increased (Fig. 2 C and D and SI Appendix).
Following an approach similar to that used for the two-level lat-
tice, we find the critical bond portions are 0.83, 0.72, and 0.62 for
the small, medium, and large scales, respectively.

To test our model, we compare the stiffness obtained from
simulations to the stiffness predicted by our model. In Fig. 2E, we
plot stiffness values from our model against stiffness values from
simulations for one, two, and three levels. For ease of compari-
son, stiffness values for an N -level network are normalized to the
maximum attainable stiffness for an N -level network. Each point
in the plot compares a simulation result with its model predic-

tion counterpart. There are no free parameters in our model; we
normalize stiffnesses by the maximum values for one-, two-, or
three-level lattices and use the identified critical bond portions.
We find remarkable agreement; linear fits between simulated
and predicted quantities have r2 values and slopes, respectively,
of 0.983 and 1.003 for one level, 0.989 and 1.01 for two lev-
els, 0.988 and 0.98 for three levels, and 0.993 and 1 for all data
combined.

Experimental Prospects
While the attempt to manipulate actual tissues as we have manip-
ulated our networks may prove elusive, we envision, as an acces-
sible proof-of-principle experiment, cutting networks described
in this work from elastic sheets. Such sheets would ideally have
an out-of-plane thickness that is large in comparison with the in-
plane width of bonds, to frustrate buckling, as described in ref.
29. Existing work has also established tapering of bonds at junc-
tions as a useful technique for controlling the ratio of bending to
stretching stiffness (30).

Model Applicability
We next performed a series of tests and analyses to determine
how broadly our model can be applied. As a first step, we var-
ied the size and aspect ratio of large-scale bonds. Up to this
point we have shown results for networks in which large-scale
bonds are 10 small-scale bonds long and contain three rows of
small-scale bonds; however, we have also considered two-level
networks whose large-scale bonds are 20 small-scale bonds long
and contain five rows of small-scale bonds. In both cases, we
find similarly strong agreement. More details are provided in SI
Appendix.

While these two systems captured the same phenomena, we
cannot test all possible configurations and must instead care-
fully consider the circumstances under which our model is
applicable. Large-scale bonds can be too wide or too narrow.
If the width of large-scale bonds is too great in comparison
with their length, then the resulting structure will effectively
be a single-scale lattice with a regular array of small perfora-
tions. If large-scale bonds contain two or fewer rows of small-
scale bonds, the coordination number of the network with all
bonds present will be four, making the network susceptible
to immediate loss of stiffness upon dilution of bonds. More-
over, stretching of networks will lead to transverse contraction,
producing a lateral load on horizontal bonds. If large-scale
bonds buckle, our picture of a primarily stretching-stabilized net-
work will be invalid. We here propose methods to identify the
range of aspect ratios for which our model should be expected
to apply.

We performed tensile simulations to determine the change
in the displacement field of a single-scale lattice under tension
due to the presence of a hole of width w . Note that a two-scale
lattice with bonds of length l and width w , in units of small-
scale bond length, may be viewed as a single-scale network with
a periodic array of equilateral triangular holes with side length
s = l −w

√
3. We argue that our model, with a separation of

scales, is appropriate when the change to the displacement field
is of the order of the applied strain times the small-scale bond
length over a length equal to or greater than the separation
between neighboring holes. This analysis, explained in detail in
SI Appendix, yields

l/w & 2 + 3/w . [6]

Large-scale bonds may also be too narrow and thus buckle. Using
the theory of slender rods as discussed in ref. 31, we find buck-
ling will become a concern when the ratio of length to width is
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of the order of the square root of the applied strain (ε); thus, to
avoid buckling, the ratio of length to width must satisfy

l

w
. ε−1/2. [7]

In our case, large-scale bonds have length 10 and width
√

3, in
units of small-scale bond length, for an aspect ratio of 5.77. This
is above the limit separating hierarchical networks from perfo-
rated sheets (3.73). Further, as strains used in simulations do
not exceed 5× 10−3, this aspect ratio is below the limit at which
buckling may be expected to occur (14.1). This places us com-
fortably within the constraints on the applicability of our model
discussed above.

Thus, our proposed formulation for stiffness of a hierarchical
lattice is expected to apply to a wide range of networks. Crucially,
we observe that it accurately describes 1-, 2-, and 3-level lattices
(Fig. 2E), suggesting that the smallest length scale can always be
replaced by a network of even smaller bonds, and the stiffness
will remain the product of all excess bond portions. This general
formulation facilitates investigation of highly hierarchical (e.g.,
10-level) lattices.

Structural Error Tolerance
Now that we have obtained a general relationship for the stiff-
ness of a hierarchical structure, we are primed to consider the
possibility of random errors in assembly, a likely complication
in any real assembly process. We focus in particular on how
stochastic deviation from a targeted set of connectivities (on all
relevant length scales) results in a deviation in network stiff-
ness. We consider two distinct regimes. In the first case, we
consider a target point near the isosurface along which stiff-
ness vanishes. In the second one, we consider a target point
in bond portion space far from both the limiting case of full
connectivity on any length scale and the contour of vanishing
stiffness.

We first consider target points in bond portion space cor-
responding to marginally stiff structures. Such points are of
interest, as highly compliant materials have critical biological
roles (1) and are attracting increasing attention for applications
(11). Such materials typically must not be susceptible to critical
transitions in their elastic moduli as a result of small fluctuations
in their fine-scale structure.

We use a numerical technique to estimate the distribution of
stiffness arising from random errors. First, we choose a nominal
point in bond portion space, such that a certain target stiffness is
achieved, and the excess bond portion is the same for each length
scale. We next add Gaussian random noise to the bond portion
on each length scale. The stiffness of the resulting “noisy” point is
then estimated by means of an interpolated function computed
from simulation data for one- and two-level lattices and a fit-
ted model for three-level lattices (Fig. 2); for lattices with more
than three levels, we use Eq. 4. This process is carried out for
50,000 trials.

Strikingly, the variance in stiffness is greatly reduced with each
additional level of hierarchical structure (Fig. 3A). Further, the
stiffness distribution for the single-level network exhibits a large
peak at zero, which is absent in the stiffness distribution of the
two- and three-level networks. Thus, despite having opportuni-
ties for errors at three separate stages of assembly, the three-level
network is more reliably constructed than the one-level network
and can more reliably avoid stochastically generating a floppy
network.

Next, we seek a general understanding of target points far from
any boundary in bond portion space (see SI Appendix for detailed
derivation). For N levels, there is a nominal excess bond portion,
pe , for each level; we consider identically and independently dis-
tributed deviations from the nominal bond portions according to

a normal distribution with zero mean and standard deviation
(SD) σ. Referring to Eq. 4, we define the reduced stiffness:

K̄ =
K

k
∏N

i=1 (1− pc,i)
. [8]

With this definition we find the expected deviation in the stiffness
of a network with N hierarchical levels to be

∆K̄

K̄
≈
√
Nσ

K̄ 1/N
, [9]

where the approximation holds when σ� pe . For a target K̄ , this
functional form predicts the optimal number of levels to be

N ∗= b−2 ln
(
K̄
)
c, [10]

where “bc” denotes the floor.
To test our analytical result, we again use the above numeri-

cal approach to calculate SD in stiffness for networks with 1–15
hierarchical levels. For lattices with more than 3 levels, we use
Eq. 4 to estimate the stiffness of the resulting noisy point. We
find very good agreement between the numerically generated
data and our analytical prediction (r2≈ 1 for the case shown
in Fig. 3B).

The above derivations were performed assuming identically
and independently distributed random errors in bond portion;
however, the results presented above do not strictly require such
stringent conditions. Similar robustness against fluctuation in
stiffness can occur for error rates that vary on different scales
and for distributions of random errors in which errors in bond
portion on different length scales are correlated (see SI Appendix
for an in-depth treatment).

Interestingly, investigating networks with different error rate
distributions allows us to identify a useful heuristic. Consider a
two-level network with the same error rate in its large-scale bond
portion as a one-level network. The two-level network will have a
smaller variance in its stiffness than the one-level network as long
as its small bond portion error rate is less than three times larger
than its large bond portion error rate (note that this argument
also works if the roles of the small and large scales are swapped;
see SI Appendix for details).

These observations do not simply arise from the generic prop-
erties of random variables. Although a relation of the form Eq. 9
with N = 1 would hold for a general product of random numbers,
the dependence upon N of the divisor indicates a scaling of the
relative fluctuation specific to a stiffness with the functional form
of Eq. 4. To produce a supple solid of a particular stiffness, the
portion of bonds that must be retained on each scale to achieve
this stiffness increases with increasing hierarchy. This can ensure
that the connectivity of the network on each scale exceeds the
threshold connectivity by an amount large in comparison with
the the typical fluctuations in connectivity.

We further find that hierarchical structures offer superior
economy of material, in keeping with previous studies (16). To
quantify this benefit, we define the number density, ns , of small-
scale bonds as follows: Let ls be the length of a single small-scale
bond, Ns denote the total number of small-scale bonds, and A
denote the area enclosed by the perimeter of the network. Then,
ns is given by

ns =
Ns

A
[11]

and has units of l−2
s . We regard small-scale bonds as the fun-

damental structural units of a network, such that ns provides
a measure of the number of connections per unit area needed
to achieve a target set of mechanical properties. To compare
one-, two-, and three-level networks, we chose target stiffness
values and identified the points in bond portion space with equal

2878 | www.pnas.org/cgi/doi/10.1073/pnas.1813801116 Michel and Yunker

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813801116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813801116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813801116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1813801116


PH
YS

IC
S

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Fig. 3. (A) Stiffness probability distribution functions (PDFs) estimated from
histogram data for networks with one, two, and three levels of structural
hierarchy. Points in 1D, 2D, and 3D bond portion with the same minute
nominal stiffness were chosen, and Gaussian random variables were added
to each bond portion. Note the spike in the PDF for the one-level network
at zero stiffness. In this case, we consider a nominal stiffness of 0.025 and
Gaussian random noise for each bond portion with zero mean and a SD of
0.005. Other cases are addressed in SI Appendix. (B) Relative error in stiff-
ness vs. levels of hierarchy is plotted for K̄ = 0.001, σ= 0.0001. As additional
levels of structural hierarchy are added, the relative error in the tensile stiff-
ness decreases precipitously at first, and the effect saturates at a certain
number of levels. Provided the assumptions leading to Eq. 9 hold, our ana-
lytical theory and numerical approach are in close agreement (r2≈ 1). Here,
the product of excess bond portions is 0.001, and the noise has amplitude
0.0001 on each scale. (C) The number of all small-scale bonds in a network,

bond portions on each level corresponding to these stiffness val-
ues. We then estimated accompanying values of ns for networks
with these bond portions by interpolation. For each stiffness cho-
sen, there was a sharp decline in the number of bonds per unit
area needed with increasing numbers of hierarchical levels. This
result emphasizes that hierarchical materials’ greater error toler-
ance is a benefit inherent to their geometry, rather than deriving
from redundancy. A nested, modular assembly process thus
enables the creation of a structure that is both more reliable and
more frugal.

Discussion and Conclusion
Contrary to expectation, the elastic moduli of hierarchical mate-
rials are more reliably controlled than the elastic moduli of
materials with one relevant length scale. Thus, with respect to
random errors, it is easier to make hierarchical structures than
to make single–length-scale structures. This finding may have
wide-ranging implications for evolutionary biology and materials
design.

It may seem that evolving progressively larger, more complex
bodies is accompanied, and impeded, by a growing assortment
of mechanical challenges. To the contrary, this work provides
evidence that adding hierarchical complexity can actually reduce
stochastic variation in material properties. This effect decreases
the need for coevolving error-correcting mechanisms, thus facil-
itating the evolution of new traits that are “good enough” for an
organism to survive.

Upon successful assembly, structural hierarchy is known to
endow materials with a host of desirable properties that are
unattainable with single–length-scale structures. Our finding that
hierarchy also reduces susceptibility to stochastic errors suggests
that bottom–up production processes for synthetic hierarchi-
cal materials may produce finished products which perform as
intended despite modest, but discernible errors.

While we have explicitly addressed 2D, lattice-based networks
in this study, we anticipate that our findings will have broader
applicability. Feng et al. (13) have demonstrated that an analo-
gous model to Eq. 1 describes the dependence of the elastic mod-
uli of a dilute face-centered cubic lattice in 3D on the portion of
bonds retained. Moreover, connectivity has been established as
a useful control parameter for predicting the mechanical prop-
erties of many disordered solids, such as jammed packings of
hard (32, 33) and soft (34) particles and semiflexible biopolymer
networks (21).

More generally, we have broadened the scope of Maxwell’s
visionary means of characterizing frames to account for struc-
tural hierarchy, facilitating the understanding of cases in which
it has proved difficult to relate materials’ emergent proper-
ties to their fine-scale structure. While recent computational
advancements have enabled study of biological macromolecules
over experimentally relevant time scales (35), comprehensive
understanding at the level of an organism demands a coarse-
graining procedure for which our model may offer a useful
road map. A generalized counting heuristic may also offer
a means of expediting feasible, yet cumbersome calculations
in materials design. Hierarchical materials necessarily have
many design attributes, but our accessible model may consid-
erably narrow the search of parameter space needed to reach
a goal.

divided by the area enclosed by the outer perimeter of the network, is
shown vs. number of hierarchical levels for stiffness values of 0.02, 0.03, and
0.04, in units of stretching modulus over small-scale bond length. Networks
were chosen to have the same bond portion on all three levels. In each
case, increasing hierarchy leads to markedly lower density of small-scale
bonds, attesting to the ability of hierarchy to confer both robustness and
efficiency.
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Materials and Methods
Network Creation. First, a large-scale lattice is created and diluted. Dilution
begins with the shuffling of all bonds, after which a random minimum span-
ning tree is created using Kruskal’s algorithm. Bonds are then drawn at
random from those bonds not used to create the spanning tree and added
to the network until the desired bond portion is reached. Next, a small-
scale lattice is overlaid such that the large-scale bond length is an integer
multiple of the small-scale bond length, and the position of each large-scale
node coincides with the position of a small-scale node. Each small-scale bond
lying within a large-scale bond is retained, after which small-scale bonds are
diluted to the desired bond portion. Small-scale bond dilution is carried out
in such a way that a system-spanning contact network remains, no large-
scale bond is severed, and all adjacent large-scale bonds remain connected.
In each successive iteration, a smaller scale may then be introduced, with
the previously smallest scale taking the role of the large scale. This process
is described schematically in Fig. 1.

Finding the Critical Bond Portions. Critical bond portions for a network with
N levels are computed from simulation data for each level by choosing all
points in bond portion space for which the network is fully connected on
the other N− 1 levels, and the stiffness is nonzero. For each level, we then
fit a plot of stiffness vs. the bond portion of interest to an equation of the
form Eq. 1. For three-level networks, data for stiffness vs. bond portion for
three-level networks were fitted to a line of the form

K(p) = a · p + k0 [12]

and the x intercept of this line was taken to be the critical bond portion. For
more details, please see SI Appendix.
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