Skip to main content
. 2019 Jan 18;5:2. doi: 10.1038/s41537-018-0070-8

Table 1.

List of single-site studies that provided machine learning model for predicting schizophrenia using resting-state brain patterns

Study Year Total: Size of classes Accuracy
Shen et al.83 2010 52: 32 SCZ, 20 HC 86.50%
Fan et al.84 2011 62: 31 SCZ, 31 HC 87.1%a
Yu et al.85 2013 89: 32 SCZ, 38 HC (+19 MDD) 80.9%
Anderson and Cohen86 2013 146: 74 SCZ, 72 HC (COBRE dataset) 65%
Arbabshirani et al.87 2013 56: 28 SCZ, 28 HC 96%a
Yu et al.88 2013 71: 24 SCZ, 25 healthy siblings of SCZ, 22 HC 62%
Guo et al.89 2014 131: 69 SCZ, 62 HC 80%
Brodersen et al.90 2014 83: 41 SCZ, 42 HC 78%a
Anticevic et al.91 2014 180: 90 SCZ, 90 HC 73.9%
Watanabe et al.92 2014 123: 54 SCZ, 67 HC 73.50%
Chyzhyk et al.93 2015 54: 26 SCZ with history of AH, 14 SCZ without a history of AH, 28 HC 97.1%a
Cheng et al.94 2015 48: 19 SCZ, 29 HC 79%
Peters et al.95 2016 36: 18 SCZ, 18 HC 91%a
Mikolas et al.96 2016 126: 63 SCZ with FE SCZ, 63 HC 73%
Cabral et al.34 2016 132: 66 SCZ, 66 HC (COBRE dataset) 70.5%
Yang et al.97 2016 86: 40 SCZ, 46 HC 77.91%
Iwabuchi and Palaniyappan98 2017 133: 62 SCZ, 71 HC 78.04%a
Lottman et al.99 2017 69: 34 unmedicated (17 drug-naive) SCZ + follow-up post treatment, 35 HC 83.8%a
Guo et al.100 2017 68: 28 FE drug-naive SCZ, 28 family-based controls, 40 HC 92.86%a

SCZ Schizophrenia, HC Healthy controls, AH Auditory hallucinations, FE First episode, MDD Major depression

aAccuracy of best model among several reported models