Skip to main content
. 2019 Jan 18;5:2. doi: 10.1038/s41537-018-0070-8

Table 2.

Model performance (in percentage) and elements of confusion matrix of the various stacked learners in EMPaSchiz model: average (standard errors) − 5 × 10-fold CV

Accuracy Precision Sensitivity Specificity True positive True negative False positive False negative
Stacked-multi 86.9 (1.1) 91.9 (1.4) 79.8 (1.8) 93.1 (1.2) 65.0 (1.4) 86.8 (1.2) 6.2 (1.1) 16.0 (1.4)
Stacked-ALFF 76.4 (1.4) 76.3 (1.8) 73.9 (2.2) 78.7 (1.9) 59.8 (1.7) 73.0 (1.7) 20.0 (1.9) 21.2 (1.8)
Stacked-ReHo 74.1 (1.6) 73.4 (2.0) 74.6 (2.0) 73.6 (2.5) 60.4 (1.6) 68.2 (2.3) 24.8 (2.5) 20.6 (1.6)
Stacked-fALFF 74.5 (1.5) 73.8 (1.7) 72.2 (1.8) 76.6 (1.9) 58.6 (1.6) 72.0 (1.7) 21.0 (1.7) 22.4 (1.7)
Stacked-FC-correlation 82.4 (1.3) 83.9 (1.9) 79.7 (1.8) 84.7 (2.0) 64.6 (1.5) 78.8 (2.0) 14.2 (1.9) 16.4 (1.4)
Stacked-FC-partial correlation 78.5 (1.4) 93.7 (1.5) 58.2 (2.8) 96.2 (0.9) 46.8 (2.4) 89.8 (1.0) 3.2 (0.8) 34.2 (2.3)
Stacked-FC-precision 83.7 (1.2) 90.2 (1.6) 73.8 (2.0) 92.3 (1.3) 60.0 (1.9) 86.8 (1.3) 6.2 (1.2) 21.0 (1.8)
Baselinea 51.2 (0.3) 47.0 (0.5) 40.7 (0.6) 60.2 (0.5) 33.0 (0.4) 56.0 (0.5) 37.0 (0.5) 48.0 (0.5)

aBaseline results are based on permutation test over the randomly shuffled labels (based on 100 repetitions of entire ‘learning with subsequent 10-fold CV evaluations’)