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Abstract: The present study illustrates the design, fabrication, and evaluation of a novel multifocal
point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound
application. The fabricated MFP surface was press-focused using a computer numerical control
(CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has
five spherical surfaces with equal area and connected continuously to have the same energy level at
focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance
between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm.
The designed MFP transducer had a center frequency of 50 MHz and a −6 dB bandwidth of 68%.
The wire phantom test was conducted to study and demonstrate the advantages of this novel design.
The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in
the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal
point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper
imaging depth applications.

Keywords: ultrasonic transducer; multifocal point transducer; high-frequency applications;
high-frequency ultrasound transducer; PVDF focused transducer

1. Introduction

Recently, high-frequency ultrasound transducers have been widely used in various biomedical
applications including intravascular, skin, and eye imaging on animals [1–3]. A recent study developed
an intravascular photoacoustic imaging method using the ultrasonic transducer and multimode fiber
to identify atherosclerotic plaques through spatial and functional information of transportation of
light in tissues [4]. It is a well-known phenomenon that for developing a high-quality deep scanning
transducer, the length of the depth of field (DOF) or focal zone should be deeper. Therefore, several
research teams have concentrated on developing focused transducers with the aim to create more
effective devices [1–3,5–15].
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The parameters of the focused transducers including frequency, focal length, aperture, spatial
resolution and the DOF or focal zone should be appropriately designed to achieve the best image
quality. DOF or focal zone is defined as the area around the focal point within the transmitted
sound beam where the beam diameter narrow to its minimum size. To obtain an ultrasound image,
several well-established scanning methodologies such as B-scan and C-scan modes have already been
discussed by several researchers [1,5,6,8,16]. The following B-scan and C-scan modes are associated
with the movement of the transducer across the target using two motors in the X-Y plane. To achieve
the best image quality, the target must be placed in the DOF of the transducer. However, this is
challenging in B-scan mode for larger objects with a smaller DOF of the transducer. Additionally,
short DOF causes the reducing the signal-to-noise ratio (SNR) in the far-field [17]. Several researchers
have proposed numerous methods to increase the DOF of transducers [5,9,17–19]. Jeffrey et al. [5]
have proposed a complex imaging procedure based on a PVDF annular array transducer. Although
the annular array transducer has been reported to have an ideal geometry for increasing the DOF up
to 6 mm, it requires a complicated fabrication process and a more sophisticated system because of the
small width of elements. Moreover, to achieve the final image from the scanning of the annular array
transducer, data is acquired from individual transmit/receive annuli pairs. Thereafter, the image was
reconstructed using the algorithms of digital synthetic aperture.

Another scanning method, D-scan or “Depth-scan” has been developed in recent decades to obtain
images at different depths of tissues or targets [18]. Based on the mechanical movement, transducers
are moved in the depth direction and the short B-scan is performed several times. The challenging task
in this scanning procedure is “B/D-scan” which effectively compose all scans to obtain a high-quality
image. Using a fixed focused transducer, its image quality is significantly deteriorated in cases wherein
the target is located outside the focus area. To solve this problem, the adaptive synthetic aperture
focusing technique (SAFT) was introduced to extend the DOF and significantly improve the resolution
of the image quality [20]. However, this method achieved a low SNR.

To overcome the above issues, the researchers developed a novel MFP transducer for extending
DOF without applying array transducers or performing D-scan. In contrast to conventional transducers,
the proposed MFP transducer could generate multifocal points (MFPs) in the axial direction and receive
the excitation pulse simultaneously. The MFP transducer could provide multi-focused depths to
improve DOF. The authors have developed a 50-MHz MFP transducer with five focal points. The outer
aperture diameter of the fabricated transducer is 8.84 mm, with 1 mm distance between two focal
points. The fabrication method is briefly described in Section 2.3.

In the present study, the design, fabrication, and evaluation of a PVDF-based MFP
broadband-focusing transducer is reported. Two types of transducers, such as a single focal point
(SFP) and MFP, were fabricated and tested using the pulse-echo response method. A wire phantom
experiment was conducted to demonstrate the effectiveness of the MFP transducer as compared with
the SFP transducer. It is worth noticing that the DOF of five-focal point transducer in this present study
is 4.3 mm, for which only a simple method for image scanning is required. In the previous study [19],
the DOF of eight-element kerfless annular array transducer was 4.5 mm. To obtain the image of
four-wire of phantom; however, the system performed eight scans (eight channels) to record all data.
The method presented in this study is simpler to extend the DOF for deeper image applications.

2. Design and Fabrication of Multifocal Point Transducers

2.1. Materials

As the key component of ultrasonic transducer, certain piezoelectric materials including lead
zirconate titanate (PZT) [21–24], lead niobiumzine zirconate titanate (PMN-PT) crystal [1,21,22,25–27],
lithium niobate (LiNbO3) single crystal [2,3,13,28,29], zinc oxide (ZnO) [12,28], and polyvinylidene
fluoride (PVDF) film [3,5,6,9,30] have been extensively investigated and reported. The interesting
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properties of these piezoelectric materials including electromechanical coupling coefficient, acoustic
impedance, dielectric constants, piezoelectric coefficients, and sound velocity have also been reported.

In the present work, PVDF (polyvinylidene fluoride) was selected for the fabrication of MFP
transducer because of its advanced multi-material properties. Although the acoustic impedance
(~4 MRayl) of PVDF film is lower than piezoceramics and crystal materials, PVDF exhibits excellent
mechanical flexibility that helps this piezopolymer to be easily tailored and pressed into a curved
shape. Typical properties of PVDF are listed in Table 1. Moreover, because PVDF film has a relatively
high insertion loss, their acoustic impedance is more easily matched to human tissues (~1.5 MRayl)
compared with that of PZT and LiNbO3 materials. Additionally, PVDF film reveals a low dielectric
constant that is suitable for electrical impedance matching [29]. PVDF has the widest bandwidth
among the above-mentioned materials that can be used to generate high-resolution ultrasonic images.

Table 1. Typical properties of PVDF 1.

Property Value

Electromechanical coupling coefficient (Kt) 0.12–0.15

Molecular formula (CH2CF2)

Relative clamped dielectric constant (εS/ε0) 11

Mechanical quality factor (Qm) ~20

Density (kg/m3) 1800

Longitudinal wave velocity (m/s) 2110

Acoustic impedance (MRayl) 3.9

Curie temperature (◦C) 100

Melting temperature (◦C) 160–180
1 Data reported by Piezo film sensor, AMP Inc, Valley Forge, PA.

2.2. Transducer Design

To extend the focal zone of the focused transducer, it is essential to determine the parameters
that have effects over the focal zone. These parameters for PVDF transducer were designed using
a Krimholtz–Leedom–Matthaei (KLM) model-based simulator. The profile of the developed MFP
transducer could be determined from the KLM simulation.

The parameters of the focused transducer are listed below:

f# =
R
D

(1)

N =
D2 fc

4c
(2)

SF =
R
N

(3)

FZ = S2
F

2N
1 + 0.5SF

(4)

δL = 1.02c
f#

fc
(5)

δA =
SPL

2
(6)

where, R is the focal length, D denotes the aperture diameter, f# stands for f-number, c is the speed of
sound in load medium, fc is the center frequency, δL denotes the lateral resolution, δA is axial resolution,
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SPL explains the spatial pulse length, N represents the near-field area, SF is the normalized focal length,
and FZ denotes the focal zone.

2.2.1. Pulse-Echo and Frequency Spectra Simulation

Figure 1 shows the BioSono KLM simulation results. The center frequency and −6 dB bandwidth
of the SFP transducer were designed as proposed and were 50 MHz and 66%, respectively, and those
of the MFP transducer were 50 MHz and 68%.
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Figure 1. The simulated pulse-echo response (solid line) and their frequency spectra (dashed line) for
50 MHz PVDF of (a) single-focal point transducer and (b) the second part of multifocal point transducer.
The simulated pulse-echo response and frequency spectra of the first part were similar to the signals of
single-focal point transducer, whereas the other parts were similar to the second part.

From these Equations (1)–(4), for the SFP transducer at the center frequency of 50 MHz, the focal
length of 12.7 mm, the aperture diameter of 9 mm, and propagation speed of water is 1540 m/s,
the focal zone was calculated as 0.48 mm, and the lateral resolution was 44 µm. To effectively extend
this focal zone, the authors designed the MFP transducers that have multiple focal zones. These focal
zones were slightly overlapped with each other to generate continuous focus depths.

2.2.2. Design of the Multifocal Point Transducer

To obtain focused images at varying depths, the main challenges are to develop the MFP
transducer using five focal points. These focal points were distributed in the axial direction with an
interval of 1 mm (b = 1 mm). The front face of the MFP transducer was divided into five parts with an
equal area. Each part comprised a spherical surface with a radius “Ri” and a height “hi”, respectively.
Figure 2 shows the structure of the multi-spherical profile.

The surface parameters of the MFP transducer are defined as follows:

- The radius of the spheres (focal length): R1 = A1N0 = A1K1, R2 = A2K2 = A2K1, R3 = A3K3 =
A3K2, R4 = A4K4 = A4K3, R5 = A5K5 = A5K4

- The aperture diameter of each part: Di = 2NiKi = 2Ri sinαi, where, i = 1 to 5.
- The height of the spherical part: hi = NiNi−1, where, i = 1 to 5.
- The distance between two closed focal points: AiAi+1 = b, where, i = 1 to 4.

From Figure 2, the specifications are designed as: b = 1 mm, R1 = 10 mm, R2 = 10.98 mm,
R3 = 11.95 mm, R4 = 12.91 mm, R5 = 13.86 mm, D1 = 4 mm, D2 = 5.62 mm, D3 = 6.88 mm, D4 = 7.92 mm,
D5 = 8.84 mm, h1 = 0.2 mm, h2 = 0.18 mm, h3 = 0.16 mm, h4 = 0.15 mm, h5 = 0.14 mm, α1 = 11.53

◦
, α2 =

14.86
◦
, α3 = 16.73

◦
, α4 = 17.87

◦
, α5 = 18.59

◦
.
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Figure 2. (a) The front face of MFP transducer is constructed from five equal area parts of five different
spheres. (b) The profile of MFP transducer surface.

The length of the focal zone of MFP transducer can be extended by connecting several focal zones.
These focal zones were generated using several different spheres and their center points (Ai, I = 1 to 5)
are located on a straight line. Each spherical shape contributes to one focal point as shown in Figure 3
a. The transducer can be moved along with the X-axis to acquire the data. When a point P (xi, zi) is
positioned in the acoustic field of the sphere “Si” (“Si” is called part “i”, i = 1 to 5), the detected signal
should contribute to the focal point Ai. The focal length of part “i” is “Ri “. Each part of the multifocal
sphere can detect the signal in each focal zone, which is described in Figure 3b. For example, the part
“i” can detect the signal in the focal zone “Fzi”. The object located around the point Ai in the focal
zone “Fzi” will acquire the best image. The target located outside of the focal zone will obtain the
blurry image.
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Figure 3. (a) Distribution of multifocal point, (b) distribution of focal zones. The point P(xi, zi) is
located in the focal zone will get the good image. The xi represents the distance in the X-axis, zi is the
depth of point P in the Z-axis.

The sphere 1 (part 1) was unable to capture a good image at point P with zi > R1. As a result,
other spheres were designed with different focal depths to acquire a good image for long depth
objects. The total length of the focal zone (Fz) for this transducer is the sum of all individual focal zone



Sensors 2019, 19, 609 6 of 13

components (Fzi). To avoid the gap between the adjacent focal zones, each focal zone and distance
between two focal points were carefully calculated.

The parameters of each part in Figure 3b were calculated using Equations (1)–(4) (Table 2).
Therefore, the total DOFs for MFP transducer is the sum of the focal zones (4.3 mm).

Table 2. The estimated parameters of the MFP transducer using five focal points (distance between
two focal points is b = 1 mm; center frequency of each part is fc = 50 MHz).

Parameter 1st Part 2nd Part 3rd Part 4th Part 5th Part

Focal depth (mm) 10 10.98 11.95 12.91 13.86

Aperture diameter (mm) 4 5.62 6.88 7.92 8.84

f#i 2.5 1.94 1.73 1.62 1.56

Fzi (mm) 1.48 0.91 0.73 0.64 0.59

Using Solidworks software (Version. 2016, Dassault Systemes, USA) a press-fit system (Figure 4a)
and a multi-spherical pattern (Figure 4d) were designed to form a multi-spherical shape for the
active element. CNC machine was used to fabricate the press-fit components (Figure 4b) and the
multi-spherical pattern (Figure 4e).
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Figure 4. (a) Design of the press-fit system for creating the front face of the multi-focal point (MFP)
transducer. (b) Photograph of the press-fit system. (c) Components of the press-fit system: Base
plate/rod/screw (BP/R/S), Teflon/PVDF film/copper-clad polyimide (T/PVDF/CCP), pressure
plate/screw (PP/S), spring (SP), multi-spherical pattern (MSP), slide plate/rod (SP/R), sensor of
force (S), top plate/screw (TP/S), force screw (FS). (d) Design of multi-spherical pattern for creating
transducer using five focal points. (e) Photograph of multi-spherical pattern.

2.3. Transducer Fabrication

To demonstrate the strong features of the MFP transducer, two types of 9 µm PVDF focused
transducers (i.e., MFP and SFP transducers) were developed and fabricated using the press-focused
method. The fabrication method for the SFP transducer in the present work is similar to that described
previously [6]. A steel ball bearing was used to form 12.7 mm of radius for a single-spherical shape of
the active element.

The fabrication process for the MFP transducer was divided into two stages. In the first stage,
a multi-spherical shape for the active element was formed using the press-fit system (Figure 4b).
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The copper-clad polyimide (CCP; Hanwha Corp., FCCL, Seoul, Korea), PVDF film (Piezotech
S.A.S, Pierre Benite, France) and Teflon films (the size of 4 ×4 cm) were prepared as described
previously [6]. The PVDF and CCP were bonded together using a single drop of epoxy (EPO TEK 301,
Epoxy Technology, Billerica, MA, USA). The Teflon film was placed on the PVDF surface to protect the
surface while pressing the spherical pattern in the press-fit system to avoid tearing the membranes.
Three films were placed on the base plate surface at the center hole. The base plate was attached with
four rods to form the standard assembly. The pressure plate was placed on these films through the
four rods and clamped with the base plate using four screws. The slide-plate, which had been attached
to the multi-spherical pattern (Figure 4e), was connected to these four rods to ensure the concentricity
of the holes from these plates. The springs were used to reduce the vibration during the pressing
focus. The tension of the active element surface was managed to optimize the force value from the
force sensor. The top plate was fixed to the below plate using screws. The display unit is connected
to both force sensor and the power supply. To form the concave shapes of the transducer, a hexagon
bar wrench was used to rotate the forcing screw which makes a uniform pressure on force sensor and
multi-spherical pattern.

Following the pressing of these films, the press-fit system was inverted and the Teflon tube was
inserted into the center hole of the base plate. To maintain the spherical shape of the PVDF membrane
after curing, the nonconductive epoxy was filled into the Teflon tube. The press-fit system was heated
in an oven at 65 ◦C for 2 h. Thereafter, the press-fit system was disassembled to take the acoustic stack
that included an epoxy plug with the CCP and PVDF films attached to it. Finally, the Teflon film was
removed out from the acoustic stack.

The second stage involved the fabrication of the acoustic stack with transducer housing. The PVDF
and CCP were trimmed as close as possible to the epoxy plug. A small line of CCP was kept and
soldered using an electrical wire, which was then connected to the center pin of the UHF connector.
The acoustic stack was placed concentrically with transducer housing. A piece of PVDF was connected
to housing using silver epoxy (H20 epoxy, Epoxy Technology, Inc., USA) to form a ground path.
To maintain the long-term electrical and mechanical stability of the transducer, a nonconductive
epoxy was filled into the open space inside housing. Following the curing of the epoxy, a negative
electrode of the active elements was connected to the UHF connector through the housing transducer.
An electrical impedance matching was placed inside the housing, followed by a nonconductive epoxy
filling. A quarter-wavelength thickness of parylene was sputtered on the front face of the transducer
to protect the surface and function of the matching layer, which ensured the transfer of acoustic energy
between the piezoelectric and the load medium. Figure 5a shows the cross-sectional view of the MFP
transducer with the components used for fabrication. The digital photograph of the completed MFP
transducer is shown in Figure 5b.
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Figure 5. (a) A cross-sectional view of MFP transducer. (b) Photograph of the fabricated MFP transducer
for long depth ultrasound images.
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3. Performance Evaluation and Discussion

3.1. Experimental Setup

Figure 6 shows the schematic representation of the experimental procedure. The transducer
was connected to a computer-controlled remote (DPR 500, JSR Ultrasonics, Pittsford, NY, USA)
pulser/receiver and excited using an electrical impulse of 200 Hz repetition rate at 50 Ω damping
and 3 µJ energy per pulse. To measure the pulse-echo and frequency spectra of transducers, a glass
plate was placed at the focal point as a target. The reflected waveform was received using a 500 MHz
bandwidth receiver with a high pass filter of 5 MHz and a low pass filter of 500 MHz. The obtained
raw data was further digitized at a high-speed sampling frequency of 500 Megasample/s. The echoes
were digitized by an 8-bit digitizer (NI PCI-5153EX, National Instruments, Austin, TX, USA).
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Figure 6. The schematic diagram of the experiment for the wire phantom using MFP transducer.

The movement of the transducer was controlled using stepper motor (UE63PP, Newport
Corporation., CA, USA) and driven using Universal motion controller/driver (ESP300, Newport
Corporation., CA, USA). A LabView (LabView 2014, National Instrument, Austin, TX, USA) program
was developed to control all the process mentioned above. A computer-controlled scanning stage was
moved along with the X-axis to obtain B-scan image and in the X-Y plane to obtain C-scan image.

Seven phantom wires (25 µm) were positioned diagonally with an equal distance of 1 mm in
the axial direction and 1 mm in the lateral direction (Figure 7a). The wire was placed at the focal
point of the transducer in degassed water and scanned in a lateral direction. The echo signal that
reflected from the wire was used to build the beam profile to establish the size of the beam in the
lateral direction. Data were imported to MATLAB software (Version. 2013a, Mathworks, Natick, MA,
USA) for image processing.
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Figure 7. (a) The schematic of wire phantom test. (b) The photograph of wire phantom.

3.2. Results and Discussions

Pulse-echo experiments were employed in a water tank using a glass plate placed at the acoustic
focus. The pulse-echo response and the frequency spectrum of transducers are shown in Figure 8.
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Figure 8. Measured time domain (top row), pulse-echo response (bottom row) of (a) single-focal point
transducer T1, (b) three-focal points MFP transducer T2, and (c) five-focal points MFP transducer T3.

Table 3 summarizes the comparison of simulated and measured characteristics of three fabricated
transducers. Transducer T1 is the SFP transducer, T2-Pi is part “i” (i = 1 to 3) of the MFP transducer T2,
and T3-Pj are reported as part “j” (j = 1 to 5) of the MFP transducer T3. In general, the experimental
measurements were consistent with the simulation results. The KLM model predicted the center
frequency a slightly different to the observed values. For the bandwidth, the majority of experimental
values are somewhat higher than expected from the simulation. Specifically, the KLM model expected
68% bandwidth for the MPF transducer T3 while detected bandwidths were 66–70%, which are not
much different from simulation. The T3-P5, which is the part 5 (ring 5) of the transducer T3, has the
largest aperture size (8.84 mm) and the widest bandwidth (70%) as compared to the others.
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Table 3. Comparison between simulated and measured results.

Transducer
Simulated (KLM) Measured results

fc (MHz) BW (%) fc (MHz) BW (%)

T1 (SFP) 50 66 51 68

T2-P1 (MFP)

50 68

50 68

T2-P2 (MFP) 49 69

T2-P3 (MFP) 49 72

T3-P1 (MFP)

50 68

50 66

T3-P2 (MFP) 49 67

T3-P3 (MFP) 47 68

T3-P4 (MFP) 50 68

T3-P5 (MFP) 48 70

In terms of the measured center frequency (fc), the SFP transducer T1 yielded the highest value,
and those of two MFP transducers T2 and T3 were slightly lower than the simulation. For the bandwidth
measured at −6 dB, transducer T3 exhibited a narrower bandwidth compared to the simulation,
whereas the bandwidth of the two transducers T1 and T2 were wider than the simulations. Although
the same type of 9 µm PVDF film is used to generate all transducers in this study, the measurement
of center frequencies and the bandwidths were different from the models due to their aperture
sizes changing.

The images of the wire phantom were acquired using both SFP and MFP transducers. Their DOFs
were assessed and compared. B-scan and C-scan images of the SFP transducer were employed as a
reference to evaluate the performance of the MFP transducer.

Figure 9 shows the images of the B-mode scans using three transducers T1, T2, and T3. The wires,
which were placed in the focal zone of the transducers, have acquired the bright points in the image;
otherwise, they displayed blurred points in images. We observed that only the MFP transducer T3

exhibited seven bright points, indicating a long focal zone for deeper images.
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Figure 9. B-scan images of wire phantom for (a) single-focal point transducer T1, (b) three-focal points
MFP transducer T2, and (c) five-focal points MFP transducer T3.

Figure 10a shows the C-scan image using the SFP transducer T1. Because the focal zone of T1

was 0.48 mm, and the distance between two wires was 1 mm, the acquired image displayed only the
wire at the focal point. Figure 10b revealed the image obtained from the MFP transducer T2 using
three focal points. The image displayed only three wires on the middle of the wire phantom model.
Because of the smaller focal zone of about 3 mm (T2), the other wires were out of focus and could not
be captured clearly. On the contrary, the MFP transducer T3 using five focal points created a clear
image of five wires at the center (Figure 10c). It is worth noticing that distance from the second wire to
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the sixth wire was 4 mm and the focal zone of T3 was 4.3 mm. Therefore, the five center wires placed
in the focal zone were imaged brighter than the two wires outside the focal zone.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 13 

 

In terms of the measured center frequency (fc), the SFP transducer T1 yielded the highest value, 
and those of two MFP transducers T2 and T3 were slightly lower than the simulation. For the 
bandwidth measured at −6 dB, transducer T3 exhibited a narrower bandwidth compared to the 
simulation, whereas the bandwidth of the two transducers T1 and T2 were wider than the simulations. 
Although the same type of 9 µm PVDF film is used to generate all transducers in this study, the 
measurement of center frequencies and the bandwidths were different from the models due to their 
aperture sizes changing.  

The images of the wire phantom were acquired using both SFP and MFP transducers. Their 
DOFs were assessed and compared. B-scan and C-scan images of the SFP transducer were employed 
as a reference to evaluate the performance of the MFP transducer.  

 

Figure 9. B-scan images of wire phantom for (a) single-focal point transducer T1, (b) three-focal points 
MFP transducer T2, and (c) five-focal points MFP transducer T3. 

Figure 9 shows the images of the B-mode scans using three transducers T1, T2, and T3. The wires, 
which were placed in the focal zone of the transducers, have acquired the bright points in the image; 
otherwise, they displayed blurred points in images. We observed that only the MFP transducer T3 
exhibited seven bright points, indicating a long focal zone for deeper images.  

Figure 10a shows the C-scan image using the SFP transducer T1. Because the focal zone of T1 was 
0.48 mm, and the distance between two wires was 1 mm, the acquired image displayed only the wire 
at the focal point. Figure 10b revealed the image obtained from the MFP transducer T2 using three 
focal points. The image displayed only three wires on the middle of the wire phantom model. Because 
of the smaller focal zone of about 3 mm (T2), the other wires were out of focus and could not be 
captured clearly. On the contrary, the MFP transducer T3 using five focal points created a clear image 
of five wires at the center (Figure 10c). It is worth noticing that distance from the second wire to the 
sixth wire was 4 mm and the focal zone of T3 was 4.3 mm. Therefore, the five center wires placed in 
the focal zone were imaged brighter than the two wires outside the focal zone. 

 
Figure 10. C-scan images of the wire phantom of (a) single-focal point transducer T1, (b) multifocal 
point transducer with three focal points T2, and (c) multifocal point transducer with five focal points 
T3. 

(b) 

0 1 2 3 4 5 6
Lateral  [mm]

8

9

10

11

12

13

0

1

2

Ax
ia

l [
m

m
]

4

3

14

(c) 

0 1 2 3 4 5 6
Lateral  [mm]

9

10

11

12

13

14

0

1

2

3

4

5

6

Ax
ia

l [
m

m
]

15

(a) 

0 1 2 3 4 5 6
Lateral  [mm]

7

8

9

10

11

12

0

1

2

Ax
ia

l [
m

m
]

4

3

13

(a) 

(b) 

(c) 

1 mm 
Figure 10. C-scan images of the wire phantom of (a) single-focal point transducer T1, (b) multifocal
point transducer with three focal points T2, and (c) multifocal point transducer with five focal points T3.

As shown in Figure 11, the resolution of the MFP transducer T3 using five focal points were
measured from the B-scan mode at focus depths of the transducer.
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Figure 11. The measured resolution of the MFP transducer T3 with five focal points. (a) Lateral
brightness profile. (b) Axial brightness profile.

The wire target was used to calculate the pulse intensity integral. Lateral resolutions of five focal
points were determined by the full width at half maximum (FWHM, −6 dB) of the corresponding
cross-sectional profile and wire diameter. These lateral resolutions were measured to be 156 µm,
108 µm, 113 µm, 135 µm, and 130 µm respectively for these points. The axial resolutions at five focal
points detected by the full width at half maximum (FWHM, −6 dB) were 66 µm, 61 µm, 61 µm, 65 µm,
and 66 µm respectively. The fabrication skill of the MFP transducer also affected the transducer quality,
such as frequency, noise, resolution, and amplitude of the pulse-echo response.
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4. Conclusions

This study reported a novel design, fabrication, and characterization of MFP transducers that
significantly increased the focal zone (4.3 mm) compared with that generated by a SFP transducer
(0.48 mm). The clear image of five phantom wires has demonstrated the extended focal zone of the
proposed MFP transducer. It also shows the capability of extending the focal zone for a larger size of
the target being imaged without the necessity of applying depth scans or any complex SAFTs. It is
noted that the eight-element kerfless annular array transducer in [19], which has a DOF of 4.5 mm with
eight-element (eight-ring), requires a complex scanning method to obtain the final image. Meanwhile,
the five-focal (five-ring) transducer in this present study, which has a DOF of 4.3 mm, requires only a
simple method to scan the image. Compared with the SFP transducer, the developed MFP transducer
yielded a consistent image quality for a much larger excitation depth. The method developed in
the present report can be promisingly used to expand a larger focal zone by increasing the number
of focal points of a transducer. Specifically, the proposed five-focal point transducer, is capable of
simultaneously generating five focal zones in the axial direction. Therefore, MFP transducers have a
great potential for imaging in long DOF applications.
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