Skip to main content
. 2019 Jan 25;19(3):501. doi: 10.3390/s19030501
Algorithm 2 Semi-Supervised Active Learning
Input: initial train set L, unlabelled validation set U, independent test set T
Output: predicted labels for the test set
  • 1:

    Θclf.fit(L)▹ Learns model on initial training set

  • 2:

    while SC not met do

  • 3:

        selection by Q, of most informative sample: x*

  • 4:

        ask Oracle for x*’s label

  • 5:

        LL{x*}▹ Augments the model’s training set with x*

  • 6:

        UU{x*}▹ Removes x* from unlabelled samples

  • 7:

        Θclf.fit(L)▹ Updates model

  • 8:

        automatically label confident samples C in U

  • 9:

        LL{C}▹ Augments the model’s training set with C

  • 10:

        UU{C}▹ Removes C from unlabelled samples

  • 11:

        Θclf.fit(L)▹ Updates model

  • 12:

        return clf.predict(T)▹ Returns predicted labels for the test set

  • 13:

    end while