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65.1 Introduction

Retinitis pigmentosa (RP) is a progressive rod–cone dystrophy that is characterized by night 

blindness, loss of peripheral vision, which can eventually lead to complete loss of vision 

(Hartong et al. 2006). RP primarily affects the rod photoreceptors and retinal pigment 

epithelium (RPE), and is the most common inherited retinal dystrophy, affecting as many as 

1:1,000–1:3,500 people worldwide (Bunker et al. 1984; Grondahl 1987; Haim et al. 1992; 

Xu et al. 2006).

Displaying all modes of Mendelian inheritance, RP is genetically heterogeneous. To date 46 

loci have been identified for nonsyndromic RP, leading to the identification of 36 causative 

genes (RetNet 2009). Genes implicated in RP encode components of the phototransduction 

cascade, retinal transcription factors, photoreceptor structural proteins, cilia proteins, and 

ubiquitously expressed components of the spliceosome. Currently, genes encoding five 

spliceosomal components have been identified in autosomal dominant RP (adRP). These 

include the pre-mRNA processing factors 3, 8, and 31 (PRPF3, 8, and 31), RP9, and 

SNRNP200 (Maita et al. 2005; McKie et al. 2001; Vithana et al. 2001; Zhao et al. 2009).

Mutations in splicing factors are of particular interest because these proteins are 

ubiquitously expressed and required for proper splicing of pre-mRNA in all cell types, yet 

mutations in PRPF3, 8, and 31, RP9, and SNRNP200 are only known to cause retinal 

disease. The spliceosome is a dynamic complex consisting of five small nucleolar 
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ribonucleoproteins (snRNPs); U1, U2, U4/U6, and U5 (Grainger and Beggs 2005). The U1 

and U2 snRNPs are the first to bind a pre-mRNA by recognizing the 5′ splice site and 

branch site, respectively. This interaction along with the binding of auxiliary splicing 

proteins defines the intron/exon boundaries and recruits the U4/U6-U5 tri-snRNP. Following 

a series of protein and RNA rearrangements, the U4/U6-U5 tri-snRNP becomes the catalytic 

component that drives splicing (Beggs et al. 1995; Farkas et al. 2010). The five splicing 

factors implicated in adRP are all components of the U4/U6-U5 tri-snRNP.

65.2 The Retinal Pigment Epithelium Is the Primary Tissue Affected by 

Mutations in the Pre-mRNA Processing Factors 3, 8, and 31

An intriguing aspect of question about RP caused by mutations in spliceosomal components 

is how the identified mutations result in a tissue-specific disease. Prior to the generation of 

animal models with single codon mutations in the Prpf3 and 8 genes, mimicking the most 

common mutations found in patients with this disease and Prpf31-knockout animals that 

mimic the null alleles found in most PRPF31 patients, it was unclear which retinal cell type 

was adversely affected (Graziotto et al. 2011). Ultrastructural analyses of the retinas of the 

gene-targeted mice indicated above showed that the RPE degenerated prior to the 

photoreceptors. The RPE of wild-type animals appears normal with long apical microvilli 

interdigitating the photoreceptor outer segments and visible basal infoldings. The RPE of 

mutant animals, however, shows a loss of basal infoldings, extensive vacuolization, and 

amorphous deposits between the RPE and Bruch’s membrane (Fig. 65.1).

Interestingly, the mutations that lead to the RNA splicing factor forms of RP are not unlike 

disease-causing mutations in other spliceosomal components with regard to the tissue 

specificity of pathogenesis. A better studied spliceosome-associated disease is spinal 

muscular atrophy (SMA), which is an autosomal recessive neuro-degenerative disorder 

characterized by degeneration of α-motor neurons in the spinal cord leading to muscular 

atrophy, and ultimately paralysis (Zhang et al. 2008). The SMA disease gene produces a 

ubiquitously expressed SMN1 (survival of motor neurons) protein that is necessary for the 

biogenesis and assembly of pre-mRNA processing factors, and other ribonucleoprotein 

complexes, involved in splicing. Mutations in the SMN1 gene lead to this disease resulting 

in an altered snRNP stoichiometry affecting only motor neurons. It is hypothesized that the 

altered snRNP composition in turn results in generation of aberrant mRNA transcripts which 

are responsible for disease (Zhang et al. 2008).

65.3 Identifying Aberrantly Spliced Transcripts Using Next-Generation 

Sequencing

Similar to mutations in the SMN1 gene, mutations in the pre-mRNA processing factors are 

believed to cause RP via production of aberrantly spliced transcripts.| Identification of these 

transcripts is a challenging task given the number of expressed genes and the complexity of 

the transcriptome with thousands of genes in the mouse, many of which can be alternatively 

spliced (Bult et al. 2008). Until recently it has been difficult to study splicing-associated 

diseases in great enough detail to be effective. Exon microar-rays have been useful, but have 
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many disadvantages such as limited probe sets that only cover annotated splice junction 

boundaries, high levels of background, and low sensitivity (Teng and Xiao 2009). The 

development of next-generation sequencing (NGS) technologies provided the ability to fully 

interrogate the transcriptome and has overcome many of the limitations of microarrays 

(Shendure 2008).

65.3.1 Next-Generation Sequencing Platforms

Multiple platforms exist for NGS-based transcriptome analyses (reviewed in more detail in 

Simon et al. 2009; Ansorge 2009). Similar to microarrays, NGS analyses provide 

quantitative expression data. However, NGS analyses also provide data for novel splicing 

events with greater sensitivity and less background (Shendure 2008). In many cases, the best 

platform to study splicing is a trade-off between the number of sequencing reads generated 

and the length of the sequence. Our lab has demonstrated that at least 100 million 108 bp 

paired-end reads are necessary for full coverage of the mouse neural retina transcriptome 

(Farkas et al. 2010). This is consistent with data from transcriptome analyses of other tissues 

and organisms (Blencowe et al. 2009).

65.3.2 An Overview of RNA-Seq

Although the protocols for the generation of cDNA libraries from total RNA are rapidly 

evolving, the principles underlying the process stay the same. High quality mRNA is 

isolated and fragmented to a user-defined length (currently 250–350 bp). The fragmented 

mRNA is then converted to double-stranded cDNA and common adapters are ligated to the 

ends of the cDNA (Wang et al. 2009). Following sequencing, the data is aligned to the 

genome or transcriptome and can be analyzed for gene expression, expression of individual 

exons, alternative/aberrant splicing, insertion/deletions, and polymorphisms.

65.3.3 Bioinformatic Analysis of RNA-Seq Data

The generation of NGS technology applications for RNA sequencing (RNA-seq) 

applications quickly outpaced the available algorithms for aligning and analyzing the 

resulting sequence data. Unlike genomic resequencing, RNA-seq requires the ability to align 

reads that can span multiple exons that can be tens of thousands of bases apart. One option 

to overcome this obstacle is to align reads to a transcriptome database. While this is a good 

method for quickly aligning millions of reads that cross annotated splice junctions, it is 

incapable of identifying reads that cross novel junctions. Identifying novel junctions in 

normal tissues is an important step toward identifying aberrant transcripts in disease tissues 

since the two types must be compared to differentiate normal from abnormal.

Algorithms designed to tackle the issues presented by RNA-seq data are continually being 

developed and adapted (Li and Homer 2010). Most are geared toward aligning data quickly 

and less compute-intensive. However, this often sacrifices sensitivity and leads to a loss of 

data. With the advent of Cloud Computing (McPherson 2009; Langmead et al. 2010), there 

is no longer a need for ultra-efficient algorithms that sacrifice data quality, but rather the 

ability to develop algorithms that maximize the number reads aligned in a manner that is 

more sensitive and accurate. We have developed the RNA-seq Ultimate Mapper (RUM) that 

is based on the alignment algorithms Bowtie to align ungapped reads to the genome and 
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transcriptome followed by a gapped alignment using BLAT (Blast-like Alignment Tool) 

(Langmead et al. 2009; Kent 2002; Farkas et al. 2010). Using Bowtie, millions of reads that 

map to both the genome and the annotated transcriptome can quickly be aligned. BLAT is a 

gapped aligner that is more compute-intensive and slower than Bowtie, but allows for the 

alignment of reads that span novel junctions. The combination of these two algorithms 

provides speed, accuracy, and the ability to identify previously unannotated transcripts.

65.4 RNA-Seq Analyses of RNA Splicing Factor Mutant Mice

Preliminary analyses of the neural retinas and RPE of wild-type and splicing factor mutant 

mice using RUM have revealed that there are thousands of novel/aberrant transcripts being 

produced in the mutant animals. Since all of the splicing factors are part of the U4/U6-U5 

tri-snRNP and they all interact within this complex, we hypothesized that a common splicing 

mechanism is deficient. Thus, it is logical to compare all data sets for a common set of 

aberrant transcripts. When this is performed on the preliminary RNA-seq data produced for 

the Prpf3, 8, and 31 mouse models, as few as 52 transcripts are in common among all three 

mutant mice. These results suggest that pathogenic splicing errors are not widespread in RP. 

Two likely outcomes from the generation of aberrant transcripts are production of truncated 

proteins or the absence of protein production due to nonsense-mediated decay of the 

aberrant transcript. Given these outcomes, we will test candidate aberrant transcripts for 

pathogenic effects in the RPE and neural retina using both cell culture and mouse models.

65.5 Future Experimental Approaches

Obvious limitations exist to studying human RNA splicing factor RP disease in gene-

targeted mouse models. For example, species-based differences in gene expression and 

alternative splicing may complicate identification of the cause for RNA splicing factor RP. 

However, it is not usually possible to obtain high quality ocular tissues from patients 

affected with RP. A potential solution to this problem is the use of retinal cells differentiated 

from patient-specific induced pluripotent stem (iPS) cells (Yu et al. 2007, 2009). The 

generation of iPS-derived RPE and retinal cells has recently been reported (Buchholz et al. 

2009; Carr et al. 2009). It is possible that iPS-derived retinal cells from patients with RNA 

splicing factor RP could provide a source of human cells for transcriptome analyses, 

although the suitability of these cells for such studies remains to be/will need to be evaluated 

(Buchholz et al. 2009; Carr et al. 2009; Ozsolak et al. 2010).

RNA-seq is a continuously evolving method for studying molecularly complex diseases such 

as the RNA splicing factor forms of RP. As the methodology and bioinformatic approaches 

continue to develop and expand, many questions regarding aberrant splicing and the affect 

on various tissues may be answered. Furthermore, the characterization of the transcriptomes 

in normal cells and tissues such as the retina and RPE will help answer other basic 

biological questions as well. For example, a more thorough annotation of these 

transcriptomes will aid research into other retinal diseases, as well as provide insight into 

splice site preference at a single tissue level.
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Fig. 65.1. 
Electron microscopy of representative retina and RPE from 2-year-old homozygous Prpf3-

T494M, Prpf8-H2309P, and heterozygous 1-year-old Prpf31 knockout mice. (a) 

Representative wild-type control image for all three mouse models. (b) Representative 

image for all three mouse models showing vacuoles in the RPE. In the Prpf3-T494M and 

Prpf8-H2309P mice, loss of basal infoldings and accumulation of amorphous material 

between Bruch’s membrane and the RPE is evident (arrow). These changes are not evident 

in the control samples. Scale bars: (a, b) 2 μm; inset scale bars 0.2 μm. OS outer segments; 

RPE retinal pigment epithelium
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