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Abstract

RNA-binding proteins are important players in post-transcriptional regulation, such as modulating 

mRNA splicing, translation, and degradation under diverse biological settings. Identifying and 

characterizing the RNA substrates is a critical step in deciphering the function and molecular 

mechanisms of the target RNA-binding proteins. High-throughput sequencing of the RNA 

fragments isolated by crosslinking immunoprecipitation (CLIP-seq) is one of the standard 

techniques to identify the in vivo transcriptome-wide binding sites of the target RNA-binding 

protein. This method is widely used in functional and mechanistic characterizations of RNA-

binding proteins. In this review, we provide several practical considerations on performing and 

analyzing CLIP-seq experiments. Particularly, we focus on how to perform CLIP-seq experiments 

on endogenous RNA-binding proteins. In addition, we provide a practical summary on how to 

choose and use computational pipelines from an increasing number of computational methods and 

packages that are available for analyzing the sequencing datasets from the CLIP-seq experiments. 

We hope these practical considerations will facilitate experimental biologists in performing and 

analyzing CLIP-seq experiment to obtain biologically relevant mechanistic insights.

1. Background

RNA-binding proteins (RBPs) are important players in post-transcriptional regulation of 

gene expression under diverse biological processes. Importantly, malfunctions of RBPs have 

been implicated in a wide variety of human diseases, such as neurological disorders (1) and 

cancers (2). Thus, characterizing the biological functions and molecular mechanisms of 

RBPs has significant implications in both basic biology and potential translational 

applications.
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RBPs usually control gene expression by binding to their substrate mRNAs. Therefore, a 

critical step in the functional and mechanistic characterization of the target RBP is to 

identify and characterize the RNA substrates it binds. Multiple biochemical methods have 

been developed for this purpose. Over the past decade, high-throughput sequencing of the 

RNA fragments isolated by crosslinking and immunoprecipitation (CLIP-seq) has become 

one of the standard techniques to identify the in vivo transcriptome-wide binding sites of 

RBPs (3). Briefly, in this approach, the cells are first treated by UV crosslinking, which only 

introduces covalent bonds between the RNA and the protein that are in direct contact. 

Thereby, the in vivo RNA-protein interactions are preserved. Then the cells are lysed and 

treated with an RNase that degrades naked RNAs but not RNA regions bound by proteins. 

The target RBP and the RNA fragments it binds are isolated via immunoprecipitation. The 

5’ and 3’ ends of the RNA fragments bound by the RBP are cued (e.g. prepare RNA 

fragments with 5’ end phosphorylated and 3’ end hydroxyl) so that they are compatible for 

downstream sequencing library preparation. The RNA:RBP complex is then resolved on an 

SDS-PAGE gel followed by transferring to a nitrocellulose membrane. The membrane areas 

containing the target RNA-protein complexes are surgically cut, and proteinase K digestion 

is used to remove the RBP from the RNA-protein complexes. The resulting RNA fragments 

are subject to library construction followed by high throughput sequencing. Mapping and 

analyzing the sequencing reads from the RNA fragments reveals where the target RBP binds 

in the transcriptome.

CLIP-seq offers several major advantages in identifying RNA substrates of the target RBP 

(3). First, the RNA-protein interactions identified by CLIP reflect in vivo interactions due to 

the nature of the UV crosslinking. Second, CLIP enables the identification of RNA 

fragments that are directly bound by the target RBP, but not those bound by other proteins 

interacting with the target RBP (4, 5). Since UV crosslinking introduces covalent bonds 

between the RNA and the protein that are in direct contact, high stringent washes (e.g., 1M 

NaCl in many protocols) can be applied during the immunoprecipitation step. These 

stringent washes not only reduce non-specific interactions but also, more importantly, can 

disassociate protein complexes, preventing immunoprecipitated RNAs bound to non-target 

RBPs. In addition, isolating the target RNA:RBP complex on the nitrocellulose resulting 

from the SDS-PAGE and transfer further ensures that the resulting RNA fragments are those 

directly bound by the target RBP. Third, in addition to identifying the RNA species that the 

target RBP binds to, CLIP-seq analysis can also reveal where the target RBP binds in each 

of the identified RNA species. This information provides critical insights into how the RBP 

recognize its substrates (e.g., sequence motifs, structural features, etc.) and how it regulates 

target RNA expression (e.g., intronic binding region may suggest splicing regulations, etc.). 

Collectively, these strengths make the CLIP-seq approach one of the major methods of 

characterizing in vivo global RNA-protein interactions.

Although there are tens of steps in performing the CLIP-seq experiment, the inventors of this 

method and many experts provide detailed and reproducible protocols and excellent 

explanations on performing this experiment (6, 7). In addition, multiple modifications and 

derivations have been applied to the original CLIP-seq protocol to make the whole process 

easier to undertake and more likely to succeed. For example, to enhance the UV crosslinking 

efficiency on RNA:RBP complexes, PAR-CLIP (photoactivatable ribonucleoside-enhanced 
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CLIP) was developed (8). In this method, cells are first treated with photoactive 

ribonucleoside analogs, such as 4-thiouridine, which can be incorporated into nascent RNAs. 

Then crosslinking is performed at a specific wavelength that activates the photoactive 

ribonucleoside analog (e.g., UV365nm for 4-thiouridine). This approach significantly 

enhances the crosslinking efficiencies for several RBPs and facilitates the identification of 

their transcriptome-wide RNA targets. In addition, taking advantage of the observation that 

during the cDNA synthesis of CLIP-seq library construction, the amino acid residue(s) of 

the RBP crosslinked to the RNA fragment which cannot be completely removed by protease 

K digestion tend to inhibit the read-through of the reverse transcriptase, a cDNA-

circularization based library construction strategy was developed (9). This approach enables 

the identification of the RNA-RBP interaction sites at high resolution. Recently, an enhanced 

CLIP (eCLIP) protocol was developed that significantly reduces PCR duplicate reads during 

sequencing library construction and enables CLIP-seq experiments to be performed in a high 

throughput fashion (10). Together with the original method, these modifications and many 

others make the CLIP-seq approach easily accessible to many investigators studying in vivo 
RNA:protein interactions. Since there are already many outstanding reviews and protocols 

on CLIP-seq (6-8, 11-13), we will not discuss the technical details of the CLIP-seq 

experiment.

In this review, we will focus on two issues in performing and analyzing CLIP-seq 

experiment. First, we will discuss how to perform CLIP-seq experiment on endogenous 

RBPs for which high-quality antibodies (e.g., immunoprecipitation grade) are not available. 

We believe focusing on endogenous RBPs is critical to obtain functional and mechanistic 

insights that are biologically relevant. Second, after obtaining the sequencing datasets from 

the CLIP-seq experiment, how to analyze them and extract relevant information regarding in 
vivo RNA:RBP interactions is still a challenge for most experimental biologists. Moreover, 

although there are many computational algorithms and packages that are developed for 

CLIP-seq data analysis, quite different from standard RNA-seq data analysis, currently there 

are no standardized computational pipelines that are widely used for analyzing CLIP-seq 

datasets. Thus, here we discuss a general procedure for computational analysis CLIP-seq 

datasets and share our opinions in using several different computational packages in 

analyzing CLIP-seq data. We hope that these two practical considerations can be of help to 

other investigators in performing and analyzing CLIP-seq experiments.

2. Epitope-tagging endogenous RBPs via genomic editings for CLIP-seq

Immunoprecipitation of the target RBP and its associated RNA fragments is a critical step in 

the CLIP-seq experiment. Thus, a high-quality IP-grade antibody to the target RBP is 

essential for the success of the CLIP-seq experiment. Although a large number of antibodies 

for many RBPs are commercially available, a lot of these antibodies are not rigorously 

validated, let alone having the capacity to specifically immunoprecipitate the endogenous 

target RBPs. Therefore, an important technical challenge in performing the CLIP-seq 

analysis is the availability of high-quality antibodies to the target RBP(s).

One approach commonly used to circumvent this technical challenge is to ectopically 

express the target RBP in an epitope-tagged form from either a plasmid or a viral vector, and 
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then perform the CLIP-seq experiment using high-quality antibodies against the epitope tag. 

Although some mechanistic insights regarding RNA:RBP interactions can be obtained (e.g., 

binding motif preference of the target RBP, etc.), an important caveat of this approach is that 

the RNA species identified may not be the real targets of the endogenous RBPs. This is 

mainly due to the following two reasons. First, the increased RBP expression level may lead 

to changes in the binding kinetics, resulting in identifying weak or non-optimal RNA:RBP-

interactions that do not occur when the target RBP is expressed at its endogenous level. 

Second, the expressions of many RBPs are tightly regulated, and alterations in their 

expression levels may lead to transcriptomic and physiological changes of the cell. For 

instance, in terminal erythropoiesis, an RBP, Cpeb4, is transcriptionally induced during 

differentiation. Interestingly, however, Cpeb4 also translationally represses its own mRNA in 

differentiating erythroid cells. Thereby, the Cpeb4 protein level is maintained within a 

specific range during terminal erythropoiesis. Importantly, changing the expression level of 

Cpeb4 by either knock-down or over-expression inhibits the terminal differentiation of 

erythroid cells (14). Thus, if CLIP-seq is performed on the over-expressed Cpeb4 in 

erythroid cells, the target RNAs identified may not represent the real RNAs that endogenous 

Cpeb4 binds in differentiating erythroid cells. This example highlights that in order to obtain 

biologically relevant functional and mechanistic insights, it is important to study RBPs under 

their endogenous levels.

We recently used CRISPR/Cas9-based genomic editing techniques to generate epitope-

tagged proteins for mechanistic studies on endogenous RBPs (15). In this approach (Fig. 

1A), a DNA double-strand break is introduced to the genomic region of the C-terminus (or 

the N-terminus) of the target RBP by a small guide RNA (sgRNA) and the Cas9 protein. 

Then the double-strand break is repaired in the presence of a donor oligo, which contains 

two ~45nt homologous arms and the coding sequence of a small epitope tag (e.g., V5, 

FLAG, etc.). Through homologous recombination, the epitope tag sequence is integrated in-

frame with the target RBP. The resulting tagged RBP is expressed at its endogenous level 

because the knocked-in tag sequence changes neither the promoter nor the 3’UTR 

sequences, which are two key elements in controlling the expression level of the RBP. We 

successfully generated a Zfp36-V5 knock-in mouse using this approach (Fig. 1B) (15), 

which enabled us to perform mechanistic studies on the endogenous Zfp36, which is an 

important RBP regulating inflammatory responses with no commercially available high-

quality antibodies. Using a V5 antibody, we identified the proteins interacting with the 

endogenous Zfp36 and the target mRNAs it binds in primary mouse macrophages. This 

epitope-tag knock-in approach can also be used in cultured cells (Fig. 1C). Since there is no 

selection marker in this approach, after introducing the sgRNA, Cas9, and the donor oligo, 

the cells are subject to single cell sorting (using the GFP from the Cas9 expressing vector). 

The expanded clones are genotyped to identify bi-allelic knock-ins, and the expression of the 

tagged RBP will be examined by Western blot using an antibody against the knocked-in 

epitope tag. The resulting cell lines with bi-allelic epitope-tag knocked-in to the target RBP 

locus will be great resources for downstream functional and mechanistic studies on the 

endogenous RBP at the cell level.

There are several important considerations when applying this epitope-tag knock-in 

approach to study endogenous RBPs.
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First, to study RBPs expressed at the endogenous levels, it is important to avoid using 

selection markers (e.g., puromycin) as described in some other genome-editing-mediated 

epitope-tag knock-in methods (16). Although facilitating the selection of correct knock-in 

alleles, the presence of the selection marker replaces the endogenous 3’UTR of the target 

RBP with an exogenous 3’UTR. This change may alter the expression level of the 

endogenous RBP because numerous RBPs (e.g., Cpeb4, Zfp36, etc.) can auto-regulate their 

own expression through binding to the regulatory elements in the 3’UTRs of their own 

mRNAs (14, 17). Moreover, many exogenous 3’UTRs (e.g., 3’UTRs derived from the SV40 

virus or BGHR etc.) used in the selection marker approach can significantly stabilize the 

resulting mRNA and enhance the expression of the target RBP, leading an increased target 

RBP level. The selection-free donor oligo knock-in approach as described above, however, 

does not have this problem, as the potential regulatory elements in the endogenous 3’UTR 

are maintained in the mRNA expressed from the knock-in allele.

Second, like all the experiments using tagged proteins, it is important to examine whether 

the tagged protein is functional or not. One way to test this is to examine and compare the 

cellular or molecular phenotypes among the wild-type cell, the bi-allelic knock-in cell, and 

the target RBP knock-out or knock-down cells. Or alternatively, the tagged protein can be 

used to examine whether it can rescue the phenotype(s) of the target RBP knock-out or 

knock-down cells.

Third, in terms of obtaining bi-allelic knock-ins, although the donor oligo mediated epitope-

tag knock-in approach is not as easy to perform as the knock-in methods using selection 

markers, due to the high efficiency of the CRISPR/Cas9 genome editing system in many 

types of cells, we still can obtain reasonable number of bi-allelic-edited cell clones for 

several RBPs tested. In addition, during the CRISPR/Cas9 mediated genomic editing, the 

non-homologous end joining pathway can be blocked by chemical inhibitors (e.g., SCR7 in 

mouse cells) (18), thereby promoting the donor oligo mediated homologous recombination 

and enhancing the chances of obtaining bi-allelic knock-in cells.

Fourth, even though there are many outstanding antibodies against the commonly used 

epitope tags (e.g., V5, FLAG, etc.), once the bi-allelic knock-in cells are obtained, it is still 

important to test several different antibodies against the same epitope tag to identify the one 

with the high specificity and IP efficiency in the target cell type. This is because different 

cell types have different proteomes. An antibody that works well in one type of the cell does 

not necessarily mean that it has the same specificity in a different type of cell. However, 

thanks to a large number of commercially available antibodies to each of the commonly used 

epitope tags, it is usually not difficult to find such a good antibody to the cell types under 

investigation.

3. Practical considerations on computationally analyzing CLIP-seq 

datasets

Several automatic or semi-automatic pipelines were developed for bioinformatic analysis of 

CLIP-seq (19-22). These pipelines take raw sequencing data, in most cases, Fastq files as 

input, and output the locations and statistical significance of binding sites. Some of the 
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pipelines also output RBP motifs and bigwig/wig files for visualization. However, 

experimental biologists may need to customize pipelines for their specific datasets. In this 

review, we provide a practical guide on how to choose and use software packages as building 

blocks of a CLIP-seq analysis pipeline.

The workflows of the bioinformatic analysis for CLIP-seq data are similar to each other. The 

difference is in the choice of software and parameters. A typical pipeline is shown in Fig. 2. 

Data preprocessing includes trimming and quality check of the raw reads, read alignment 

and quality check of the mapping results. The next step of the analysis is peak calling, which 

is the core of bioinformatic analysis of CLIP-seq data. From the resulting peaks, post-

processing usually includes merging the peaks from replicates, predicting or rescuing the 

peaks, binding preferences and functional analysis.

3.1. Preprocessing

The bioinformatic analysis usually starts with adapter trimming and quality check. Adapter 

and quality trimming can be performed by tools such as Cutadapt (23), Fastx-toolkit (24), 

Trimmomatch (25), Prinseq (26) and TrimGalore (27). For iCLIP/eCLIP dataset, the low-

quality bases should only be trimmed at the 3' end of the fragment, since the 5' end shows 

the position of truncation. Reads shorter than 18nt are likely to be mapped to wrong 

locations or multiple locations and should be discarded after trimming. FastQC (28) is a 

widely used tool to check the RNA library by displaying statistical characteristics, such as 

read quality scores and read duplication levels. High level of read duplication often suggests 

contamination or improper preprocessing. After adapter trimming and quality check, the 

resulting reads are mapped to the genome or transcriptome. Mapping to the transcriptome 

increases sensitivity, while mapping to the genome preserves the information of the binding 

sites in precursor messenger RNA and unannotated regions. Since the experimental 

sensitivity is usually sufficient, mapping to the genome is the better choice in most cases 

(29). This also saves the hassle caused by different transcriptome annotations and is easier to 

visualize by IGV or genome browser. Mapping tools that can map reads across the junctions 

should be used for alternative splicing. HISAT (30) and STAR (31) are popular mapping 

tools using Burrows-Wheeler transform, which enable a fast search of reads locations. STAR 

is the choice in the eCLIP-seq bioinformatics pipeline developed by the inventors of eCLIP-

seq, which searches in uncompressed suffix arrays. It takes more than 20 GB of RAM for 

aligning to human or mouse genome and usually runs on servers. HISAT is a more recent 

tool whose speed is comparable to STAR and requires only ~4 GB of RAM for human or 

mouse genome. While STAR should be used with existing pipelines for compatibility, 

HISAT is recommended in customized CLIP-seq analysis pipelines. Novoalign shows better 

mapping rate on some CLIP-seq datasets (32), but its full version is not free. The multi-

mapped reads, usually the reads with MAPQ score less than 10, should be removed from the 

mapping result. Reverse transcription polymerase chain reaction (RT-PCR) is a technique 

widely used in CLIP-seq experiments, by which the RNA molecules are first converted into 

their complimentary DNA (cDNA), then a standard polymerase chain reaction (PCR) is 

performed to make multiple copies of the cDNAs (33). While RT-PCR facilitates the study 

for small samples, the amplification of cDNA is not evenly distributed for different regions, 

which introduces additional bias to the library. A commonly used method to correct this bias 
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in the CLIP-seq protocol is to insert a random barcode or random-mer into the primer. Reads 

mapped to the same location with the same random barcode are collapsed into one copy. The 

random barcodes should also be removed before mapping. If random barcodes are not used, 

tools like fastx_collapser in the Fastx-toolkit (24), Rmdup in SAMtools packages (34) and 

MarkDuplicates in the Picard toolkit (35) can be used to remove the potential PCR 

duplicates. And fastuniq (36) is a tool designed to remove duplicates in paired-end reads.

To confirm that the CLIP-seq experiment is successfully performed and save time from 

interpreting bewildering peak calling results, it is recommended to check the statistical 

characteristics of the mapping result. Read mutation, length and location distribution, 

reproducibility, and read overlap should be checked for both CLIP-seq data and size-

matched input (SMInput) data. Most of the reads should be mapped to a small portion of the 

genome. A straightforward way to check the read location distribution is to divide the 

genome into bins of the same length and count the read percentage in the top ranked bins 

(37). If the reads scatter all over the genome instead of clustering in a small portion of the 

genome, the datasets may contain too much noise from non-specific RNA:RBP interactions. 

The Pearson’s correlation coefficients of TPM (Transcripts Per Million) between replicates 

of CLIP-seq data and SMInput data can be used to check the reproducibility of the datasets. 

Compared to RPKM (Reads Per Kilobase of transcript, per Million mapped reads) or FPKM 

(Fragments Per Kilobase of transcript, per Million mapped reads), whose sums in different 

samples may vary, the sums of TPM are the same across samples, which facilitates the 

comparison among samples. For iCLIP/eCLIP, both complete and truncated reads are 

agglomerated at the RNA:RBP crosslink sites. Therefore, the datasets contain both shorter 

and longer reads. The starting position of truncated reads should overlap at binding sites. 

ICLIPro (37) can be used to visualize and check the overlapping of read starts.

3.2. Peak calling

Many tools were developed for CLIP-seq peak calling (38). A typical peak calling process 

can be divided into two tasks (39). The first task is to determine the regions enriched with 

reads. The second task is to calculate the statistical significance of the selected regions. 

Table 1 summarizes a list of popular peaking calling tools.

In all variations of CLIP-seq data, reads are agglomerated around the crosslinking sites. To 

detect the unexpectedly enriched reads clusters, Piranha (40) divides the genome into bins of 

equal length and counts read starts in each bin. By default setting of Piranha, the read counts 

are modeled by zero-truncated negative binomial distribution, and then a p-value is assigned 

to each bin, which shows the likelihood that the bin is in the background. The zero-truncated 

negative binomial distribution was justified to be a good fit for read counts distribution by 

using over 100 CLIP-seq datasets (40) and is widely used by CLIP-seq peak callers. 

Modeling background from the whole genome may lead to a loss of sensitivity in lowly 

expressed genes. ASPeak (41) uses RIP-input or RNA-seq to estimate expression levels in 

user-defined genomic intervals, most commonly, genome annotations in GTF or BED 

format. A tradeoff of calling peaks in user-defined genomic intervals is that intergenic peaks 

will be ignored. Instead of assigning p-values to bins of equal length, CLIPper (42) 

interpolates the reads heights, centers and width through the pre-mRNA using cubic splines. 
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A Poisson distribution is used to calculate the p-value of the peaks. CLIPper pipeline 

includes a script to normalize each peak against the SMInput data by using Χ2 test or 

Fisher's exact test. Instead of fitting a specific distribution, Pyicoclip (43) and iCount (44) 

generate background by randomly distributing the read counts in user-defined genomic 

regions.

In addition to reads coverage, mutations and truncations can be used in peak calling. HITS-

CLIP introduces mutations depending on the RBPs. PAR-CLIP induces T to C transitions at 

the crosslinking sites. Instead of mutations, eCLIP and iCLIP generate truncated reads at the 

crosslinking sites. The T to C transitions in PAR-CLIP are modeled by a kernel-density-

based classifier in PARalyzer (45), to distinguish the regions of crosslinking and non-

crosslinking. To further reduce the false positives, BMix (46) and wavClusteR (47, 48) filter 

out the non-experimentally induced T to C conversion before performing the peak calling 

procedure. MiClip (49) handles the CLIP clusters and binding sites with mutations by a two-

pass Hidden Markov Model (HMM). Python package pyCRAC (50) provides scripts as well 

as classes and functions to customize the analysis of HITS-CLIP, PAR-CLIP and CRAC 

data. To utilize the truncated reads information, PureCLIP (51) models the combination of 

truncation patterns and reads enrichment as four states in HMM. PureCLIP also provides an 

option to incorporate background crosslink-associated (CL) motif learned from SMInput 

data, which is useful when the target RPBs recognize different CL motifs.

Comprehensive tools were developed to utilize both the mutation and the truncation 

information. In addition to identifying CLIP tag clusters, they use experiment induced 

mutations or truncations to report reliable crosslink sites from CLIP tag clusters, depending 

on which CLIP-seq protocol is used. PIPE-CLIP allows the user to specify the types of 

mutations. CTK package (20) uses a valley seeking algorithm for peak calling to distinguish 

a broad peak and two neighboring peaks. Then crosslink-induced mutation sites (CIMS) (52) 

or crosslink-induced truncation sites (CITS) are identified for PAR-CLIP/HITS-CLIP or 

iCLIP/eCLIP. In CITS analysis, CTK package also takes consideration of deletions 

presenting in readthrough reads.

Because various features and models are used, peak calling tools may report different 

binding sites from the same datasets. In one study (39), only 15.5% of the peaks were output 

by at least one peak caller in Piranha, CLIPper, and Ext. blockbuster (53), were reported by 

all three peak callers. Various methods were used to benchmark the performance of peak 

callers. S. Bottini et al. compared the percentage of peaks called from Ago2 HITS-CLIP 

datasets containing canonical miRNA binding sites (54). A. M. Chakrabarti et al. compared 

the peak coverage of RNA splice sites in an iCLIP-seq PTBP1 data set (29). For most of the 

CLIP-seq datasets, sequence motifs can be used for benchmarking. Here we use an eCLIP-

seq dataset of Zfp36 (15) whose sequence motif is known to evaluate the specificity. The 

sequence motif of Zfp36 determined from in vitro RNA-binding studies (55) is consistent 

with the one defined from our eCLIP-seq data. Therefore, this dataset is suitable as a 

benchmark. A binding site determined by peak callers will be considered as a true positive if 

it is close to the location of the sequence motif. Sequence motif was used to evaluate the 

specificity of peak callers in many previous studies (20, 51). Peak callers developed 

specifically for PAR-CLIP require specific mutation patterns, such as PARalyzer, were not 
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compared in this review. We chose two popular peak callers, Piranha and CLIPper and two 

recently developed tools, iCount and CTK package for comparison. CTK package provides 

crosslinking induced mutation site (CIMS) and crosslinking induced truncation site (CITS) 

analysis, which call peaks at single nucleotide resolution. For eCLIP-seq data, CITS pipeline 

in CTK package was used. CITS and iCount do not have functions to normalize by SMInput 

data. To be fair, the peak calling results from CITS and iCount were normalized with 

SMInput data by using scripts in CLIPper pipeline. Peak callers generated different numbers 

of peaks, and the top 1500 peaks from each peak caller were used for comparison (Fig. 3). 

Different peak widths were generated by different peak callers. Therefore, instead of peak 

boundary, peak center was used for comparative analysis.

As shown in Fig. 4 and Fig. 5, CLIPper identified more binding sites overlapping with the 

motif, implying higher specificity than other tools on this dataset, while the peak center in 

iCount's result shows better coincidence with motif start positions, indicating more accurate 

peak positions. The performance of peak callers may vary in different datasets. The results 

from different peak callers can be intersected for specificity or combined for sensitivity. 

When sensitivity is sufficient (for example, peaks number > 10k), intersection of different 

peak callers’ results is recommended. Take this Zfp36 eCLIP-seq data set as an example, 

peaks called by iCount that are overlapped with calls of CLIPper can be used as peak calling 

result for high specificity and accuracy.

Control samples or SMInput are used as negative controls in CLIP-seq, which are crucial for 

the normalization in peak calling. Although there is no gold standard for how to use these 

negative controls, a widely used method is to use statistical tests to estimate the significance 

of the peaks against the control samples or SMInput and output a p-value for each peak. Fig. 

4 and Fig. 5 show that all four peak callers including CITS and iCount, which are designed 

to generate a random background instead of using a control sample or SMInput, have better 

specificity after normalizing against SMInput. When control samples and SMInput are not 

available, RNA-seq data can be used as a negative control to correct the bias from transcripts 

abundance. But nonspecific binding sites will not be filtered when using RNA-seq data 

instead of SMInput. For peak callers without the function to normalize by using the control 

dataset, some publicly available scripts can be used to do this. Typically, these scripts take 

peaks' locations, mapping results of both CLIP-seq dataset and the SMInput as input, and 

output a new file containing a statistical significance value for each peak. 

GetDifferentialPeaks function from Homer (56) is one of the options. This function was 

developed for Chip-seq data analysis. It filters out the insignificant peaks by read counts fold 

enrichment and Poisson enrichment p-value over the background, at user set cutoffs. For 

eCLIP-seq datasets, a script (Peak_input_normalization_wrapper.pl) from Yeo Lab (57) can 

be used.

Some of the peak callers model replicates explicitly, such as OmniCLIP (58). But for most 

of the peak callers, users must merge the peaks from replicates manually. In most cases, the 

intersection of peaks is used for specificity. The intersect function in BEDTools package (59, 

60), clusters function in iCount package and mergePeaks function in Homer package can be 

used for this purpose.
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3.3. Downstream analysis

A typical downstream analysis includes binding preferences analysis, binding site prediction 

and functional analysis of binding targets.

3.3.1. Binding preference analysis—RBPs specify binding sites through recognizing 

sequence and structural features in their binding targets. Motifs of many RBPs are collected 

into databases such as the CISBP-RNA Database (61). Many tools were also developed to 

discover motifs from CLIP-seq data. Since the motifs may not be in the binding sites but 

close to them, peaks identified from CLIP-seq data are extended in both directions for motif 

discovery. The sequences of extended peaks can be generated by getfasta function in 

BEDTools package in a strand-specific manner. Motif searching software packages take 

these sequences in fasta format as input, and output one or more sequence motifs that are 

enriched in the input sequences, as well as their statistical significance and locations. MEME 

(62, 63) outputs position weight matrices (PWM) of sequence motifs, by using expectation 

maximization (EM) algorithm to fit a two-component finite mixture model to the input 

sequences. With the PWM output by MEME, FIMO (64) reports the occurrences of motifs 

whose false discovery rate (FDR) is lower than a user-defined threshold. To take secondary 

structure into consideration, motif analysis software packages often take secondary 

structures that were folded by computation programs as an additional input. S. J. Lange et al. 

indicates that extending binding sites by 150nt is suitable for computational folding of local 

structures, because more than 85% of the bases pairs span less than this distance (65). With 

the secondary structure annotation, MEMERIS (66) searches RBPs motifs only in single 

strand regions. Zagros (67) models sequence, pairness and diagnostic event by using a 

mixture model. RNAcontext (68) extends the structural states from pairness to a collection 

of pairness, unstructured region, hairpin loop and others. CapR (69) calculates a secondary 

structural profile around RBP binding sites. Graphprot (70) models sequence and structural 

information as hypergraph (71) instead of calculating them separately. A new tool ssHMM 

(72) incorporates sequence and structural information of RBP motifs as a set of symbol-

emitting states in HMM, in which the symbols are the four nucleotides and the states are 

structural context. The model of ssHMM is trained by input sequences and their structural 

annotations to output both the motif starts and binding preferred structures. Beside the k-mer 

sequence and structural feature, binding preferences include core spacing motif and flanking 

nucleotide composition (73). While the question of finding sequence motif is solved by 

software packages such as MEME Suite, finding structural motif from CLIP-seq datasets is 

still an open question. The noise introduced by peak calling as well as secondary structure 

prediction makes it difficult to detect the signal of structural motif.

3.3.2. Binding site prediction—Binding site prediction is a process in CLIP-seq data 

analysis to minimize the false negative of peak calling. Peak calling tools may not be able to 

identify the binding sites with insufficient mapped reads, such as in lowly expressed genes 

and regions with low mappability. Peak prediction is typically modeled as a classification 

problem to divide given genomic regions into two classes, binding and non-binding sites. 

Traditional machine learning models start from binding preference analysis. Graphprot 

stores the encoded binding preference information into feature vectors and uses a support 

vector machine for classification. Deboost (74) uses the bag-of-words model to encode 
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sequence features, then applies a deep-boosting based method for classification. Instead of 

interpretable features like sequence and structural motif, recent deep learning models iDeep 

(75) and iDeepS (76) train for optimal parameters and weights in neuron networks, and 

lightly improve the prediction. CLAM (77) uses a different strategy to reduce the false 

negative by re-assigning multi-mapped reads, from which more peaks can be identified.

3.3.3. Functional analysis of binding targets—After the determination of the peak 

locations through peak calling and optional peak prediction, Gene Ontology (10) term and 

pathway analyses are often performed as the last step of the bioinformatics pipeline (15, 78). 

The cellular processes that the RBP may relate to can be obtained by calculating the 

enrichment of genes in GO term and pathway databases (79, 80). For CLIP-seq data, the 

results of functional analysis provide clues to understand post-transcriptional regulation, 

such as modulating mRNA splicing, translation, and degradation under diverse biological 

settings. When prior knowledge of the RBP’s function is available, the result of GO term 

and pathway analyses can be used to verify the peak calling result. If large fraction of 

binding targets shares same GO terms and is consistent with the prior knowledge, it is very 

likely that the peak calling was performed successfully. To perform the GO term and 

pathway analyses, binding sites need to be annotated to transcripts. The redundant items in 

genome annotations can be manually removed, then transcripts that contain binding sites can 

be obtained as binding targets. Some tools were developed for this task, such as 

Annotatepeaks.pl in Homer package, annotate function in iCount package and 

bed2annotation.pl in CTK package. Functional analysis tools such as DAVID (81) and 

Enrichr (82) take binding transcripts' symbols or IDs as input, and output enriched biological 

themes and visualize genes on the pathways. To analyze the interaction between RBPs, 

binding sites from different CLIP-seq datasets are often compared. Databases such as 

StarBase (83, 84), CLIPdb (85), RBPDB (86), DoRiNA (87, 88) and POSTAR (89) provide 

binding sites information of hundreds of RBPs. To compare binding sites of a RBP under 

different conditions, dCLIP (90) uses HMM to detect common and differential binding sites. 

A comprehensive web server Seten was developed specifically for RBP function enrichment 

analysis. In addition to traditional GO term and pathway information, comparative analysis 

with preprocessed CLIP-seq datasets is also provided by Seten as bubble charts (91).

4. Concluding remarks

In summary, CLIP-seq is a powerful tool for examining in vivo transcriptome-wide 

RNA:protein interactions. Here we discussed two practical aspects of performing and 

analyzing CLIP-seq experiments. First, using the epitope-tag knock-in approach as 

described above, CLIP-seq experiments can be performed on the endogenous RBPs that do 

not have high-quality antibodies, so that biologically relevant mechanistic insights can be 

obtained. We believe future developments in the genomic editing technologies will make it 

easier and more efficient to epitope-tag endogenous proteins, which will greatly facilitate 

mechanistic studies on endogenous RBPs. Second, to reduce the computational challenges 

faced by many molecular biologists in analyzing the CLIP-seq datasets, we compared the 

computational tools that are currently available for analyzing the CLIP-seq data and 

provided our opinions on how to choose among existing computational tools. We feel that 
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further developing standardized computational pipelines or software packages in processing 

and analyzing CLIP-seq datasets will be of great help for maximally extracting meaningful 

information from the CLIP-seq experiments.

Finally, like many other great techniques, CLIP-seq analysis also has its own limitations. For 

example, although CLIP-seq analysis can reveal the in vivo physical interactions between 

RNA and the target proteins, whether or not the identified interactions have a functional 

consequence on gene expression, however, cannot be inferred from the CLIP-seq results 

alone. In addition, due to the complexity of the crosslinking reaction, whether the CLIP-seq 

signal intensity can be used as an indication of in vivo binding strength of the target RBP is 

debatable. Thus, care should be taken in interpreting results from CLIP-seq experiments. 

Nonetheless, with technology advancement in both genomic editing and bioinformatics, we 

believe CLIP-seq analysis in combination with functional assays will reveal more exciting 

gene-expression regulatory networks mediated by RBPs.
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Highlights

• Epitope-tagged endogenous RNA-binding proteins using CRISPR/Cas9-based 

genome editing

• General consideration of the computational analysis on CLIP-seq datasets

• Comparison of several widely used computational programs for peak calling 

on CLIP-seq datasets
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Figure 1. 
Epitope-tagging the endogenous RBP via genome editing. (A) Outline of the CRISPR/Cas9-

based approach for epitope-tagging the endogenous RBP locus. (B) Outline of the 

procedures of using this approach to generate epitope-tag knock-in mouse. (C) Outline of 

the procedures of using this approach to generate bi-allelic knock-in cell lines.
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Figure 2. 
The workflow of the bioinformatic analysis for CLIP-seq data. The shaded diagrams are the 

basic steps, and the remaining ones are the optional steps.
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Figure 3. 
Venn diagram of overlapped genomic locations of peak regions in Zfp36 eCLIP-seq datasets 

called by the four peak calling methods.
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Figure 4. 
Proportion of peaks called by the four peak calling methods in the Zfp36 eCLIP-seq datasets 

overlapping with motif “UAUUUAUU”.
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Figure 5. 
The position of top 1500 peaks called by the four methods in the Zfp36 eCLIP-seq datasets 

relative to motif “UAUUUAUU”.
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