Skip to main content
. Author manuscript; available in PMC: 2020 Feb 15.
Published in final edited form as: Methods. 2018 Dec 6;155:49–57. doi: 10.1016/j.ymeth.2018.12.002

Table 1.

Software packages for peak calling

Name CLIP-seq protocol Pre-
process
Input Control Statistical model Feature Resolution
Piranha All No BED and BAM Yes Zero-truncated negative binomial distribution (default) Choices of statistical model and covariates Bins
ASPeak CLIP-seq and RIP-seq No SAM, BAM, BOWTIE and BED Yes Negative binomial distribution Expression sensitive Peaks
Pyicoclip All Yes Eland, SAM, BAM and BED No Background estimation Complete pipeline Predefined regions
iCount iCLIP Yes BAM No Background estimation Complete pipeline Peaks
CLIPper eCLIP Yes BAM Yes Poisson distribution Cubic splines fit of reads profile Peaks
PARalyzer PAR-CLIP Yes SAM, BAM and BOWTIE No Gaussian kernel density estimator N/A Reads clusters
Bmix PAR-CLIP No BAM No Constrained three-component binomial mixture model Explicitly accounts for the sources of noise Reads clusters
WavClusteR PAR-CLIP No BAM No Non-parametric, two component mixture model Complete pipeline Reads clusters
MiClip CLIP-seq, HITS-CLIP and PAR-CLIP No SAM No Zero inflated binomial distribution Online interface Reads clusters
pyCRAC HITS-CLIP, PAR-CLIP and CRAC Yes SAM, BAM and Novoalign No Background estimation Complete pipeline Reads clusters
PureCLIP eCLIP No BAM Yes Zero-truncated negative binomial distribution Integrates motif information Single nucleotide
PIPECLIP HITS-CLIP, PAR-CLIP and iCLIP Yes BAM Yes Zero-truncated negative binomial distribution Online interface Reads clusters
CTK All Yes BED No Background estimation Complete pipeline Single nucleotide