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Abstract

Many open questions in RNA biology relate to the kinetics of gene expression and the impact of 

RNA binding regulatory factors on processing or decay rates of particular transcripts. Steady state 

measurements of RNA abundance obtained from RNA-seq approaches are not able to separate the 

effects of transcription from those of RNA decay in the overall abundance of any given transcript, 

instead only giving information on the (presumed steady-state) abundances of transcripts. Through 

the combination of metabolic labeling and high-throughput sequencing, several groups have been 

able to measure both transcription rates and decay rates of the entire transcriptome of an organism 

in a single experiment. This review focuses on the methodology used to specifically measure RNA 

decay at a global level. By comparing and contrasting approaches and describing the experimental 

protocols in a modular manner, we intend to provide both experienced and new researchers to the 

field the ability to combine aspects of various protocols to fit the unique needs of biological 

questions not addressed by current methods.
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1. Introduction

Gene expression is modulated at multiple stages including transcription and processing of 

nascent transcripts, regulation of translation efficiency and intracellular localization, and 

control of the rate of RNA degradation. This chapter focuses on advanced methods to 

measure mRNA decay rates on a transcriptome-wide basis. Multiple RNA decay pathways 

that degrade RNAs have been discovered and specific regulatory factors that control the rates 
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of RNA decay have been reported [1, 2, 3]. These include short regulatory RNAs (siRNA 

and microRNAs) [4] and a plethora of RNA binding proteins [5]. The key challenge now is 

to determine the impact of each of these factors on the transcriptome using facile 

quantitative approaches. Early approaches to measuring mRNA decay involved shutting off 

transcription and measuring RNA abundance over time using either northern blots, dot blots, 

or radioactively labeled RNA [6, 7, 8, 9, 10]. However, concerns over the impact on the 

underlying biology for cells undergoing transcription shutoff have led to the development of 

various methods to metabolically label RNA to measure RNA decay in a less intrusive 

manner. By incorporating a chemically modified nucleobase into the cellular pool of 

ribonucleotide triphosphates (NTPs), RNAs can be labeled without disrupting gene 

expression, thereby minimally perturbing the underlying biology. Additionally, the 

indiscriminate nature of metabolic labeling combined with label-based purification methods 

and modern RNA sequencing allows for transcriptome-wide determinations of both 

transcription rates and RNA decay in a single experiment. Here we review both historical 

and recent advances in methods using metabolic labeling to quantitatively measure RNA 

decay in living cells. We take a modular approach, by describing individual aspects of the 

methods that have been developed in such a way that each step can be mixed and matched 

with later steps, so that unique experimental designs can be developed to answer challenging 

biological questions using an optimal combination of approaches.

2. Metabolic Labels

The cornerstone of most modern sequencing-based workflows for measuring RNA decay is 

the use of metabolic labeling, via the incorporation of nucleotide analogs into RNA, which 

are used to separate or distinguish the labeled RNA from the rest of the cellular RNA pool. 

Here we review the development and characteristics of several of the most frequently used 

metabolic labels in modern practice.

2.1. Thiol-containing uracil analogs

A variety of different modified uracil labels have been used to measure both mRNA decay 

and mRNA synthesis. The most basic requirements for such a label are that it be cell 

permeable, readily incorporated into RNA, minimally perturb cellular physiology, and 

permit either the purification or specific detection of RNA molecules containing the label. 

Several commonly used metabolic labels meeting these criteria are shown in Figure 1. The 

most widely used label is 4-thiouridine in either its nucleoside (4sU) or nucleobase (4tU) 

forms (Figure 1A). Both 4tU and 4sU are readily taken up by yeast [11, 12], archaea [13], 

and higher eukaryotes including human cells [14, 15, 16]. In contrast to other thiol-modified 

nucleotides, incorporation of 4sU at concentrations of up to 100 μM in cell culture does not 

have a discernible impact on the synthesis of RNA or protein degradation rates indicating 

limited perturbation of transcription and translation following incorporation of the label [17]. 

In contrast, 6-thioguanine (6sG) and related compounds are still at times used for metabolic 

labeling of RNA [18], but as 6sG has been shown to perturb both transcription and 

translation [17], 6sG is of substantially less utility for the long term labeling required for 

RNA stability experiments. Although long term culture (48 hr) in the presence of 4sU has 

been associated with a decrease in cell viability [19], short term labeling (10 hrs) of up to 4 
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mM 4tU does not appear to have a discernible impact on cell growth in yeast [12]. However, 

in vitro translation assays have revealed that 4sU-containing mRNAs can decrease ribosomal 

elongation processivity and increase downstream initiation rates [20]. For organisms such as 

S. cerevisiae and E. coli that express a functional Uracil Phosphoribosyltransferase (UPRT), 

4-thiouracil can be used in place of 4-thiouridine as it is readily converted to 4sU as needed 

by the cells. However, in both mouse and human cells incorporation of 4tU into cellular 

RNA does not readily occur and coexpression of UPRT from another organism is needed in 

order to incorporate 4tU into nascent RNA [21, 11]. Expression of the well-characterized 

Toxoplasma gondii UPRT has been used to successively label RNA with 4tU in human 

foreskin fibroblasts [11] and, subsequently, in a variety of other cell types [22, 23]. The 

requirement for UPRT activity in labeling with 4tU has also led to the development of “TU-

tagging”, a method to selectively label mRNAs in only one cell type in the context of a 

mixed population of cells. By expressing UPRT only in the cell type of interest, one can 

determine both the identity and mRNA decay rates of the mRNAs from that cell type [24]. 

Additionally, 4tU [Sigma Aldrich Cat. No. T4509] is substantially cheaper than 4sU [Sigma 

Aldrich Cat. No. 440736] and is more economical to use for organisms that already have 

robust endogenous UPRT activity (please note that throughout this review we indicate 

product numbers merely as examples, and not as a reflection of endorsement of any 

particular product or manufacturer). In whatever form it is introduced, RNA-incorporated 

4sU readily crosslinks to both RNA and protein upon exposure to 365 nm UV light, a feature 

that is taken advantage of for the analysis of RNA-protein interactions but should be 

minimized in the analysis of mRNA decay [25, 26]

2.2. Halogen-containing uracil analogs

Incorporation of 5-bromodeoxyuridine (BrdU) into cellular DNA was first described in the 

1950s [27, 28] and the development of an anti-BrdU antibody allowed for visualization of 

DNA within a living cell [29]. Some BrdU antibodies cross-react with 5-bromouridine (BrU) 

and labeling with BrU can be used to selectively purify BrU labeled RNA with an anti-BrdU 

antibody [30]. Like 4sU, BrU (Figure 1B) is readily taken up by mammalian cells [31] and 

BrU does not appear to have the same general toxicity effects that 4sU has under long 

exposure [19], making it an attractive reagent to use for measuring mRNA decay over a 

longer time course. However, in vitro translation assays have revealed that BrU containing 

mRNAs have a modest negative impact on both ribosomal elongation and initiation, but not 

as large in magnitude as the effects seen from 4sU [20]. Additionally, BrU [Sigma Aldrich 

Cat. No. 850187] is comparable in price to 4tU and does not require UPRT activity for 

incorporation into mammalian cellular RNA.

2.3. Alkyne-containing uracil analogs

First described as a labeling reagent for fixed cells, 5-Ethynyluridine (EU; Figure 1C) is a 

uracil derivative capable of performing “click” chemistry (reviewed [32]) both in vivo and in 

vitro [33]. Like BrU, 4sU and 4tU, EU is rapidly taken up into the cellular pool of NTPs and 

incorporated into transcribed RNAs. Similar to 4sU and 4tU, short-term labeling with EU 

does not appear to have negative effects on cellular health, but longer incubation times do 

negatively impact growth rates [19]. Although EU could be used for high throughput 

determinations of RNA synthesis and decay rates, most studies have been primarily focused 
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on targeted measurements of select RNAs through the use of qRT-PCR [34, 35]. Recent 

development of 5-Ethynylcytosine (EC) [36] in conjunction with expression of cytidine 

deaminase and UPRT in Drosophila has led to the development of “EC-tagging”, a method 

to purify cell-type specific RNAs with higher specificity than “TU-tagging” with 4tU as 

described above [37]: EU is generated in situ by target cells through the combined activities 

of ectopically expressed cytidine deaminase (to generate 5-ethynyluracil) and UPRT (to 

generate EU, analogous to the reaction in Figure 1A). Additionally, EU has recently been 

used to determine the nascent-RNA “interactome” through a combination of EU labeling 

and UV crosslinking coupled with RNA-seq and proteome analysis, indicating that EU 

labeling can be successively used with high throughput methods [38]. EU is significantly 

more costly than 4sU, 4tU or BrU, and can be purchased either stand alone [Invitrogen Cat. 

No. E10345] or in the Click-iT Nascent RNA Capture Kit [Invitrogen Cat. No. C10365] 

along with buffers and protocols for its use.

2.4. Impact of exogenous labels on RNA decay rates

A growing body of evidence has suggested a role for RNA modifications in the post-

transcriptional control of gene expression, including control of RNA processing, binding of 

RNA binding proteins, changes in secondary structure, and stop-codon readthrough 

(reviewed in [39]). Although none of the labels introduced above perfectly match the 

modifications that have been found naturally in eukaryotic cells, in principle, these 

exogenous labels could still disrupt RNA decay rates through similar mechanisms. While 

this represents an important consideration, to the best of our knowledge there have been no 

targeted experiments designed to test the impact of any of the labels above on RNA decay 

rates themselves. Genome-wide comparisons between 4sU labeling and transcriptional 

shutoff experiments in yeast have shown that RNA decay rates determined from 

transcriptional shutoff experiments have greater agreement with one another than they do 

with RNA decay rates determined using metabolic labeling [40]. However, Sun et al. also 

show that decay rates determined from transcriptional shutoff experiments correlate well 

with genome-wide measurements of mRNA decay made using metabolically labeled RNA 

in cells displaying a transcriptional shutoff phenotype. They further show, by using 

measurements of metabolically labeled RNA, that RNA decay in cells under osmotic stress 

or heat shock also correlate well with RNA decay rates determined in transcriptional shutoff 

experiments, suggesting that perturbations of RNA abundances from cellular responses to 

transcriptional shutoff may mimic stress responses and confound measurements of RNA 

decay [40]. On the other hand, comparisons of RNA decay rates determined from seperate 

labs using different experimental strategies with the same metabolic label do not correlate 

well with one another, suggesting that there may be sources of experimental error in labeling 

experiments that are poorly understood [40]. One possible source of error could be attributed 

to differences in normalization between RNA abundance measurements. For example, 

Lugowski et al. report better replicate to replicate correlation, as well as better agreement to 

transcriptional shutoff experiments and metabolic labeling experiments from other labs, 

using an internal normalization method (normalize to introns) as opposed to an external 

method (normalize to spike-in) [41]. Further discussion on the impact of normalization 

methods on measurements of RNA decay can be found in Section 7. As it stands, it is 
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unclear if there is a single major source of discrepancy that results in disagreement between 

measurements of RNA decay between different labs and experimental approaches.

3. Selection and purification of labeled RNAs

In the majority of metabolic labeling experiments at present, labeled RNA molecules are 

physically isolated from the total RNA pool prior to analysis (one notable exception, SLAM-

Seq, is described below). After purification of total RNA from the cell lysate, the newly 

labeled RNAs must be separated and purified using methods specific for the incorporated 

label. Each label discussed above uses different chemistry for selection, but the general 

principle is the same: select the label with as high affinity as possible thereby minimizing 

the amount of starting material needed and maximizing capture specificity. Once purified, 

the labeled RNAs are then quantified using standard RNA-seq methods (Figure 2) [16, 42, 

43, 44].

3.1. HDPD-biotin

For 4sU and 4tU, purification is performed by chemically linking the labeled RNA to biotin 

and using the well-studied affinity between biotin and streptavidin to purify the RNA-biotin 

complex [45]. 4sU labeled RNA can be covalently linked to biotin by taking advantage of 

the thiol-containing uridine and forming a disulfide bond to modified biotin molecules. The 

most commonly used modification to biotin is N-[6-(Biotinamido]hexyl]-3’-(2’-

pyridyldithio)-propionamide (HPDP-biotin) [11, 14, 12, 16] and HPDP-biotin is readily 

available in the form of the EZ-link HPDP-Biotin kit [Thermo Scientific Cat. No. 21341]. 

The covalent link between 4sU and HPDP-Biotin is completely reversible and elution is 

performed through the reduction of disulfide bonds with a reducing agent such as DTT, 

which results in RNA without covalently bound adducts as input into downstream 

sequencing.

3.2. MTS-biotin

While the HDPD-biotin based procedure described above has been widely used, the 

formation of a disulfide bond between 4sU and HPDP-biotin is inefficient; disulfide 

exchange reactions between 4sU and HPDP-biotin indicate that less than 20% of free 4sU is 

converted to 4sU-HPDP-biotin in reactions as long as 120 minutes. Recent developments 

using methylthiosulfonate-biotin (MTS-biotin) have indicated greater than 95% conversion 

of free 4sU to 4sU-MTS-biotin in as little as five minutes, indicating a fast and efficient 

reaction resulting in capture of labeled RNA without the need for as much starting material 

[44]. The MTS-biotin purification protocol has been used to study miRNA turnover [46], 

response to viral infection [47], and transcription rates in yeast [48], but it has not enjoyed as 

much widespread use as HPDP-biotin, possibly because of MTS-biotin’s relatively recent 

introduction as a viable alternative to HPDP-biotin. Additionally, MTSEA-biotin [Biotium 

Cat. No. 90064] is less costly than HPDP-biotin, making it a more economical alternative.

3.3. Anti-BrdU antibody

Unlike 4sU, BrU does not have a chemical group that can be easily used to create reversible 

crosslinks with modified biotin. Thus, purification of BrU-containing RNAs must proceed 
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with non-covalent interactions mediated through well-established anti-BrdU antibodies 

(which frequently also bind BrU). Many commercially available Anti-BrdU antibodies have 

been used for the quantification of mRNA synthesis or decay through BrU labels: mouse 

anti-BrdU [Roche 11170376001][31], BrdU Antibody (IIB5) [Santa Cruz sc-32323] for 

GRO-Seq [49], Anti-BrdU mAb 2B1 [MBL International Corporation, cat. No. MI-11-3] for 

BRIC-seq [50], and mouse anti-BrdU [BD Pharmingen, 555627] for Bru-Seq and BruChase-

Seq [42]. Imamchi et al. [50] indicated that they have tried multiple anti-BrdU antibodies 

and the reported 2B1 antibody resulted in the highest yields, but to the best of our 

knowledge, no extensive comparison of antibody purification efficiencies has been 

published.

3.4. Click chemistry

As with 4sU, purifying RNAs labeled with EU usually relies on a covalent linkage with 

biotin and selection using streptavidin beads, in this case using the bio-orthogonal copper-

catalyzed azide-alkyne cycloaddition reaction typical of modern ‘click’ chemistry. Most uses 

of EU to purify RNA follow the Click-iT Nascent RNA Capture Kit protocol, which 

involves the use of PEG4 carboxamide-6-azidohexanyl biotin (azide-biotin) with a copper (I) 

catalyst (generated in situ in the reaction by reduction of copper (II)) to covalently link the 

EU to biotin [34, 35, 51]. Unlike 4sU, this covalent bond is not easily reversed and 

generation of cDNA libraries for sequencing or qRT-PCR for direct quantification has to be 

done while linked to the streptavidin-beads [52]. It is not clear what effect, if any, this has on 

the error rate of the reverse transcriptase.

It may be possible to take advantage of the ability of very low-salt solutions to cause 

surprisingly rapid dissociation of the streptavidin-biotin interaction [53] prior to quantitation 

or sequencing library preparation. To our knowledge, this strategy has not been employed to 

date in the published literature.

3.5. Purification-free detection through enhanced T→C mutation rates

The use of 4sU-containing RNAs for cDNA synthesis results in the reverse transcriptase 

misincorporating a guanine residue opposite the 4sU at a low level that is exacerbated when 

cross-linked to protein [26]. Substituting iodoacetamide (IAA) in place of cross-linked 

protein allows for non-specific enhancement of T→C conversion rates in the reverse 

transcriptase reaction for all 4sU sites in a library through disulfide bond formation between 

the IAA and 4sU. T→C mutation rates increase from 10% without IAA to 94% with IAA. 

SLAM-Seq takes advantage of this increase in mutation rates to quantify mRNA synthesis 

and decay rates without a purification step. By labeling with 4sU and treating with IAA 

before library preparation, SLAM-Seq can differentiate labeled RNA from unlabeled RNA 

strictly through quantification of T→C mutation rates of the final library. Removal of a 

purification step vastly decreases the amount of input RNA needed and greatly simplifies the 

mRNA decay protocol [54].
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3.6. Impact of pulldown efficiency and label incorporation rates on experimental 
measurements

Two additional parameters that could introduce noise into measurements of RNA decay 

using metabolic labeling include the incorporation rate of the label into newly synthesized 

RNA, and the efficiency of pulling down labeled RNA from the total purified RNA. We are 

unaware of any systematic characterization of the differences in label incorporation between 

the different metabolic labels discussed in Section 2. In some sense, differences in 

incorporations rates, so long as they are consistent across timepoints, are of no consequence 

in the experimental designs discussed below since quantification of RNA abundance is either 

relative to the total amount of RNA pulled down or is normalized by sequencing both the 

unlabeled and labeled RNAs for each time point (see Section 7 for details). However, 

incorporation rates may be a crucial parameter for measurements of either fast-decaying or 

slow-decaying RNAs, as they may limit detection. In such cases, optimization of the amount 

of label added to the cells, incubation times with label, and/or choice of time points may 

allow for detection of difficult transcripts. As with incorporation rates, a systematic 

comparison of pulldown efficiencies between different labels and selection strategies has 

also not been performed. In a typical RNA decay experiment, differences in pulldown 

efficiency within a single experiment will be controlled for through the use of spike-ins or 

internal normalization (as discussed in Section 7), thereby largely eliminating pulldown 

efficiencies as a major source of experimental error as long as saturation is not reached. 

However, improvements in pulldown efficiency can result in less needed biological material 

for a given experiment. Furthermore, many of the computational methods used to analyze 

RNA decay experiments operate under the implicit assumption that the sequenced pool of 

labeled RNA contains no contaminating unlabeled RNA, which may not be accurate to 

actual experimental conditions but will be closer approximated with better pulldown 

efficiencies. As discussed above, some improvements have been made to biotin based 

pulldown strategies for experiments using 4sU as a label through changing the identity of the 

chemical crosslinker [44]. Additionally, the use of mutation rates induced by the metabolic 

label removes the need for a pulldown step but introduces a separate source of experimental 

error related to modification efficiencies of the label itself and misincorporation rates of the 

reverse transcriptase [54].

4. Experimental Design for measuring RNA decay

With a label and purification method in hand, an experimental design must be chosen that 

maximizes the amount of information to be gained per unit cost. Different considerations 

must be made if both synthesis rates and decay rates are to be determined. Additionally, it is 

critical to decide whether precise RNA half-lives are to be measured or if end-point 

abundance estimations are sufficient for the biological question of interest. A comparison of 

different experimental designs frequently used for the determination of RNA decay is shown 

in Figure 3.

4.1. Chase alone

To determine RNA decay alone, cells can be grown for an extended period of time, often 24 

hours, in the presence of a label. At time zero, the growth media is replaced with identical 
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media containing the same concentration of unlabeled uridine and the labeled RNAs are 

tracked via purification and sequencing. If determining RNA half-lives, several time points 

are taken and used for fitting a single exponential decay model [50]. For a more coarse-

grained determination of decay, a single time point can be taken after the switch to unlabeled 

media and compared to a sample taken at time zero. There are major trade offs to consider 

between these two approaches. By taking only two time points, one drastically cuts down on 

the costs of sequencing and the labor to prepare the samples. This can be particularly useful 

when comparing the difference in RNA decay between two biological conditions where the 

exact half-life is not as useful as as the relative change in decay between the two conditions 

is. On the other hand, taking several time points allows one to capture both short-lived and 

long-lived transcripts that may be missed with a single time point. In cultured mammalian 

cells, the average mRNA half-life is 7–9 hours [55, 56, 16] and it is critical to choose time 

points that capture the decay of mRNA transcripts of interest. Furthermore, many time 

points are needed to accurately fit the exponential models used for half-life determination. 

Thus, selection of the duration and number of time points to be analyzed typically needs to 

be optimized (left side of Figure 3B).

4.2. Approach to equilibrium

The converse of the chase-alone experimental methodology, approach to equilibrium, allows 

for RNA decay rates to be determined from measuring time points after the addition of the 

labeled uridine to the media. Although cells harvested after a short incubation time can be 

used to measure transcription rates [57], taking several time points over an extended time 

course in the presence of the labeled uridine can allow for the mRNA decay rates to be 

determined instead. The biological motivation behind approach to equilibrium is the concern 

that labeled nucleotides can be recycled within a cell leading to an ineffective chase with 

unlabeled nucleotides [58]. To see the quantitative motivation for the approach to 

equilibrium method, it is useful to consider the overall dynamics of a given transcript. 

Assuming a constant rate of transcription, the concentration of any particular RNA species, 

X, will generally follow the equation

X ′ = τ − δ X − γ X (1)

Here, τ represents the rate of transcription under the condition of interest, δ is the decay rate 

of the RNA (typically the quantity of interest), and γ is a dilution term dependent on the 

growth rate of the cell (if not explicitly accounted for, dilution effects will be incorporated 

into the inferred value of δ, which for the slow-growing cells of higher eukaryotes is 

typically a negligible correction)[59]. If one considers the labeled form of an RNA of 

interest as a separate species, X*, then Eq. 1 will likewise be followed for the labeled 

species, except that the synthesis rate will be proportional to τ when the label is present, and 

equal to zero when the label is not. As the steady state level is defined by the point at which 

the synthesis and decay rates are perfectly balanced, the steady state concentration requires 

[X]′ = 0, or τ = (δ + γ)[X]eq. From this equation it immediately follows that knowledge of 

any two of the equilibrium concentration, overall decay rate, and synthesis rate are sufficient 

to specify the third.
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By growing cells in a constant amount of label, the fraction of each RNA that is labeled will 

increase at a rate that is determined only by its degradation rate and the growth rate of the 

cells until it reaches a steady state level [60]. By measuring time points along this increase, 

one can capture the decay rate of any given RNA molecule [43], as the equilibrium value 

will be known from a very late time point and a curve fit can then reveal the decay 

parameters (see Figure 5B and Figure 3B (middle)). However, approach to equilibrium 

requires cells to grow in the presence of the label for an extended period of time, which may 

be problematic for labels that have demonstrated toxicity under longer exposure, such as 

4sU.

4.3. Pulse-chase

It is often advantageous to determine both the synthesis and decay rates of an RNA molecule 

within the bounds of a single experiment. By incubating with a short “pulse” of label and 

“chasing” with unlabeled media one can both minimize exposure of the cells to the label and 

determine both synthesis and decay rates separately [11, 16, 42, 61, 62]. Through taking 

time points at the initial addition of the label, the switch to unlabeled media, and throughout 

the “chase” period, the lifespan of all nascent labeled RNAs can be tracked (Figure 3B 

(right)). Pulse-chase methods have the advantage of subjecting the cells to short-exposures 

of the label thereby mitigating any potential toxicity.

5. Quantification of RNA abundance

Although specialized DNA microarrays have been used previously [55, 14, 56], global 

analysis of RNA decay is more recently measured through the use of high throughput 

sequencing and well-established bioinformatics tools are used to analyze the resulting 

sequencing reads. Library preparation for RNA sequencing experiments is available through 

several commercial kits or custom methods that are specific to the experiment of interest. As 

a general rule, paired-end and stranded sequencing is preferred, particularly for organisms 

that perform splicing or have transcripts regulated by antisense RNAs. Additionally, several 

strategies exist to remove highly abundant ribosomal RNAs (rRNA) from samples prior to 

library preparation, including rRNA depletion with custom oligos or selection of poly-

adenylated mRNAs. Because poly(A) metabolism plays an important role in mRNA decay 

pathways, it is advisable to avoid poly(A) selection when analyzing mRNA decay kinetics. 

[1, 3] After sequencing, several data processing steps must occur to take the raw sequencing 

reads to a measurement of RNA abundance. Many of the programs and tools written for the 

analysis of high throughput sequencing data are driven by a text interface, so it is expected 

that users have some familiarity with the Unix command line. Many institutions have 

workshops designed to teach new users both familiarity and comfort with the command line, 

and readers who feel uncomfortable working with command line programs can find help 

both online and locally. For most applications, the RNA sequencing reads obtained from the 

methods above can be treated like data from any other RNA-seq experiment. Typically, 

sequencing reads are stored in the fastq file format where both sequence and base-calling 

quality information can be stored. Here we will briefly outline the set of steps needed to 

analyze RNA-sequencing data for RNA decay experiments with extra commentary on 

possible locations in the analysis that may differ for RNA decay-type experiments as 
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compared to standard RNA-seq workflows. For more information on best practices 

concerning RNA-seq data we point the reader to recent reviews in the literature [63, 64].

5.1. Adapter removal and quality control

As with any sequencing analysis, standard quality control must be employed. Several steps 

must be taken to remove adapters needed for Illumina sequencing as well as reads 

containing low confidence base calls. For the removal of adapters and low quality sequences, 

several programs exist including cutadapt [65], fastx toolkit [http://hannonlab.cshl.edu/

fastx_toolkit/], and trimmomatic [66]. Several key statistics about the quality of the 

sequencing reads can be calculated both before and after adapter and quality trimming using 

FastQC [67] (Figure 4A). Next the reads must be aligned to a reference transcriptome which 

is available from either NCBI or the UCSC Genome Browser for most model organisms. 

Several different aligners have been developed for processing RNA sequencing reads 

including bowtie2 [68], tophat2 [69], STAR [70], kallisto [71], and many others. A 

comparison of the most commonly used aligners indicates tradeoffs between each tool and 

the specific aligner used will depend on the question being asked [72]. However, if one is 

using the SLAM-seq methodology that is dependent on T→C mutations then it is 

recommended to use the T→C mutation aware aligner NextGenMap [73] with special 

settings designed to weaken the penalty for mismatches resulting from a T→C mutation 

event [54] (Figure 4B).

5.2. Reference-based alignment, transcriptome assembly or pseudoalignment?

Several additional considerations need to be made when choosing both the aligner and the 

downstream quantification software for processing the data from a high-throughput RNA 

decay experiment. For single-celled organisms such as bacteria or archaea where a high 

quality reference transcriptome is known for the organism and that organism does not 

process RNAs through splicing, a simple aligner such as bowtie2 will perform well. 

However, most higher eukaryotes do process RNAs through splicing and thus splice-aware 

aligners, such as hisat2 [74] and STAR, are recommended. Under some biological 

conditions, novel transcripts are may be expected and have not yet been characterized and 

logged in the reference transcriptome of the organism under study. Here, downstream 

software will be needed to infer the presence of novel transcripts and assemble a 

transcriptome either de novo or through assistance of an existing reference transcriptome. 

However, many experiments are not designed to look for new transcripts and are instead 

concerned with the abundance of well-characterized transcripts annotated in a reference 

transcriptome. Pseudoaligners such as kallisto [71] and salmon [75] are designed to deal 

efficiently with this latter case. Rather than do a full alignment, pseudoaligners allow for 

RNA quantification without needed to fully align the reads to the reference transcriptome. 

Pseudoaligners have the advantage of being substantially faster than traditional alignment 

methods, but will not be able to detect any novel transcripts and are wholly reliant on the 

quality of the reference transcriptome. Unlike the pseudoaligners, most major aligners will 

output a sequence alignment map (SAM) file or its binary equivalent (BAM) that contains 

several details of where a particular sequence aligned and the quality of that alignment. Key 

statistics and simple manipulations of this file format can be obtained using samtools [76]. 

After alignment, downstream tools are needed to convert the sequence alignment 
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information into some form of quantification of RNA abundance. The most commonly used 

software suite that performs this quantification is cufflinks [77] however, StringTie has 

shown better performance than cufflinks and is currently recommended as a replacement 

[78]. Both cufflinks and StringTie (as well as other related tools) perform novel transcript 

discovery and transcriptome assembly, which is useful under conditions where new 

transcripts are expected and informative but is not always necessary. If transcriptome 

assembly is not needed due to the existence of an already annotated, high quality reference 

transcriptome, or if the investigators biological question is not concerned with novel 

transcripts, then a simple feature level quantification can be obtained using HTSeq [79] 

instead (Figure 4C).

5.3. Gene level or exon level?

Another key consideration when quantifying data from RNA decay experiments is to 

determine whether to quantify at the gene level (where all reads for a gene are pooled 

together regardless of transcript isoforms) or exon level (where each exon is quantified 

separately). Most reports for determining RNA decay have focused on gene level 

quantification, but exon level information may be needed if one is tracking decay of specific 

transcript isoforms.

5.4. Count level or TPM?

When considering differences between two experimental conditions, another major 

consideration to make is how to quantify the amount of change in RNA decay between the 

two conditions. Without proper statistical analysis, differences in sequencing depth, the 

efficiency of labeled RNA recovery, and biological variability between replicates can 

confound any true biological difference that is being measured. Fragments Per Kilobase per 

Million (FPKM) or Reads Per Kilobase per Million (RPKM) are two measures that were 

designed to correct for both sequencing depth and transcript length bias between different 

samples and genes (or exons). However, the Transcripts Per Million (TPM) unit has 

superseded RPKM and FPKM as the preferred value for reporting RNA expression, since 

TPM values can more accurately be directly compared between experiments [80]. TPM is 

commonly reported as measure of relative RNA abundance under a particular experimental 

condition for a feature of interest, but more sophisticated statistical models have arisen that 

better account for the biological variability seen in the quantification of RNA-seq data. The 

use of negative binomial models based on count-level data instead of FPKM or TPM for 

each feature of interest allow for better estimation of biological variability and thus more 

accurate and reproducible results. Negative binomial models are implemented in all of the 

major differential expression packages currently used in RNA-seq analysis and are 

applicable to RNA decay analysis. Some of the key differential expression software 

packages include DESeq2 [81], edgeR [82], limma [83], cufflinks [77], and StringTie [78]. 

These packages will take count-level data for each feature (at the gene or exon level) of 

interest and use negative binomial-based statistical models to properly account for variability 

between conditions. Additionally, the kallisto pseudo-aligner has a downstream package, 

sleuth [84] designed specifically for use with kallisto, and uses the same general principles 

as the packages mentioned above (Figure 4D).
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6. Modeling RNA Decay

The ultimate goal for most RNA decay experiments is to quantitatively measure the kinetics 

of RNA abundance over time. For some research questions, a measure of relative changes in 

RNA decay between two conditions or two transcripts may suffice. However, for another 

subset of research questions, the determination of a quantitative rate constant with 

meaningful units is the object of interest. A careful consideration of normalization 

procedures for measurements of RNA abundance using high-throughput sequencing 

techniques is essential for this latter class of experiments (and still useful for the former 

class), as discussed in Section 7. However, a discussion of the theory that underlies models 

used for the determination of RNA decay as applied to perfect measurements of RNA 

abundance and discussed below is, nevertheless, instructive.

6.1. Single exponential decay

Guided by historical transcription shutoff experiments, most chase experimental designs use 

a single exponential equation to determine RNA decay half-lives. A single exponential 

model assumes that RNA decays at a rate proportional to its instantaneous concentration 

over the measurement time of the experiment:

Ai(t)
Ai(t0) = e

( − αit) (2)

Where 
Ai(t)
Ai(t0)  is the relative abundance for labeled RNA i at time t as compared to time t0: the 

initial time point taken when the labeled RNA has reached equilibrium. Here αi represents 

the constant decay rate for RNA i. Note that the exponential form for RNA abundance is 

obtained directly from integration of Eq. 1 with the production term set to zero and growth 

term omitted. Thus the half-life of the RNA can be determined by fitting the data with the 

following equation (Figure 5A):

T 1
2

= ln(2)
αi

(3)

It is important to note that both the approach given here, and the more sophisticated 

variations below, work under the assumption that the fitted parameters (e.g., decay rate) do 

not vary throughout the experimental time course. An additional modification for the half-

life determination to account for dilution due to cell growth has also been suggested by 

several groups. [12, 43]:

T 1
2

= ln(2)
αi − kgrowth

(4)
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Where kgrowth is the same for all RNAs and is determined by the growth rate of the culture; 

again this equation arises directly from the presumed time-dependent change in RNA 

abundance stated in Eq. 1. Note that in the context of Eq. 4 the “half life” so calculated 

yields a half life for the individual RNA molecules themselves, rather than the bulk half life 

that would be observed for a population of molecules (the latter ought to include dilution 

effects, while the former should not).

6.2. Mixed exponential decay

Imamachi et al. [50] have noted that a subset of RNAs do not decay in a manner that is 

easily described by a single exponential and have suggested fitting the data with a model that 

considers a mixed population of RNAs with different decay rates:

Ai(t)
Ai(ti)

= (c)e
−αit + (1 − c)e

−βit (5)

Where c indicates a weight for one subpopulation vs. the other subpopulation and βi is the 

decay rate for a second population for a particular RNA. In principle, even more complex 

functional forms could be considered, such as adding additional exponential terms or using a 

stretched exponential, which might better account for data where multiple subpopulations 

decayed on different timescales. Precisely such a situation might easily emerge if multiple 

different subpopulations of cells were present in the measurements, or if gene-level 

quantification was in use but multiple transcript isoforms existed with differing stabilities. 

Using more complicated models can be prone to overfitting and appropriate model selection 

criteria [85] must be made when choosing between models with more or fewer parameters 

(Figure 5C-D).

6.3. Approach to equilibrium

For approach to equilibrium experimental designs, several assumptions and considerations 

must be made to properly model the RNA half-lives. Neymotin et al. determine RNA half-

lives by considering the decay of unlabeled RNAs and also taking into account the cell 

growth rates [43]. They ultimately model the abundance of any given labeled RNA at time t 
as the following:

Ai(t)
Ai(t f )

= (1 − e
−(αi + kgrowth)(t − td)

) (6)

Where tf is the final time point where the labeled RNA has reached steady state levels (at the 

end of the time course) and td is the time between the addition of the label and the first 

measurement of labeled RNA. Both the overall α, which is equal to the αi–kgrowth, and the 

Yeq for each RNA can then be estimated from the experimental data, here assuming the td is 

fixed for all RNAs based on experimental measurements for when RNA first appears in after 

label selection (Figure 5B). Half-lives can then be calculated as above using the growth rate-

corrected half-life formula above (Eq. 4). DRUID, an automated pipeline for approach-to-
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equilibrium experiments, has been developed to deal to help analyze data from this type of 

experimental design without the need to have complicated spike-ins or sophisticated ways to 

deal with normalization [41].

6.4. Pulse-chase considerations

Pulse-chase experimental designs have the advantage of allowing the experimenter to 

separately determine both transcription rates and decay rates from a single experiment. By 

comparing labeled RNA abundances to unlabeled RNAs (or labeled RNAs between two 

different experimental conditions) at the beginning of the chase, one can have a general idea 

of nascent transcription rates [54] or condition-specific effects on transcription [42]. By 

taking several time points throughout the chase part of the experiment, one can use the 

single exponential equations described above to fit half-lives of each RNA of interest. 

Alternatively, one can take a single time point after a chase and measure differences between 

labeled RNA abundances in two different experimental conditions or between the start and 

end of the chase to determine relative decay rates without determining the half-life of the 

RNAs. It is worth noting that many of the methods mentioned above have focused on 

following a single species: the labeled RNAs. Whether through following the decay of the 

labeled species over time (chase and pulse-chase), or through measuring the decay of the 

unlabeled species over time indirectly by measuring the approach to equilibrium of the 

labeled species, these methods allow for accurate determinations of mRNA decay rates. 

However, valuable information that may also be gained by sequencing both the labeled and 

unlabeled pools. More sophisticated methods that take into account both transcription rates, 

RNA decay rates and measurement of both the pool of unlabeled RNAs and the pool of 

labeled RNAs have also been reported throughout the literature [16, 15, 86] and can give 

deeper insight into the full kinetics of individual mRNA transcripts but are outside the scope 

of this particular review.

6.5. Half-lives vs. differential abundance

The exponential equations above are typically fit using non-linear least squares methods to 

determine αi by minimizing the squared sum of the errors between the model and the data 

for each RNA. Although half-lives can be determined with as few as three time points, it has 

been recommended to use at least 5 time points [87] in order to accurately determine half-

lives. The Akimitsu lab has developed a custom R package [https://github.com/

AkimitsuLab/BridgeR] for determining the difference in mRNA half-lives between two 

different conditions of interest. However, determining the RNA half lives for many different 

replicates and experimental conditions can be incredibly costly due to the amount of 

sequencing samples needed in order to properly fit the exponential equations. Instead of 

determining full half-lives for every RNA of interest, one could consider capturing an initial 

and final time point and using differential expression software to measure the impact of a 

particular condition on the relative abundance of RNA in the final time point compared to 

the initial time point. Simple models designed to measure the condition-specific effects on 

RNA abundance can be specified easily in differential expression analysis software such as 

DEseq2 [81], which at least permits determination of whether or not the decay of a 

particular transcript changes between a pair of conditions.
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7. Normalization and the use of spike-ins for estimation of labeled RNA 

abundance

It is important to note that high-throughput sequencing reactions only give relative 

abundance measurements of RNA. Any comparison of two separate RNA sequencing 

reactions will thus require some sort of normalization in order to put RNA abundance 

estimations on the same numerical scale relative to one another. The most commonly 

reported normalization schemes for RNA-seq type experiments include RPKM and TPM, 

which act to normalize the count data obtained from a typical RNA seq workflow to both the 

length of the genomic feature of interest as well as the sequencing depth for that particular 

sample as discussed above. As most metabolic labeling experiments described here involve a 

pulldown step, however, the normalization provided by TPM-type measurements is 

insufficient, because the resulting abundance measurements are still only known relative to 

the total set of labeled RNA. Comparison of different time points, essential for calculation of 

RNA stability, is thus impossible without some sort of normalization that allows for proper 

scaling of the observed abundances relative to the total (and not only labeled) RNA present 

in the sample.

7.1. Rationale for the use of spike-ins

To more clearly demonstrate the necessity and utility of a constant reference value for 

normalization of RNA abundance, we must consider what is actually being measured when 

one performs an RNA decay experiment where only the labeled RNA is sequenced. Let us 

represent the abundance of labeled RNA for any given transcript i as Xi,L(t) and the 

corresponding abundance of unlabeled RNA in the same experiment as Xi,U(t). We can then 

consider the entire abundance of labeled RNA for all genes at any given time point t to be:

Γ(t) = ∑
j

X j, L(t) (7)

Likewise, the entire abundance of unlabeled RNA for all genes can be represented as:

β(t) = ∑
j

X j, U(t) (8)

Thus the total RNA abundance A is simply:

A(t) = Γ(t) + β(t) (9)

The quantity of interest for the purposes of fitting RNA decay equations is the overall 

abundance of a labeled RNA of interest relative to total RNA over time, that is,
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Xi, L(t)
A(t) (10)

What is actually measured, however, for any given gene in an RNA decay experiment when 

only the labeled RNA pool is sequenced is:

Ri(t) =
Xi, L(t)

Γ(t) (11)

Where Ri(t) is the relative abundance of RNA i in the total labeled RNA pool at time point t. 
Since both Γ(t) and Xi,L are changing throughout the course of an experiment, attempting to 

fit the RNA decay equations we have described here to raw RPKM measurements is not 

physically meaningful. However, if one is able to change the variable quantity Γ(t) in the 

denominator of Eq. 11 into something that is known to be constant throughout the 

experiment, then R(t) can be transformed into a reliable estimator of RNA abundance on an 

arbitrary scale. One approach to add a constant to any RNA decay experiment is to add a 

labeled spike-in RNA at a known ratio 1/d of labeled spike-in to total RNA and normalize 

RPKM values to that of the measured RPKM of the spike-in. Thus, the spike-in will be 

added at some constant value S(t) that is a function of A(t):

S(t) = A(t)
d (12)

Now we can modify Eq. 11 to include a known constant amount of spiked-in label S:

Ri(t) =
Xi, L(t)

Γ(t) + S(t) (13)

Likewise, we can represent the relative abundance of the spike in by Rs(t):

Rs(t) = S(t)
Γ(t) + S(t) (14)

By normalizing the fractional abundance of labeled RNA in the total labeled pool with the 

spike-in Ri(t) (Eq. 13) to the relative abundance of the spike-in Rs(t) (Eq. 14) we can see that 

the denominator Γ(t) + S(t) will cancel, resulting in a spike-in normalized estimation of 

labeled RNA abundance, Ni(t).

Ni(t) =
Xi, L(t)

S(t) =
d ⋅ Xi, L(t)

A(t) (15)
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Furthermore, upon substitution of S(t) with Eq. 12 we can see that Ni(t) in Eq. 15 is a 

reliable estimator for the fractional abundance of labeled RNA i in the total RNA A(t) (as 

sought in Eq. 10) rather than just the labeled RNA pool Γ(t), clearly demonstrating the need 

for normalization to some source of constant labeled RNA when determining RNA decay 

rates and half-lives. It is important to note, that any error in the fraction of added spike-in 1/d 
will add additional noise to the normalized RNA abundance estimate described by Eq. 15.

To further illustrate the impact of normalization on the determination of RNA decay rates, 

we simulated an approach to equilibrium experiment where the bulk RNA representing 99% 

of the sequences decayed at a rate of α. We then considered several different RNA 

transcripts each at the same steady state level of overall abundance but at several different 

multiples of the overall bulk RNA decay rate. The actual abundances of labeled RNA from 

this simulation can be seen in Figure 6A. We then added in a spike-in RNA at 0.5% of the 

total RNA for each time point and determined what the resulting RPKM values for each of 

these transcripts would be under a scenario where labeled RNA is pulled-down with perfect 

efficiency (Figure 6B). In this simulation, it is evident that the raw RPKM values do not 

represent the actual RNA abundances. Note that the spike-in RNA rapidly decays in RPKM 

abundance throughout the time course even though it is added at a constant amount relative 

to the total RNA. This is to be expected, as in early time points the spiked-in RNA 

represents the only labeled RNA species in the reaction. As more labeled RNA is created in 

the cells, the relative fraction of spike-in RNA drops precipitously. However, if we normalize 

the RPKM traces to the spike-in RPKM (Figure 6C) the actual RNA abundances are exactly 

reproduced, demonstrating both the utility and necessity of a constant reference value in 

RNA decay experiments. Therefore, it should not be surprising that many groups advocate 

for the use of labeled RNA spike-ins when determining RNA half-lives across a variety of 

model organisms [19, 50, 43, 44, 88, 41].

7.2. Practical use of labeled spike-ins for RNA decay experiments

For standard quantification of RNA in RNA-seq experiments, a set of agreed upon standards 

have been adopted and maintained by the External RNA Controls Consortium (ERCC) [89, 

90, 91]. Furthermore, spike-ins are seeing widespread use throughout most high-throughput 

sequencing technologies (reviewed in [92]). However, unlike RNA-seq, no agreed upon set 

of labeled RNA spike-in standards have been established for RNA decay experiments and 

the ERCC collection is not available in labeled form. Instead, each lab has developed their 

own set of standards to use as spike-ins for their system. Tani et al. have established the use 

of the exogenous luciferase RNA, in vitro transcribed with a known quantity of label, and 

added to the total purified RNA directly before label selection [19, 50]. Russo et al. use an 

expensive synthetic labeled positive control that is not reliant upon the efficiency of labeling 

within an in vitro transcription reaction [88]. Neymotin et al. used a combination of three 

spike-ins with different lengths from a different organism but with matched GC content to 

their organism of interest [43]. Likewise, Duffy et al. also use a mix of RNAs from a 

different organism as a spike in [44]. Finally, Lugowski et al. use two sets of spike-ins, a 

labeled spike-in of whole genome reads from one organism and an unlabeled spike-in of 

whole genome reads from a second organism, where both spike-in species originate from 

organisms that are sufficiently different from the organism of interest [41]. There are several 
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advantages and disadvantages to each of the approaches used above. Spike-ins labeled by in 

vitro transcription are much cheaper than buying synthetic spike-ins but are also sensitive to 

variations in the in vitro transcription reaction itself. To mitigate this effect experiments 

using in vitro transcription to create labeled spike-in RNAs should use RNAs from the same 

transcription reaction for all samples that are to be compared. From the ERCC experiments, 

it is evident that sequence bias can have a major impact on measurements from high 

throughput sequencing experiments [93]. Thus, the use of a single spike-in may not be 

sufficient for precise measurements of mRNA half-lives. The use of whole-genome labeled 

RNAs from a non-target organism may help alleviate some of these concerns since a variety 

of length distributions and sequence compositions are present from those samples, but 

mismatches between sequence bias in two different organisms can add additional source of 

noise to the experiment. Additionally, any spike-in is particularly subject to pipetting errors 

as any mis-quantification of the precise amount of spike-in added to a reaction will add a 

considerable amount of noise to the quantification procedure, as the spike-in provides the 

sole normalizing factor for recovering proper decay rates (Eq. 15).

7.3. Spike-in free approaches

Despite the clear utility of a spike-in in estimating RNA abundance, several groups have 

found additional ways to accurately estimate RNA abundance in RNA decay experiments 

without using a spike-in RNA [14, 16, 42, 54, 41]. Both Dolken et al. and Schwanhausser et 

al. use a procedure in which they determine the abundance of both the labeled and unlabeled 

RNA species by sequencing both the selected labeled RNAs and the unlabeled RNAs found 

in the unbound fraction, which allows them to determine absolute RNA abundance and 

decay rates for each transcript, albeit at greater cost than a typical RNA decay experiment 

[14, 16]. Similarly, Herzog et al. have the ability to measure both labeled and unlabeled 

pools of RNA abundance with a single sequencing reaction since their method relies on the 

determination of T to C mutations to determine labeled RNAs and they are able to internally 

normalize to the total abundance of RNA through this method [54]. Lugowski et al. 

developed an entirely new pipeline (DRUID) that uses rapidly decaying RNA introns as a 

constant internal normalization in approach to equilibrium experiments, which they found to 

be superior to the spike-in based normalization that they attempted in parallel [41]. To 

illustrate how the DRUID procedure works, we simulated normalization to a rapidly 

decaying transcript in an approach to equilibrium experiment (Figure 6D). Here it is evident 

that the rapidly decaying transcript approaches a constant labeled value quickly within the 

experimental procedure and can be used, instead of a constant spike-in, to normalize the 

RPKM abundances and recover a true estimator of RNA abundance. We also demonstrate 

that RNA half-lives determined using the DRUID approach vs. the spike-in approach are 

able to easily recover the true half-life for a transcript in our simulations (Figure 6E). 

Lugowski et al. directly compare their DRUID approach to a spike-in approach and find that 

half-lives determined from the DRUID approach have higher replicate-replicate agreement 

and also outperformed both spike-in normalization and transcription shutoff experiments 

when compared against a benchmark dataset [41], possibly due to the pipetting error 

inherent in the use of spike-ins. In theory, a similar approach could be used for pulse-chase 

and chase-alone experimental set-ups. However, instead of normalizing to a highly unstable 

transcript, one would need to normalize to an extremely stable transcript (after sufficient 
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labeling time) as has been suggested by some groups [15, 50]. All such internal-reference 

approaches provide a potentially simpler workflow than spike-in based methods, and avoid 

concerns such as pipetting and RNA quantitation errors, but necessitate the identification of 

extremely unstable or stable pieces of RNA that can be relied upon to have far longer or 

shorter half lives than any transcripts of biological interest.

As a simpler alternative, Paulsen et al. 2014 suggest measuring the labeled RNA species at 

just two time points, one time point after a short labeling period, and a second time point 

chosen at the average half-life of RNA in the organism of interest [42]. A comparison 

between these two time points can then be made using differential expression software to get 

a semi-quantitative view of RNA decay at a much lower cost. To illustrate this approach we 

compared the RPKMs of two different time points in our simulation and compared these 

ratios with the true decay rates of the transcripts (Figure 6F). Here, it is clear that the rank 

ordering of the transcript stabilities is preserved, but no interpretation can be given as far as 

the magnitude change between each of the transcripts, and any attempts to fit a decay rate 

using such data would fail even if many timepoints were collected. However, the true utility 

of this approach can be seen when comparing these relative measurements of RNA decay 

between two different experimental conditions. We further illustrate this approach with a 

case study in Section 8.

8. Interpretation and follow-up

A careful consideration of each aspect of a successful RNA decay experiment can be best 

described through a sample case study. Consider the scenario where one wants to identify 

the set of mRNA targets for which RNA decay is primarily mediated by a particular RNA 

binding protein of interest. To determine possible targets, mRNA decay is measured 

transcriptome-wide in both mock-treated cells and cells in which the RNA binding protein 

of interest is knocked down with a silencing RNA. Possible targets will include RNAs that 

have differential mRNA decay in the knockout genotype compared to the wild-type cells. 

For this case study, we select an experimental procedure designed to minimize both the cost 

and cellular manipulations needed to conduct the experiment. Given these constraints, BrU 

is chosen as the labeling reagent for its low toxicity, cost, and the avoidance of any 

requirement to incorporate a functional UPRT into the human cell line used for the 

experiment (Figure 7A). With BrU, an anti-BrdU antibody with known cross-reactivity to 

BrU is chosen as the selection reagent (Figure 7B). For this particular experiment we are not 

interested in the exact half-lives of expressed RNAs, but rather the effect of the RNA-

binding protein of interest on mRNA decay. Since the RNA binding protein of interest is 

hypothesized to be involved only in post-transcriptional regulation and not in transcriptional 

regulation, we are also interested in differentiating transcriptional effects from stability 

effects. Thus, the pulse-chase experimental design is chosen in order to be able to determine 

effects on both processes. In this case, we take a single time point at the start of the chase 

after 30 minutes of labeling and take a second time point at the end of the chase several 

hours later (Figure 7C). The end of the chase was chosen to coincide with the average 

mRNA half-life in cultured mammalian cells [55, 56, 16]. To assess biological 

reproducibility, three replicates for each time point and genotype are performed and 

analyzed. Three replicates were chosen to be consistent with long RNA-seq ENCODE 
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guidelines which suggest that at least two biological replicates should be used to assess 

biological reproducibility [94]. Furthermore, the ENCODE ChIP-Seq guidelines suggest that 

more than two replicates are not absolutely necessary as experiments with RNA pol II 

indicated that more than two replicates did not increase the number of sites discovered [95, 

96]. Since RNA decay experiments have aspects in common with both ChIP-Seq (with an 

immunoprecipitation step) and RNA-seq (with quantification of RNA abundance), elements 

of both recommendations are likely applicable here. After RNA quantification, replicate 

agreement among a single time point can be assessed using rank-based statistics, such as 

Spearman correlation coefficients. However, correlation coefficients between samples at 

different timepoints are not meaningful as the RNA abundances are expected to decay at 

different rates throughout the experiment. Major disagreements between replicates at the 

same time point can indicate a need for more replicates to better assess variability or a need 

to repeat the experiment and obtain higher quality samples. It is important to note that this 

experimental design disfavors detection of regulation of mRNAs with very short or very 

long half lives. After preparing stranded paired-end libraries for each sample and sending 

them for sequencing, we perform quality control and clean-up of the sequencing reads using 

a combination of FastQC, cutadapt, and trimmomatic. Since we want to differentiate 

transcription effects from decay effects of the RNA binding protein on the transcriptome, we 

choose to use the splice-aware aligner tophat2 and associated analysis suite cufflinks to 

assign read counts at both the exon and gene level. We follow the recommendation of 

Paulsen et al. [42] and use full gene level counts (including exons and introns) at the early 

time point to measure nascent RNA abundance and use the sum of all possible exons (but 

not introns) at the late time point to measure mature RNA abundance (Figure 7D). We then 

take this count data and use a simple model to determine changes in transcription and 

stability resulting from the RNA binding protein knock down with DEseq2:

A ∼ time + condition + condition : time (16)

Where A is the abundance of any particular transcript, time is a binary term for the time 

point (start or end of the chase), condition is a binary term for which condition the RNA is in 

(knockdown or control) and condition : time is an interaction term between the time and 

knockdown information. Here, the magnitude and direction of the condition term is 

interpreted as the knockdown effect on RNA abundance after 30 minutes transcription 

during the pulse. The magnitude and direction of the interaction term condition : time is 

interpreted as the knockdown effect on the change in RNA abundance from the start to the 

end of the chase. After false discovery rate correction using the Benjamini-Hochberg 

procedure [97], several high confidence targets for the RNA binding protein of interest can 

be identified and followed up with targeted experiments (Figure 7E).

9. Concluding Remarks

This review provides a general overview of the decisions to be made when planning 

experiments to globally analyze RNA decay using metabolic labeling coupled with high 

throughput sequencing. We hope this article will serve as a resource for new and 

experienced researchers in the field. For additional information, we refer readers to several 
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recent reviews that provide more depth on each topic presented above [98, 99, 87]. With the 

advent of low cost high-throughput sequencing, measurements of RNA decay at a global 

scale are broadly achievable. Metabolic labeling of RNA has allowed for the measurement 

of both transcription rates and decay rates with minimal perturbation of the underlying 

biology. Recent advances in chemistry have allowed for enhanced selection of labeled RNAs 

from the pool of total RNA in the cell [44] or removal of the need to select the labeled 

species from the pool of RNA altogether [54], greatly reducing the amount of starting 

material needed for these experiments and lowering the overall cost. Additionally, new 

experimental approaches using the metabolic labels and methods described here have 

allowed for novel insights into RNA biology including the identification of RNA binding 

proteins involved in nascent transcription [38], the impact of a single RNA binding protein 

in amyotrophic lateral sclerosis [62], and the discovery of antisense RNAs expressed during 

herpes infection [47], to name a few. Future applications can include analysis of RNA 

metabolism during development, differentiation, the course of the cell cycle, and in response 

to external cues, stresses and infections. Many open questions in RNA biology involve the 

kinetics of RNA abundance and the effect of various players on RNA synthesis and 

degradation, rather than the steady-state abundance of RNA alone. The combination of 

metabolic labeling with high-throughput sequencing has allowed researchers to address 

these questions at a global level and will prove to be a valuable asset in the RNA biologist’s 

toolkit.
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Figure 1: 
Structures and inclusion chemistries of common RNA metabolic labels. A) 4-thiouracil 

variants and pathways for incorporation into nucleotide metabolism; once the nucleotide 

monophosphate is formed, the resulting compound is readily incorporated into cellular 

RNA. B) Structure of 5-bromouridine, which can be assimilated through the uridine kinase 

pathway as on the right side of panel A. C) Structure of the click chemistry substrate 5-

ethynyluridine, again typically incorporated into the cellular nucleotide pool via uridine 

kinase activity.
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Figure 2: 
Workflow of a 4sU chase experiment to measure the stabilities of different RNA species. 

Shown is a hypothetical cell containing two types of transcript (blue and red), with similar 

equilibrium levels but differing stabilities. Cells are grown in media with 4sU added to label 

transcripts, and then washed and chased with media containing unlabeled uridine, with 

samples harvested for RNA extraction at two or more time points during the pulse/chase. 

4sU-containing transcripts are then covalently linked biotin and purified using streptavidin, 

and the enriched RNA prepared for sequenced using standard methods. Note that the RNA 

purification and 4sU enrichment steps are performed separately for each time point.
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Figure 3: 
Overview of different metabolic labeling time strategies, as discussed in detail in the text. A) 
Schematic of the timing of labeling and sample harvest for three different methods; n.b. 

labeling in a pulse-chase experiment is typically too short for equilibrium levels to be 

reached. The pink bar (+label) indicates the time period during which labeled nucleotide is 

present. B) Expected abundance curves (blue) and hypothetical experimental data (red) for 

the fractional abundance of labeled transcript for any particular RNA under each 

experimental procedure shown in panel A. Time is relative to a zero point at the time of 

labeled nucleotide removal/washout (chase-alone and pulse-chase) or addition (RATE-seq).
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Figure 4: 
Overall diagram of data analysis steps needed to process high throughput sequencing reads 

from RNA decay experiments. Widely used example software packages are noted 

underneath each step. A) Preprocessing and quality control, here adapters and low quality 

reads are removed from analysis. B) Alignment of reads to a reference genome or 

transcriptome. Several key considerations are highlighted in the text below. C) 
Quantification of each transcript or feature of interest. Several different programs can be 

used to convert alignment information into a measure of RNA abundance that is comparable 

between experiments. D) Modeling of RNA decay. Many different models can be used to 

determine the decay rates of each transcript of interest.

Wolfe et al. Page 31

Methods. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Impact of varying parameters in the equations used for modeling RNA decay: For each 

panel, the left graph represents the shapes of several arbitrary exponential curves after 

perturbing a single parameter in each model. Here, the y-axis represents labeled RNA 

abundance relative to the equilibrium level of labeled RNA in label-containing media. The x-

axis represents time in the number of half-lives for a single exponential curve with a decay 

rate of α0, indicated with Tα0. The right graph in each panel represents half-lives calculated 

from each of the curves from the corresponding left graph in the same panel and relative to 

Tα0. In each graph, the equation used to either model the decay or determine the half-life is 

displayed. A) The effect of varying α on relative RNA abundance (left) and half-life (right) 

when modeling RNA decay with a single exponential. B) The effect of varying α when 

modeling RNA decay in a to equilibrium experimental design. C) The effect of varying β 
with a fixed c and a fixed α when modeling RNA decay with a two component mixed 
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exponential. D) The effect of varying c with a fixed α and β when modeling RNA decay 

with a two component mixed exponential.
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Figure 6: 
Impact of common normalization procedures on the determination of RNA half-lives. A) 
Simulated labeled mRNA counts for several transcripts decaying at the indicated rates in an 

approach to equilibrium experiment. For this simulation, bulk RNA (not plotted) decayed at 

a rate of α and represented 99% of the total RNA sample. Spike-ins were added at 0.5% of 

the total RNA (that is, sum of labeled and unlabeled). B) Raw RPKM values for each 

transcript and spike-in RNA. For simplicity, each simulated time point was sequenced to the 

same depth of 5,000,000 reads and each transcript and spike-in RNA was considered to be 

the same exact length. Time is indicated in number of half-lives of the bulk RNA, which 

decays at a rate of α. C) As in B but RPKM values are normalized to the spike-in RPKM 

values for each sample. D) As in B-C but RPKM values are normalized to a transcript that 

decays at a rate of 30α. E) Calculated half-lives for the transcript with a decay rate of α. 

Each half-life was determined by fitting the the approach to equilibrium equation indicated 
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in Figure 5B using non-linear least squares on five evenly spaced time points from the 

indicated simulated traces in panels A-D. F) Relative mRNA decay as determined by the 

change in raw RPKM from two time points. Timehalf was chosen to be the time point at 

exactly one half-life for the bulk RNA. For comparison, orange bars represent the inverse 

decay rate for each of the indicated transcripts.
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Figure 7: 
A hypothetical experimental design for determining changes in RNA decay between a WT 

and RBP knockdown condition. A)-C). The choices to be made in designing the experiment 

including which metabolic label to use (A), how to purify labeled RNA (B), and the timing 

of label introduction and sample harvest (C). Note that this experimental design is done in 

parallel for knockdown and control cells. D) A sample data analysis pipeline to be used to 

analyze sequencing results from the experiment described in A. Choices must be made at the 

preprocessing, alignment, quantification, and decay determination stages as indicated in 

Figure 4. E) Hypothetical volcano plots to visualize the results from the experiment in A-C 
as analyzed by the pipeline in D. A generalized linear model is used with DEseq2 to 

determine knockdown specific changes in both transcription and decay. Red dots indicate 

significant genes as measured by a FDR corrected p-value < 0.1. The vertical gray line in 

each plot indicates a log2 fold change of zero. For this hypothetical experiment, few genes 

had a significant change in transcription under the knockdown condition (left plot), but many 

genes were stabilized in the knockdown condition (right plot), suggesting that experiment 

identified several genes that can be considered putative targets for the RBP of interest and 

represent good candidates for targeted experimental follow-ups.
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