
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Nikishova A, Veen L, Zun P,
Hoekstra AG. 2019 Semi-intrusive multiscale
metamodelling uncertainty quantification
with application to a model of in-stent
restenosis. Phil. Trans. R. Soc. A 377: 20180154.
http://dx.doi.org/10.1098/rsta.2018.0154

Accepted: 10 October 2018

One contribution of 11 to a theme issue
‘Multiscale modelling, simulation and
computing: from the desktop to the exascale’.

Subject Areas:
computational biology, computer modelling
and simulation, statistics

Keywords:
in-stent restenosis model, uncertainty
quantification, semi-intrusive methods,
multiscale modelling

Author for correspondence:
A. Nikishova
e-mail: a.nikishova@uva.nl

Semi-intrusive multiscale
metamodelling uncertainty
quantification with application
to a model of in-stent
restenosis
A. Nikishova1, L. Veen2, P. Zun1,3 and A. G. Hoekstra1,3

1Computational Science Lab, Institute for Informatics, Faculty of
Science, University of Amsterdam, 1098 XH Amsterdam,
The Netherlands
2Netherlands eScience Center, 1098 XG Amsterdam, The Netherlands
3ITMO University, Saint Petersburg, 197101, Russia

AN, 0000-0003-4813-9282; PZ, 0000-0001-6176-1143;
AGH, 0000-0002-3955-2449

We explore the efficiency of a semi-intrusive
uncertainty quantification (UQ) method for multiscale
models as proposed by us in an earlier publication.
We applied the multiscale metamodelling UQ method
to a two-dimensional multiscale model for the wound
healing response in a coronary artery after stenting
(in-stent restenosis). The results obtained by the
semi-intrusive method show a good match to those
obtained by a black-box quasi-Monte Carlo method.
Moreover, we significantly reduce the computational
cost of the UQ. We conclude that the semi-intrusive
metamodelling method is reliable and efficient, and
can be applied to such complex models as the in-stent
restenosis ISR2D model.

This article is part of the theme issue ‘Multiscale
modelling, simulation and computing: from the
desktop to the exascale’.

1. Introduction
Uncertainty quantification (UQ) of complex models
is an increasingly important topic in computational
biomedicine [1,2]. In order for computational models
to be usable in practical applications, such as in silico
medical trials and personalized medicine, the
uncertainties in their predictions must be known. UQ
methods compute these uncertainties as a function of
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uncertainty in the inputs (e.g. patient-specific parameter variability), taking into account any
stochasticity in the model itself as well, i.e. model aleatoric uncertainty. However, these methods
can be computationally expensive, especially when the model that requires a UQ analysis is
computationally intensive itself. Reducing this computational burden is an important step on
the way to production UQ of computationally expensive models such as in computational
biomedicine.

UQ methods can be classified as intrusive or non-intrusive [3,4]. Intrusive methods, such as the
Galerkin method [5], modify the model equations to directly propagate the uncertainties rather
than a single model state. While often efficient, these methods do not immediately apply to all
kinds of models. Moreover, if the model is highly nonlinear, intrusive methods may be expensive
to compute. Non-intrusive methods use Monte Carlo algorithms, running the model many times
with inputs sampled from a statistical distribution. This does not require changing the model and
therefore applies universally, but it can be computationally expensive since a large number of
(potentially themselves expensive) model runs are usually required.

Many complex simulation models are multiscale. They describe several interacting processes
that take place at different scales in time and space [6–9]. For example, the in-stent restenosis
(ISR) model described below models the response of blood flow patterns to changes in a diseased
artery’s geometry, a process that takes place in milliseconds, as well as the cell growth process
that causes these changes and which may take weeks to complete. The implementation of such
models usually consists of several computer programs that communicate with each other during
the simulation, possibly via a coupling framework [9–11]. These multiscale simulations are
often computationally expensive [12], and their UQ even more so. However, in some cases the
multiscale nature of the model can be taken advantage of to improve performance of UQ. We refer
to this as semi-intrusive UQ [4]. Semi-intrusive UQ of a multiscale simulation model substitutes
a surrogate for the most expensive single-scale model in order to decrease the computational
time of UQ, while preserving approximately correct estimation of the uncertainties. One example
of semi-intrusive UQ is the metamodelling approach, where the micro model is replaced by a
computationally cheaper surrogate model.

In this article, we describe the application of surrogate modelling to the UQ of a two-
dimensional simulation of in-stent restenosis (ISR2D). ISR is the adverse reaction to angioplasty
and stenting of stenosed arteries [13]. As this model is comparatively inexpensive to compute
(unlike its three-dimensional variant [14]), we are able to compare the computational cost
and accuracy of several surrogate models with those of a full quasi-Monte Carlo (QMC) UQ
method [15].

2. ISR2D model
Cardiovascular diseases are the global leading cause of mortality [16]. Coronary artery stenosis
is a widespread type of cardiovascular disease, in which the coronary artery is narrowed by
the build-up of fatty plaque inside the artery. It is commonly treated by balloon angioplasty,
which presses the plaque into the wall, followed by placement of a stent to keep the artery
from collapsing. In 5–10% of cases, however, the injury caused by this procedure results in a
renewed narrowing of the artery inside of the stent, due to abnormal growth of smooth muscle
cells (SMCs) [13]. This is known as in-stent restenosis (ISR). Computer simulations of ISR may
help to understand the causes of this process, and may in the future serve as a tool for in silico
trials of, for example, improved stent designs.

(a) Model structure
In this paper, we consider a two-dimensional simulation model of ISR [17]. We simplify it here
to two submodels: a simulation of SMC growth into the artery lumen, and a simulation of blood
flow through the artery (figure 1). SMC growth changes the geometry of the artery, which affects
the blood flow, while the wall shear stress (WSS) caused by the blood flow inhibits SMC growth
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Figure 1. Amultiscale model of in-stent restenosis.

when it is above a threshold value. The final output of the model is the cross-sectional area of the
neointima, which indicates the degree of restenosis. For a more detailed description of the model,
we refer to previous papers [17–19].

Because the SMC growth process happens on much longer time scales than the response of the
blood flow, ISR2D is a multiscale model, in particular a macro–micro model with separated time
scales. For the implementation, this implies that the SMC model, which is the macro model, calls
the blood flow model at each time step, sending it the current geometry of the artery. The blood
flow model then runs to convergence, and returns the corresponding WSS pattern. When running
on a single core for maximal computational efficiency, the blood flow model takes up ≈50–60% of
the total run-time of the model. Therefore, replacing the blood flow model with a surrogate model
has the potential to significantly increase performance of the overall simulation, but care must be
taken that it does not significantly affect the accuracy of the results. For the three-dimensional
simulations [14], our final target for the UQ, the time taken by the blood flow calculations is
substantially higher. In order to obtain a closer approximation of the run-time characteristics of
the three-dimensional model, we allocated four cores for the SMC model, while the real blood
flow model as well as the surrogate models used a single core. This resulted in the SMC model
using ≈15% of the wall clock time, with ≈85% used by the blood flow simulation.

The model is subject to aleatoric and epistemic uncertainty [15]. Aleatoric uncertainty is
due to natural variability of the cell cycle, the relative orientation of daughter cells and the
pattern of re-endothelialization in the SMC model [17,20]. Epistemic uncertainty is due to
imperfect measurements of the values of the flow velocity, maximum deployment depth and
endothelium regeneration time. The flow velocity is related to the blood flow model and is equal
to the maximum velocity at the inlet. The other two parameters are related to the SMC model.
Deployment depth is the difference between the initial position of the wall–lumen border and
the final position of the outer side of stent struts. Endothelium regeneration time is the time until
the endothelium is completely re-covered. We explore the effect of the model stochasticity and
imprecision in the input values in the UQ study.

(b) Micro model input and output
The input and output of the micro scale model (whether the actual blood flow model or a
surrogate) are shown in figure 2. The inputs of the model are the geometry of a longitudinal
section of the artery (figure 2a) and the maximum inlet velocity of the blood flow (not shown),
and the output is the shear stress in the fluid (figure 2b). The domain measures 1.5 mm by 1.5 mm,
with a grid spacing of 0.01 mm. Thus, we have a 150 by 150 binary grid plus a scalar as the input,
and a 150 by 150 grid as the output.

In order to build a surrogate, we first reduced the dimensionality of the inputs and outputs
(figure 3). We converted the input grid to two vectors ru(t) and rl(t) containing the distances from
the centre (y = 0) to the top or to the bottom lumen wall, where the half-width of the artery in
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Figure 2. (a) Input (artery geometry, in red) and (b) output (shear stress) of the blood flowmodel.
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Figure 3. Converted input (a) and output (b) for the upper and lower halves of the flow domain, of the micro model to
vectors of dimension 150. (Online version in colour.)

figure 3a is computed by

ru
x(t) = (75 − nu

x(t)) × 10−2 (mm)

and rl
x(t) = (75 − nl

x(t)) × 10−2 (mm),

⎫⎬
⎭ (2.1)
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Figure 4. UQmethods: at eachmodel run i, uncertainmodel inputs ξj (for 1≤ j ≤ dwith d the number of inputs) take a value
according to their distributionpξj , and amodel resultu

(i)
tend is obtained. After collectingN outputs, theprobability density function

put of model results is computed. In this work, d = 3 with ξ1 flow velocity (m s−1), ξ2 maximum deployment depth (mm), ξ3
endothelium regeneration time (days), and pξ1 = U(0.432, 0.528), pξ2 = U(0.09, 0.13), pξ3 = U(15, 23), where U(a, b) stands
for a uniformdistributionwith [a, b] the rangeof possible values. Themodel responseut is the cross-sectional area. (a) Black-box
Monte Carlo and (b) semi-intrusive metamodelling approach.

where nu
x(t) and nl

x(t) are the numbers of SMCs in column x (figure 2a) in the upper or lower part
of the domain, respectively, at a simulation time t. Each of these vectors ru and rl are of size 150,
i.e. ru = (ru

1 · · · ru
150) and rl = (rl

1 · · · rl
150), and we consider them as two separate inputs with the

same blood flow velocity value. Correspondingly, we consider the top and bottom halves of the
output separately.

As the macro model uses only the shear stress value at the arterial wall, we similarly converted
the original WSS output to two vectors of length 150 describing the shear stress at the top and
bottom walls as a function of horizontal position (figure 3b).

3. Uncertainty quantification
Monte Carlo (figure 4a) is a general and straightforward method for uncertainty propagation.
However, if the model execution takes a significant amount of computational time, such methods
can become prohibitively expensive. Since multiscale models are usually computationally
demanding, we proposed a family of semi-intrusive UQ methods for multiscale models in [4].

In the metamodelling approach (figure 4b), the algorithm is similar to a usual Monte Carlo
method, but instead of the original micro model there is a surrogate, obtained by building a
simplified and computationally cheaper version of the model, or applying a data-driven approach
using a collection of samples of size Ntrain. In this way, we approximate only the micro model
function and keep the original macro model. When the sensitivity of the model’s predictions to
the output of the micro model is low, or when the metamodel mimics the result of the original
micro model well, only a small error in the output will be introduced. And even more so, for
UQ, where we are mainly interested in the average model output and its uncertainties, we could
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Table 1. Settings for the two data-driven metamodels used in the study.

parameter notation DD metamodel 1 DD metamodel 2

number of inputs with the gradients to
the left and right

m 10 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

training sample size Ntrain 10 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of neighbour points in space to
the left and to the right, which were
used to increase the dataset

n 15 5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tolerate errors in the metamodel without too much influencing the estimates of the average model
output and its uncertainties.

(a) Physical metamodel
We developed a metamodel based on a simplified representation of the fluid dynamics. In this
model, we assume that the blood flow is a two-dimensional Poiseuille flow in a pipe. The WSS in
this case is

WSS = 2μv

r
, (3.1)

where μ = 4 × 10−3 (Pa s) is the dynamic viscosity, v is the maximum velocity (m s−1) and r is the
radius of the pipe (m).

The simplified-physics metamodel assumes that fluid flow at any given point in the artery has
such a parabolic profile, as if that slice of the artery was a slice of a long pipe with a diameter
equal to the local width of the artery. Consequently, we calculated the distance from the centre to
the upper or the lower artery wall r by equation (2.1), and then applied equation (3.1) to calculate
the local WSS.

(b) Data-driven metamodel
The data-driven surrogate model predicts the WSS at a point in space x based on the nominal
blood flow velocity, the local half-width of the channel (rx), and the local shape of the channel
represented by the vector

Sx = (rx − rx−m, . . . , rx − rx−1, rx+1 − rx, . . . , rx+m − rx),

where for points past the edge of the domain, i.e. if x − i < 1 or x + i > 150, the value for rx−i or rx+i
is set to equal r0 or r150, correspondingly. The choice of the number of neighbourhood points m is
critical. If the value of m is close to 150, information on the geometry is preserved. On the other
hand, if m is close to 0, the input dimensionality of the metamodel is low; therefore, the metamodel
requires a lower training dataset and produces predictions in a shorter computational time.

In order to obtain training data, the ISR2D model was run Ntrain times with different values
of the uncertain model inputs (as in figure 4a with N = Ntrain). At each simulation, the values of
input and output of the blood flow model were saved, and then converted to one-dimensional
vectors as described above.

For each coordinate x, the metamodel was trained using flow velocity, rx′ and Sx′ from all
recorded Ntrain runs corresponding to the current simulation time, where x′ ∈ {x − n, . . . , x + n}.
Using these n neighbour points as well increases the training sample size, resulting in better
predictions. Thus, the total size of the training data for each metamodel was Ntrain(2n + 1).

Predictions were made using the nearest-neighbour interpolation method1 with different
values of m, Ntrain and n. After some initial experiments to determine reasonable values of these

1We used the nearest-neighbour interpolation from the Python-based ecosystem SciPy [21].
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metamodel parameters, we built two data-driven metamodels with different settings, in order to
study the trade-off between the computational requirements of collecting training data and the
resulting prediction quality. Table 1 contains the settings we used in this work.

(c) Sampling
The reference solution by QMC was obtained by sampling 960 model results with different values
of uncertain model inputs [15]. We followed the same sampling procedure for the metamodelling
cases, collecting 960 samples for each case, with input parameters generated using a Sobol
sequence. We used the Sobol library [22] to generate the Sobol quasi-random sequences [23].

4. Results
Here we present a comparison of computational performance and accuracy of the results obtained
by the different UQ methods discussed above, as compared to the black-box Monte Carlo
results [15].

Our main goal for the metamodelling method is to reduce the computational burden of a given
model, in order to make UQ feasible. Figure 5 shows the time needed for a single model run using
each of the four UQ methods: the quasi-Monte Carlo (QMC), the data-driven metamodels (DD
meta I and II) with two different settings according to table 1, and the metamodelling by the
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methods by data-driven (DD meta I and II) approach and by simplified physics (phys meta).

simplified physical surrogate. The light colours indicate the total execution time of the whole
multiscale model, and the dark colours indicate the portion of the time taken by the micro model
or surrogate. For the metamodelling methods, the indicated time includes the construction of the
metamodels. DD meta I reduces total run-time by almost half. DD meta II, which uses less data,
is faster still, at five times the speed of the original. The physical metamodel is fastest, but only by
a small margin over DD meta II.
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Improved performance is only useful, however, if the results are still sufficiently accurate.
Figure 6 contains the results of the uncertainty estimation (mean value and standard deviation)
of the ISR2D model’s output, the cross-sectional area of the neointima, by different UQ methods.
The results show all metamodels producing less growth than the reference model, but there is still
a large overlap in the estimated uncertainty areas. DD meta I, the slowest metamodel, is closest
to the reference solution, and the faster DD meta II shows only a slightly worse result than DD
meta I. The physical metamodel shows the largest deviation.

Figure 7 contains a more detailed analysis of the results obtained by the four UQ methods.
Figure 7a shows the estimated mean value obtained from the four methods, with the 95%
bootstrap confidence interval [24] plotted as a red shaded area around the results from the QMC
method. All three metamodelling results show a statistically significant underestimation of the
mean value (two-valued t-test, p < 0.01).

ISR2D is subject to both epistemic and aleatoric uncertainty. Some model inputs are uncertain
due to lack of knowledge, and the model is also stochastic itself because it simulates the natural
variability of the process of interest. We estimated the total standard deviation, as well as an upper
bound of the partial standard deviation due to aleatoric model uncertainty2. As figure 7b shows,
the metamodelling estimates are high, but for the data-driven metamodels still within the 95%
confidence interval of the QMC result.

The coefficients of variation (CoV) shown in figure 7c are equal to the ratio between the
(partial) standard deviation and the mean value, and are a measure of the relative model
output uncertainties. Here we observe that the underestimation of the mean value leads to the
overestimation of the CoV.

Figure 7d–g shows the distribution of the cross-sectional areas at the final simulation time step.
The dashed vertical line indicates a restenosis threshold, defined as 50% occlusion of the original
lumen area [26]. Thus, about 9.7% out of all samples obtained by QMC result in restenosis. The
data-driven metamodel results are about half this value. The results with the physical metamodel
shows a result of only 1.8%, and a shift of the probability density function to the left is visible.

5. Discussion
Our results show that the metamodelling method for UQ can result in significant reduction of
computational time in comparison with the black-box QMC method. Our fastest metamodel
reduced the time taken by the blood flow calculations by a factor of 20, reducing the overall
compute time by a factor of 5. For the three-dimensional version of the ISR model, the blood
flow calculations take up a much larger fraction of the compute time, which would result in an
even larger improvement. For computationally expensive three-dimensional multiscale models,
our semi-intrusive multiscale UQ methods may be the only viable solution to perform UQ in a
reasonable time frame, even if large-scale computing environments are available.

This performance improvement did result in reduced accuracy of the estimated mean values
and uncertainties. We found a statistically significant lower mean cross-sectional area for all
metamodels (p < 0.01), as well as larger standard deviations. The overall difference, although
statistically significant, is fairly small, however, with the mean final cross-sectional area produced
by the best metamodel only deviating by 7.3%, which is much less than the 25% overall
uncertainty in the original model’s output. The best final standard deviation differed by 3.8%.
This result matches well with our previous results [15], which showed that the overall output
of ISR2D is relatively insensitive to the output of the blood flow submodel. We hypothesize that
our metamodelling approach to multiscale UQ can be very beneficial for those multiscale models
where the sensitivity to the output of their micro scale model is relatively small, in comparison to
sensitivities to the uncertain parameters in the rest of the multiscale model. We intend to explore
this in more detail in future work.

2The upper bound of the partial standard deviation was measured by obtaining the partial variance using Saltelli’s
method [25], and taking the square root of the obtained quantity.
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Whether a given level of error is acceptable depends on the application. For ISR, ultimately
what matters is whether a restenosis has occurred, as this necessitates further treatment. The
estimated probability of this occurring, given the input parameters and their uncertainties, is
9.3% according to the original model, and 5.3% according to the best metamodel, a difference that
would be considered too high in clinical practice.

This suggests that, in order to obtain an accurate UQ of a three-dimensional model of ISR,
several challenges will have to be met. The metamodel needs to be improved to the point
where the probability of restenosis can be estimated accurately, by improving the surrogate
model structure, by using more training data, or by some kind of bias correction. For the three-
dimensional version of the model, a further complication is that running a black-box QMC UQ is
computationally very hard, so that the metamodel will have to be validated in a different way. In
our previous work [4], we developed several semi-intrusive methods for UQ that can work under
these constraints, and we plan to explore those in future work.

In conclusion, the semi-intrusive multiscale metamodelling is an efficient method to estimate
uncertainty in the model response, when the model is composed of single-scale components.
Moreover, the method can be standardized when it is applied in combination with the data-driven
approaches, or can be a specific model together with simplified physics surrogate models.
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