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In synthetic biology approaches, lipid vesicles are widely used as protocell

models. While many compounds have been encapsulated in vesicles (e.g.

DNA, cytoskeleton and enzymes), the incorporation of glycocalyx com-

ponents in the lipid bilayer has attracted much less attention so far. In recent

years, glycoconjugates have been integrated in the membrane of giant unila-

mellar vesicles (GUVs). These minimal membrane systems have largely

contributed to shed light on the molecular mechanisms of cellular processes.

In this review, we first introduce several preparation and biophysical charac-

terization methods of GUVs. Then, we highlight specific applications of

protocells investigating glycolipid-mediated endocytosis of toxins, viruses

and bacteria. In addition, we delineate how prototissues have been

assembled from glycan-decorated protocells by using lectin-mediated cross-

linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides).

In future applications, glycan-decorated protocells might be useful for inves-

tigating cell–cell interactions (e.g. adhesion and communication). We also

speculate about the implication of lectin–glycoreceptor interactions in

membrane fusion processes.
1. Introduction
Since the mid-twentieth century, scientists from different disciplines such as

chemistry, physics and biology have devoted enormous efforts to build an arti-

ficial cell, which would ideally present several features of cellular life, e.g. self-

maintenance, self-reproduction and evolvability [1–3]. Creating an artificial

cell, also termed protocell [4–6], which provides most of the above-mentioned

properties, is extremely difficult and has not been accomplished yet. In a

bottom-up approach, non-living components are assembled together to form

an ensemble that can replicate the cellular life [7,8]. The concept is to start

with a simple and limited number of constituents and then increase the com-

plexity of the ensemble by integrating more and more natural or synthetic

building blocks in order to fill the gap between non-living and living worlds

[7,9]. Extensively used building blocks for protocell construction are lipid

vesicles, also called liposomes (figure 1a).

In the aqueous environment, distinct lipids such as phospholipids self-

assemble into free-standing lipid bilayer spheres due to their geometric shape

(in particular, cylinder-shaped) and amphiphilic nature (consisting of a polar

water-soluble head group attached to a water-insoluble hydrocarbon tail)

[10,11]. Since vesicles possess physical and chemical properties related to cellu-

lar membranes, such as interaction with the surrounding environment

(permeability) and physical integrity (stability), they are well suited as an arti-

ficial membrane model to rebuild a native cell [4,12]. Moreover, cellular

constituents such as RNA/DNA or enzymes, which are reproduction and

evolutionary factors in living cells, can be incorporated in vesicles (figure 1a).
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Figure 1. The protocell concept. (a) Assembly of non-living matter such as lipid vesicles, genomic factors (e.g. DNA/RNA) and other cellular components (e.g.
proteins) in a bottom-up approach to build a protocell. (b) Protocells can be varied with respect to the membrane composition to reconstitute different aspects
of native cell membranes such as the coexistence of different domains (lipid rafts) or leaflet asymmetry. Moreover, membrane components such as glycoconjugates
or transmembrane proteins as well as cytosolic components (e.g. actin filaments) can be incorporated into protocells. (Online version in colour.)
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A more detailed review about experimental endeavours for

encapsulating life encoders into vesicles can be found in [1,7].

Cellular membranes are selective barriers, which allow

the uptake of essential nutrients and the transfer of ions

necessary for cellular metabolism and maintenance. As they

also protect the cellular body from foreign matter, mem-

branes play a vital role in cellular life. The cell membrane

was first postulated as a bi-dimensional fluid formed as a

lipid bilayer in which proteins are homogeneously distribu-

ted [13]. Over time, several experimental evidences mostly

based on in vitro assays of detergent solubilization supported

the idea that distinct lipid domains may exist in biological cell

membranes [14,15]. These findings were finally concluded in

the ‘lipid raft’ hypothesis, which proposes the existence of

membrane domains that are enriched in specific lipid species,

in particular in sphingomyelin (SM) and cholesterol, and

associated with special types of proteins [16]. It is supposed

that raft domains dynamically form and dissociate in the exo-

plasmic leaflet and function as a platform for membrane

signalling and trafficking [17–19].

Glycosphingolipids (GSLs) are components of biological

membranes, which consist of a ceramide backbone covalently

attached to carbohydrate moieties. In the exoplasmic leaflet,

GSLs are mostly associated with ordered membrane domains

(e.g. lipid rafts or caveolae), together with SM and cholesterol

[16,20–22]. The carbohydrate parts of GSLs are exposed to

the extracellular environment and act as receptors for carbo-

hydrate-binding proteins, so-called lectins. GSL-enriched

domains are involved in cell–cell communication and cell
adhesion [16,23]. In addition to these functions, host GSLs

can be hijacked by several pathogens and pathogenic

products (e.g. toxins) in order to gain access to cells [24,25].

Decorating protocells with natural and synthetic glycocon-

jugates represents a novel direction in the emerging field of

synthetic glycobiology and will allow scientists to enlighten

their understanding of several biological processes such as

endocytosis and cell adhesion. In this review, we briefly

explain some production and characterization methods of

lipid-based protocells and then highlight recent achievements

using glycan-decorated protocells in basic science.
2. Preparation and characterization of protocells
A protocell can be described as a confined object comparable

in size to cells. Vesicles can be produced in various sizes from

tens of nanometres to tens of micrometres. Giant unilamellar

vesicles (GUVs) with sizes ranging from 5 to 50 mm represent

the most popular biomimetic systems that resemble mamma-

lian cells. The hydration method [26] is a conventional and

relatively simple technique to form vesicles; however, it

usually yields multilamellar vesicles. Over time, several

other techniques like electroformation [27,28], gel- [29] or

paper-assisted hydration [30], inverted emulsion [31] and

microfluidics [32,33] have been developed to produce vesicles

in a more efficient and controllable manner, and to assemble

more complex GUVs. Figure 1b depicts various lipid-based

protocells that can be established by modifying the
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Figure 2. Selected characterization methods of GUVs. Fluorescence microscopy techniques can be used to visualize and quantify protein binding to a lipid vesicle in
different cross sections. Preferential partitioning of fluorescently labelled molecules into different lipid phases (liquid-disordered or liquid-ordered) can be monitored.
Different physical properties of membranes can be assessed by several micromanipulation techniques, e.g. micropipette aspiration (solely or in combination with
optical tweezers), optical trapping of beads or entire GUVs and atomic force microscopy (as parallel plate compression or local indentation measurement. (Online
version in colour.)
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membrane composition and/or encapsulating biological or

chemical components. Liquid-ordered domains (Lo), which

are considered as artificial structures resembling lipid rafts

in cell membranes, can be reconstituted in protocells by

mixing three lipid components, a low melting temperature

lipid (e.g. dipalmitoylphosphatidylcholine, DOPC), choles-

terol and SM as high melting temperature lipid. The

fabrication of GUVs with an asymmetric lipid bilayer

(containing different lipid species in the inner and the outer

membrane leaflets) [34,35] or the encapsulation of cyto-

skeletal proteins [36,37] are other cases of increased

complexity. Incorporation of natural or synthetic glycolipids

[38,39] to GUVs can be achieved with all common GUV

preparation techniques by usually mixing the glycolipid

with other lipid species. At low concentrations of glycolipids,

they are normally fully dispersed in the GUV membrane. The

reconstitution of functional membrane proteins into GUVs is

yet more challenging [40,41]. High yield GUV production in

more relevant physiological solutions [42–45] and recently

in phosphate-buffered saline [46] represents other attempts

to bridge from protocells to native cells.

Since the first establishment of GUVs, their basic proper-

ties such as size, shape and uniformity could be non-

destructively measured by conventional optical microscopy

techniques like phase contrast microscopy [45]. The lamellar-

ity of GUVs is generally judged based on the fluorescence

intensity measurements of fluorescently labelled GUVs [45],

although a label-free optical method based on differential

interference contrast was proposed to measure the GUV

lamellarity [47]. Taking advantage of fluorescent labelling
of lipids and proteins, many studies, including most of

those cited in §3, have been conducted using different

fluorescence microscopy techniques.

A small portion of fluorescently labelled lipids can be

easily added to the lipid composition as a membrane

marker. By optical sectioning microscopies, such as confocal

microscopy, the dynamics and binding efficiencies of fluores-

cently labelled proteins (with different excitation/emission

wavelengths compared with the membrane marker) can be

quantified by measuring the (mean) intensity of fluorescent

signals from cross sections of GUVs (figure 2). Automated

programmes for detection, tracking and computation of

protein binding to GUVs have facilitated the quantitative

analysis of a huge number of microscopy datasets (as

images or movies) [48,49].

Despite notable advancements in experimental tech-

niques, in particular in high-resolution fluorescence

microscopy, the direct observation of membrane domains in

native cellular membranes remains challenging, and thus

the lipid raft hypothesis is still a topic of debate [50,51].

Nowadays, lipid rafts in cell membranes are defined as

dynamic, nanometre-sized domains [19]. In membrane

model systems, such as GUVs, the demixing of membrane

components in more ordered (liquid-ordered, Lo) and less

ordered (liquid-disordered, Ld) domains has been reported

about two decades ago [52]. The coexistence of different

phases with sizes above the optical resolution (greater than

200 nm) can be perceived due to preferential partitioning of

different membrane markers in different phases [52–55].

Even though liquid-ordered domains in model membranes
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are considered as simplified equivalents of native lipid rafts,

we feel obliged to remark the discrepancy in size and in com-

position. The dynamics of ordered, ‘raft-like’ domains in

GUVs can be studied by various fluorescence microscopy

techniques, e.g. fluorescence recovery after photobleaching

(FRAP) or, in molecular detail, by fluorescence correlation

spectroscopy (FCS) [56,57]. FCS offers a less destructive

method with limited photobleaching and phototoxicity com-

pared to FRAP [57]. Partitioning of GSLs in different phases

can also be studied in GUVs. Fricke & Dimova [58] demon-

strated the coexistence of liquid-disordered and gel-like

phases in GUVs at room temperature in the presence of

monosialotetrahexosylganglioside (GM1) (above 5 mol%) by

fluorescence microscopy. In accordance, liquid-ordered/

liquid-disordered coexistence induced by the GM1 receptor

was reported in [59].

In many cellular processes, e.g. cell division, autophagy

and endocytosis, the cell and, particularly, the cell membrane

undergo drastic morphological changes that are inevitably

linked to membrane elastic properties. As a pioneering

work [60], Helfrich proposed that the total elastic energy of

a vesicle is a combination of stretching (i.e. change in area)

and bending (i.e. change in curvature) energies. The

unknown mechanical parameters in Helfrich’s theory are

membrane tension (for stretching energy term), bending

rigidity and membrane spontaneous curvature (for bending

energy term). Afterwards, a significant number of theoretical

[61,62] and experimental [63–65] studies have been inspi-

red by Helfrich’s theory to measure the above-mentioned

properties for fluid membranes. The free-standing giant

vesicles with no steric constraint were used as a popular

protocell model.

The membrane spontaneous curvature is influenced by

any kind of asymmetry across the lipid bilayer. Ideally,

when a membrane has perfectly symmetric inner and outer

leaflets, symmetric transmembrane compositions and, more-

over, the inner and outer solutions have a symmetric

distribution of ions or particles, the membrane spontaneous

curvature is zero [66]. Although the membrane spontaneous

curvature is clearly not zero in biological membranes, most

experimental works on GUVs have focused on measuring

bending rigidity and membrane tension [64]. The reason

was the limitation of experimental techniques that cannot

simultaneously assess the bending rigidity and spontaneous

curvature. The micropipette aspiration (MA) approach

[67,68], where the vesicle surface is aspirated into a micropip-

ette by applying a defined suction pressure [69,70], is the

most common micromanipulation technique to measure

membrane tension and bending rigidity of vesicles. The

membrane tension and area expansion modulus can be deter-

mined from the vesicle radius, pipette radius and length of

the aspirated part for an applied pressure (figure 2). At low

tension (less than 0.5 mN m21), the bending rigidity can be

computed from the slope of the logarithm of the tension

versus area expansion modulus [65,71]. Using the MA

method, Lu et al. [71] interestingly reported that the

bending modulus and area expansion modulus of synthetic

asymmetric lipid bilayers were up to 50% larger than the

values acquired for symmetric bilayers. Pulling outward

membrane tubules from aspirated GUVs (figure 2) by

trapped beads with electromagnetic field [72] or optical

tweezers (OTs) [73] has enabled the direct measurement of

bending rigidity independent of area expansion and,
consequently, can be used to characterize stiffer GUVs (e.g.

multicomponent fluid vesicles displaying higher membrane

tension) [72,73]. Combinations of MA and OT techniques

have been applied to glycan-decorated vesicles to study the

relation between membrane tension and endocytosis events

(membrane invagination, tubulation; further detailed in the

next section). Recently, Dasgupta et al. [74] presented a com-

bined MA/OT technique to pull inward and outward tubules

from GM1-containing GUVs to assess the spontaneous curva-

ture parameter generated by GM1 molecules. In a special

application of micromanipulation by OT [75,76], two trapped

micrometre-sized beads were attached to the vesicle surface

(figure 2). While one bead was kept fixed, the other bead

was moved to bend the membrane. Neglecting the membrane

stretching and knowing the trap stiffness and the displace-

ment between two beads, one can compute the membrane-

bending rigidity. With this approach, Dimova et al. [77]

could measure the elastic properties of dimyristoylphosphati-

dylcholine containing vesicles during transition from fluid to

solid (gel) phases. The whole GUV can be trapped and

stretched in a dual-beam optical trap to measure the bending

rigidity [78,79] and even the viscoelastic response of a vesicle

[80] (figure 2).

Even though less frequently applied than MA, atomic

force microscopy (AFM) has been employed in combination

with GUVs to study the mechanical properties of a lipid

bilayer [81]. Here, a micrometre-sized beam called a cantilever

(tipless or with a small tip) compresses the membrane

(figure 2). The deflection of the cantilever (which later con-

verts to force) and the indentation depth are measured. By

applying contact mechanic theories to measured parameters,

elastic properties can be quantified. Dieluweit et al. [82]

implemented AFM force measurements on protein-coated ves-

icles to determine the bending rigidity, although they reported

unsuccessful efforts for uncoated phosphatidylcholine (SOPC)

containing vesicles. Interestingly, the immobilization of GUVs

on substrates can assist the AFM force measurement. The

membrane tension and area compressibility modulus of

empty and actin-encapsulated phosphatidylcholine (DOPC)

vesicles have been measured by performing AFM force

measurements on sessile GUVs [83,84]. To our knowledge,

there exists no AFM study to examine the mechanics of

glycan-decorated protocells, despite of the fact that

AFM-based theoretical [85] and experimental [86] works

have investigated the role of the glycocalyx layer in cell

mechanics.

For more detailed literature and further characterization

methods like optical microscopy-based techniques (e.g. fluc-

tuation spectroscopy or membrane deformation induced by

an electric or magnetic field), readers are referred to

comprehensive reviews [64,65] and references therein.
3. Application of glycan-decorated protocells
in endocytosis

Multiple endocytic pathways, such as phagocytosis, macro-

and micropinocytosis (including clathrin-dependent and

caveolin-dependent endocytosis, CLIC/GEEC pathway and

others), have been proposed to function in eukaryotic cells

[87–90], whereby extracellular molecules/particles (e.g.

nutrients, growth factors and also pathogens) as well as

plasma membrane constituents are internalized. In general,
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an endocytic process starts with the segregation and concen-

tration of molecules at the plasma membrane, which leads to

a local change of membrane shape. For clathrin-dependent

pathways, it is well known that the recruitment of several

molecular machineries (e.g. clathrin coats and dynamin)

induces inward membrane bending to form a clathrin-

coated pit. However, membrane bending and formation of

membrane invaginations can also occur in the absence of

molecular regulators as proposed in clathrin-independent

mechanisms [91]. Finally, the membrane pit/invagination is

detached from the membrane and specifically transported

as vesicle to intracellular destinations. Saleem et al. [92] recon-

stituted clathrin assembly by employing GUVs and observed

that clathrin polymerization and membrane budding are

counteracted by membrane tension. In another example of

using GUVs to study endocytosis processes, Roux et al. [93]

showed that polymerization of dynamin, which plays a role

in the formation of endocytic vesicles through membrane fis-

sion, generates enough force to deform GUV membranes at

low membrane tension. The BAR domain protein endophilin

A1, which is another protein involved in clathrin-dependent

endocytosis, induced the growth of membrane buds and

tubulation on flaccid GUVs [94]. Above-mentioned studies,

which have been performed on GUVs, highlight the role of

proteins that are involved in the well-known clathrin-

dependent endocytic pathway. But could GUVs be employed

in studies, which aim at elucidating clathrin-independent

mechanisms, for instance lipid-driven endocytosis?

The discovery of gangliosides (i.e. GSLs containing one

or more sialic acids) as receptors of several bacterial toxins

dates back to 40 years ago [95,96]. For instance, GM1 and

GD1b are specifically bound by cholera toxin (CT) and teta-

nus toxin, respectively [95,97]. The specific binding of these

toxins to gangliosides associated with lipid raft domains

activates a cascade of signalling events, which leads to

toxin internalization into host cells. Also in this field,

bottom-up synthetic approaches have been proved useful

for elucidating the molecular mechanisms of toxin uptake.

Preparation of vesicles containing the glycolipid of interest

made it possible to investigate the role of toxin–receptor

interactions leading to uptake. The ganglioside GM1 is

targeted by CT, which is secreted by the bacterium Vibrio
cholera, one of the main responsible for diarrhoea disease

[98,99]. The fully assembled CT consists of a catalytic

A-subunit (CTA) and a non-toxic, pentameric B-subunit

(CTB), which mediates the internalization of the toxin

into intestinal epithelial cells, probably through multivalent

binding of (up to five) GM1 receptors [99].

Using fluorescently labelled GUVs, Hammond et al. [100]

demonstrated that the binding of CTB to GM1 receptors sep-

arates the membrane into raft-like (liquid-ordered, Lo) and

non-raft (liquid-disordered, Ld) phases even though the ves-

icle membrane had initially one uniform phase (either Lo or

Ld). The authors also observed that CTB–GM1 complexes

partitioned into Lo domains, which was consistent with the

belief that GM1 receptors are associated with raft domains

[100]. It has been reported that GM1 also functions as the

natural receptor for simian virus 40 (SV40), which binds via

its pentameric VP1 capsid proteins [101]. Ewers et al.
showed that SV40-like particles (composed of 72 VP1 pro-

teins) induce the formation of tubular membrane

invaginations in energy-depleted GM1-expressing cells

[102]. To prove the sufficiency of SV40–GM1 interactions
for the formation of membrane invaginations, the authors

prepared GUVs containing different GM1 receptor species

(i.e. natural and synthetic ones mainly differing in the fatty

acyl chain length and degree of saturation) and observed

membrane tubulation only for specific GM1 species. Mem-

brane-phase separation and Lo/Ld domain formation

occurred shortly after SV40 binding to GM1 [102], as observed

for CT [100]. Finally, a clathrin-independent, lipid-mediated

mechanism was proposed as SV40 initiates its internalization

process by inducing membrane curvature through multi-

valent binding of its VP1 pentamers to host cell GM1

receptors [102].

Shiga toxin (Stx), which is produced by Shigella dysenteriae
and enterohaemorrhagic Escherichia coli strains, is another

prominent example, where the application of protocells has

largely contributed to a better understanding of toxin

uptake. Similar to CT, Stx is composed of a toxic A-subunit

and a receptor-binding B-subunit. The homopentameric

B-subunit of Shiga toxin (STxB) specifically binds up to 15

globotriaosyl ceramide (Gb3; also known as CD77 or the Pk

blood group antigen) molecules [38,103]. Römer et al. studied

StxB-induced tubular membrane invaginations in cells and

GUVs. StxB-triggered Gb3 clustering led to the formation of

membrane tubules in vesicles with lower membrane tension.

By contrast, StxB formed micrometre-sized domains when

highly tensed vesicles were used [104]. By probably similar

mechanisms, the fucose-binding bacterial lectin RSL from

Ralstonia solanacearum is able to induce tubular membrane

invaginations in GUVs containing fucosylated glycolipids

(figure 3) [106].

When investigating the interactions of the StxB-binding

site mutant W34A with GUVs containing a natural mixture

of Gb3 receptors, neither Gb3 clustering nor domain for-

mation could be observed, despite adequate StxB binding

to GUVs. The result was similar for wild-type StxB binding

when the saturated Gb3 species Gb3-C22 : 0 was used as

single receptor molecules, demonstrating that the formation

of membrane invaginations crucially depends on toxin struc-

ture and valency as well as on receptor structure [104]. The

impact of the configuration of the 2OH group of the fatty

acyl chain in Gb3 receptors on StxB-induced membrane tubu-

lation was demonstrated in [107]. The subtle change in

chirality of the receptor altered membrane organization and

consequently the propensity of tubule formation [107]. Simi-

larly, it has been shown that engineered RSLs (neoRSLs) with

controlled number (0–6) and position of binding sites bound

to glycolipid-containing GUVs, but differed in inducing

tubular membrane invaginations [106,108].

Furthermore, the impact of actin polymerization on the

scission of STxB-induced endocytic membrane tubules in

the absence of dynamin was demonstrated using GUVs

[109]. Polymerizing actin supplies additional mechanical

stress in synergy with already generated stresses at the

boundary region of membrane domains (formed by StxB)

and favours the scission process [109].

As the formation of membrane invaginations has been

observed for several bacterial toxins and viruses, the question

arose if also the much bigger bacteria exploit this concept of

glycolipid-mediated entry into host cells by receptor cluster-

ing. Eierhoff et al. [110] showed the engulfment of the

bacterium Pseudomonas aeruginosa into Gb3-containing GUVs

when the bacterium expresses the tetrameric, Gb3-binding

lectin LecA.
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Figure 3. Lectin-induced membrane invaginations. GUVs containing the synthetic fucosylated glycolipid FSL-Lewis a were incubated with Cy3-labelled RSL (200 nM,
red colour). Confocal microscopy images from the equatorial plane of GUVs show lectin binding to the membrane (labelled with beta-BODIPY FL C5-HPC, green
colour) as well as inward membrane tubulation. GUVs were composed of DOPC/cholesterol/FSL-Lewis a/beta-BODIPY FL C5-HPC (64 : 30 : 5 : 1 mol%) and prepared
by the electroformation [105] technique. Scale bar: 5 mm. (Online version in colour.)
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In this section we have highlighted some applications of

protocells to gain a more detailed understanding of endocyto-

sis processes. For more details, especially about lipid-driven

endocytosis, we refer readers to previously published reviews

[105,111,112]. Except for the combined MA/OT techniques,

which have been used in above-mentioned examples

[92,93,109], other micromanipulation techniques can be

applied to study, for example, phagocytosis in artificial mem-

brane systems. Meinel et al. [113] investigated energy and force

profiles during the uptake of an optically trapped bead into

GUVs. In this study, the authors used uncoated beads, and

GUVs were made from egg-PC lipids. In future studies, the

physical interactions of lectin-coated beads (to mimic a bacter-

ium) with glycolipid-containing GUVs (to mimic the host

plasma membrane) would be a logical extension of this

work. Similarly, AFM cantilevers can be functionalized with

lectin-coated beads and adhesion forces with glycan-contain-

ing vesicles can be recorded. These studies would reveal

further insights into the role of bacterial lectins and host cell

glycans in the attachment and uptake of bacteria.
4. Assembly of prototissues by protocell
cross-linking and adhesion

In multicellular organisms, cell adhesion to neighbouring

cells or the extracellular matrix is very crucial for the integrity

and maintenance of tissues and organs as well as for cellular

processes such as migration or tissue development. In several

diseases like cancer [114,115] or arthritis [116], cell adhesion

is aberrantly transformed. Moreover, to initiate bacterial

and viral infection, bacteria or viruses first need to adhere

to host cells, which is very often established by lectin–

carbohydrate interactions [117]. The cell adhesion

phenomenon is mainly mediated by the interaction of trans-

membrane proteins called cell adhesion molecules (CAMs),

which are classified into four groups: cadherins (Ca2þ-depen-

dent adhesion molecules), immunoglobulin-like CAM

superfamily, integrins and selectins [118]. Selectins are carbo-

hydrate-binding molecules, which facilitate the attachment of

two different cell types (heterotypic adhesion). For instance,

during an inflammatory response, activated endothelial

cells express E-selectin molecules on their surface. The inter-

action of E-selectin with glycoproteins of circulating

leucocytes in the blood slows down the leucocyte motion.
Hence, more leucocytes attach to the endothelial layer of

blood vessels and therefore leave the blood stream towards

inflammatory locations [116]. The heterodimeric integrins

represent another type of cell adhesion molecules that func-

tion as attachment regulators to the extracellular matrix and

as a signal transmitter from the extracellular environment

into the cell, and vice versa [119]. For instance, integrins are

involved in cell migration, extracellular matrix assembly, cell

growth and proliferation [120,121]. They specifically interact

with the RGD peptide of extracellular macromolecules such

as fibrinogen or fibronectin [122].

Studying the interaction of receptor-containing giant ves-

icles with ligands immobilized on a surface or diffusing in a

supported lipid bilayer can mimic cell–matrix and cell–cell

adhesion processes, respectively [123]. The integrin–RGD

interaction was reconstituted by incorporating a fluorescently

labelled RGD peptide into vesicles, which then adhered to an

integrin-functionalized substrate [124]. Reflection interference

contrast microscopy (RICM) and its modifications represent

techniques to quantify inter-surface distances and membrane

fluctuations [123,125,126], and therefore provide quantitative

information about different stages of adhesion (nucleation,

spreading until saturation). Simple membrane models like

GUVs with a controllable lipid composition are well-suited

samples for RICM to measure adhesion kinetics of strong

(e.g. biotin–streptavidin [127]) or weak (e.g. E-selectin to a

glycolipid carrying sialyl-LewisX (SLex) [128]) interactions.

For instance, growth kinetics of the adhesion area of integ-

rin-containing GUVs on a fibrinogen-coated substrate have

been measured by RICM [122]. In a recent publication, prefer-

ential partitioning of platelet integrin aIIbb3 into Ld domains

of phase-separated GUVs has been observed in both inacti-

vated and activated (presence of DTT and Mn2þ) states.

Fibrinogen binding to activated integrins did not change

the preference of the integrin aIIbb3 heterodimer to Ld

domains [129]. Moreover, homotypic cell–cell adhesion was

modelled by incorporation of epithelial cadherin (E-cadherin)

from the cadherin family into protocells and supported lipid

bilayers [130,131]. In the framework of another experimental

approach, spreading dynamics of GUVs comprising an actin

cortex on a substrate exhibited dependency on the density of

the cortical shell. Vesicles with sparse actin shell density

behaved like an empty vesicle, while the vesicle behaviour

was reminiscent of cells with high actin shell density [132].

The spreading behaviour of a novel type of protocells called
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Figure 4. Assembly of prototissues by lectin – glycan interactions. (a) Confocal sections of an arbitrary plane of a prototissue made by cross-linking Gb3-containing
GUVs (membrane marker: DHPE-TxRed, red colour) in the presence of Alexa488-labelled lectin LecA (200 nM, green colour). (b) Representative x – y, x – z and y – z
cross sections of the merge image of (a), demonstrating the attachment of most GUVs to the streptavidin-coated coverslip. (c) For better clarity, the saturated
adhesion patches of GUVs (same image as in (a) and (b)) are shown at z ¼ 0, as depicted in the schematic illustration. GUVs were prepared by electroformation
[105] with a lipid composition of DOPC/cholesterol/Gb3/DOPE-biotin/DHPE-TxRed (64 : 30 : 5:0.5 : 0.5 mol%). Scale bar: 5 mm. (Online version in colour.)
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droplet-stabilized GUVs (dsGUVs) on different matrices was

investigated. The integrin aIIbb3-functionalized dsGUVs

spread better on fibrinogen compared to fibronectin or

collagen matrices [133]. Not only through molecular binding,

vesicles can also adhere to the substrate by the electrostatic

interaction [134].

Furthermore, and without any doubt, multiple glycocalyx

components are involved in cell recognition and adhesion

[135]. To investigate the adhesion process, glycan-decorated

vesicles can be implemented to mimic the glycocalyx layer

of the cell surface. Stuhr-Hansen et al. [136] reconstituted

another component of the glycocalyx layer by integrating

synthesized, cholesterol-anchored glycopeptides into GUVs

and checked their accessibility with lectin binding.

The cooperativity between multiple eukaryotic cells and

the extracellular matrix in a tissue carries out a specific func-

tion that a single isolated cell is unable to fulfil. For years,

studies about minimal cell models have focused on single

protocells, and the cooperativity has not been addressed.

As a model for primitive cellular assemblies, a colony of

giant vesicles has been assembled by polypeptide-mediated

electrostatic attraction. Enhanced vesicle fusion and solute

capture on the colony surface, which are two principal mech-

anisms in living cells, have been observed compared to

isolated vesicles [137,138]. In nature, however, this cellular

cooperativity and communication are conducted by cell

adhesion molecules. For the first time, a network of protocells
has been recently assembled based on lectin–glycan inter-

actions. Using multivalent lectins with opposing binding

sites for carbohydrate moieties, Villringer et al. could cross-

link giant vesicles in a controlled (and reversible) manner

forming a mimic of cell–cell junctions (protocellular junc-

tions). Furthermore, cell–matrix adhesion was mimicked by

adhering cross-linked vesicles to a substrate via biotin–

streptavidin interactions. Hence, the authors succeeded in

engineering a stable prototissue from giant vesicles present-

ing both cell–cell and cell–substrate adhesion properties as

an important step towards synthetic minimal tissues. The

competition of repulsion forces (originating from the glycoca-

lyx coat that covers the cell surface) and specific ligand–

receptor attraction forces (lectin–glycan interactions in this

example) was mimicked by inserting different concentrations

of lipopolymers into GUVs [139]. Figure 4 displays a prototis-

sue, which was formed from GUVs containing the GSL

receptor Gb3 by cross-linking GUVs with the tetrameric

lectin LecA. The vesicles were carrying a small quantity of

biotinylated lipids in order to adhere to a streptavidin-func-

tionalized surface (figure 4b,c). In another study, Ribeiro

et al. engineered the first bispecific lectin (termed Janus

lectin) with two distinct recognition surfaces for fucosylated

and sialylated glycoconjugates, respectively. This bispecific

lectin could bridge protocells carrying two different types

of glycoconjugates and form a network of heterogeneous

protocells [140].
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biotinylated lipid
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Figure 5. Schematic illustration of prototissues and possible application of
micromanipulation techniques on prototissues. The schematic illustration
depicts protocell – protocell junctions and protocell – substrate adhesion in
a prototissue (not to scale). The protocell – protocell adhesion is regulated
by lectin – glycan interactions, while the protocell – substrate is controlled
by biotin – streptavidin attachment. The atomic force microscopy technique
might be applied to prototissues to measure membrane physical parameters
as discussed in §2 for single vesicles. (Online version in colour.)
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As discussed in §2, membrane physical parameters can be

investigated in single isolated vesicles using micromanipula-

tion techniques. We suppose that those techniques, for

instance AFM, can also be technically applicable to character-

ize single vesicles in prototissues. Comparison of measured

membrane physical parameters in prototissues to those in

single isolated vesicles might be used to study the effect of

adhesion (due to protocell–protocell or protocell–substrate

attachment) on lipid bilayer properties. Figure 5 displays a

schematic illustration of a prototissue formed from cross-

linked protocells. As in the experimental design, vesicles

are cross-linked to each other through binding of the tetra-

meric lectin LecA to the GSL Gb3 receptors from adjacent

vesicles. In cross-linked regions, clustering of lectin–receptor

complexes occurs and deforms the membrane. Attachment to

the substrate is provided by biotin–streptavidin interaction

(not all vesicles can adhere to the substrate due to the limited

space). The AFM cantilever can indent individual protocells

and provide quantitative information about membrane

mechanical properties.

Very recently, Bartelt et al. [141] were able to move GUVs

across a substrate by introducing asymmetry in the GUV–

substrate adhesion. This study represents a first step towards

the understanding of cell motility by using minimal protocells.
5. Application of protocells in membrane
fusion studies

As a simple description, membrane fusion is a process

whereby two separate lipid bilayers merge to become one.

This controlled membrane fusion process is essential for
basic cellular functions like uptake and transport of nutrients

or hormones (endo- and exocytosis), fertilization (fusion of

sperm and oocyte) and signalling in nerve cells (synaptic ves-

icle exocytosis) [142,143]. Membrane fusions of two

mitochondria or endosome membranes are some examples

of ubiquitous and continuous fusion processes between intra-

cellular compartments. Moreover, several viruses such as

HIV enter the cytosol and infect host cells by fusing their

viral envelope to the host’s membrane. Despite the diversity

of biological membrane fusion processes with respect to the

involved fusogenic proteins (SNARE superfamily [144], hae-

magglutinin [145]), the location (mitochondria, endosome or

cell plasma membrane) and the spatial (nano- to micro-sized

contact zone between two membranes) and temporal (millise-

conds to minutes) scale, it has been postulated that most

membrane fusion processes follow a similar order of events

nicely explained by the stalk model: first, two membranes

are brought into contact by specific tethering proteins. After

overcoming electrostatic forces, the lipids of the contact

zone are at a very close proximity and a local perturbation

of bilayer structure emerges. It is followed by the generation

of an intermediate neck (either hemifusion stalk or hemifu-

sion diaphragm, HD) and finally a fusion pore opens and

expands until two membranes become united [143,146,147].

To investigate protein–lipid interactions involved in the

membrane fusion process, synthetic membrane models have

been extensively implemented. The fusion of single large uni-

lamellar vesicles (LUVs, diameter of approx. 100 nm), which

carry fusogenic proteins, either with supported lipid bilayers

[148,149], the plasma membrane [150] or other LUVs [151],

has been studied with different analytical techniques. The

fluorescence resonance energy transfer (FRET) technique is

frequently applied in vesicle fusion assays. The principle

is based on the energy transfer level between a fluorophore

called donor and another one termed acceptor. The energy

transfer efficiency is inversely related to the distance between

them. The FRET efficiency will decrease if a liposome carry-

ing both donor and acceptor fluorophore fuses with a

non-labelled liposome indicating the increase of distance

between donor and acceptor and fusion-associated lipid

mixing [152]. Mixing of the content of liposomes is another

indirect evidence for membrane fusion. Two distinct vesicle

populations are differently loaded, each with one part of a

complex (e.g. TbCl3 and dipicolinic acid (DPA), respectively).

Upon vesicle fusion the Tb3þ/DPA complex is assembled,

which results in a much higher fluorescence intensity than

can be detected for Tb3þ alone [152].

However, due to their small size, LUVs could not provide

direct observation of intermediate steps of membrane fusion

processes in order to experimentally demonstrate the stalk/

hemifusion hypothesis. In contrast, fusion steps can be

directly observed and monitored by using GUVs in combi-

nation with optical (fluorescence) microscopy techniques

[153–155]. With the combination of micropipette aspiration

and optical video microscopy, two trapped GUVs were

brought into contact and the formation of the fusion neck

was imaged in a ligand-mediated fusion process [156]. The

formation and expansion dynamics of the intermediate

neck were also monitored in electroporation-based fusion

[156]. Moreover, the micrometre-sized HD formation in

viral peptide-induced fusion was observed in giant vesicles

[157]. Fusion of LUVs with sessile GUVs (i.e. immobilized

on the substrate) of different membrane tension in the
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presence of SNARE proteins showed an increase in fusion

efficiency for more tensed vesicles [158].

As mentioned in previous sections, glycans are important

in initial adhesion events between cells or cells and patho-

gens. Pathogenic virulence factors such as lectins that bind

to host cell glycans have not yet been shown to be implicated

in membrane fusion processes. However, modifying their

structure might turn them into fusogenic molecules.
 .org/journal/rsfs
Interface

Focus
6. Conclusion
Synthetic membrane models, such as GUVs, have been

proved in the past to be fairly helpful tools in mimicking

cellular membranes and hence in understanding cellular pro-

cesses. Nevertheless, we should be aware of and not ignore

that native membranes are highly complex systems consisting

of a multitude of lipid species and proteins that exhibit
specific functions. By integrating diverse glycoconjugates

(from glycolipids, over glycopeptides and glycoproteins

to proteoglycans) into the lipid bilayer of protocells, an

environment resembling the glycocalyx layer of native cells

is created. These novel features will allow mimicking and

grasping more complex cell adhesion and cell–cell communi-

cation processes in future studies and may finally lead to the

development of bioinspired applications and therapies.
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W, Blixt O. 2016 Synthesis of cholesterol-substituted
glycopeptides for tailor-made glycocalyxification of
artificial membrane systems. ChemBioChem 17,
1403 – 1406. (doi:10.1002/cbic.201600258)

137. Carrara P, Stano P, Luisi PL. 2012 Giant vesicles
‘colonies’: a model for primitive cell communities.
ChemBioChem 13, 1497 – 1502. (doi:10.1002/cbic.
201200133)

138. De Souza TP et al. 2017 Vesicle aggregates as a
model for primitive cellular assemblies. Phys. Chem.
Chem. Phys. 19, 20 082 – 20 092. (doi:10.1039/
C7CP03751A)

139. Villringer S, Madl J, Sych T, Manner C, Imberty A,
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