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Obligate brood-parasitic cheats have fascinated natural historians since ancient

times. Passing on the costs of parental care to others occurs widely in birds,

insects and fish, and often exerts selection pressure on hosts that in turn

evolve defences. Brood parasites have therefore provided an illuminating

system for researching coevolution. Nevertheless, much remains unknown

about how ecology and evolutionary history constrain or facilitate brood para-

sitism, or the mechanisms that shape or respond to selection. In this special

issue, we bring together examples from across the animal kingdom to illustrate

the diverse ways in which recent research is addressing these gaps. This special

issue also considers how research on brood parasitism may benefit from, and

in turn inform, related fields such as social evolution and immunity. Here, we

argue that progress in our understanding of coevolution would benefit from

the increased integration of ideas across taxonomic boundaries and across

Tinbergen’s Four Questions: mechanism, ontogeny, function and phylogeny

of brood parasitism. We also encourage renewed vigour in uncovering the

natural history of the majority of the world’s brood parasites that remain

little-known. Indeed, it seems very likely that some of nature’s brood parasites

remain entirely unknown, because otherwise we are left with a puzzle: if

parental care is so costly, why is brood parasitism not more common?

This article is part of the theme issue ‘The coevolutionary biology of

brood parasitism: from mechanism to pattern’.
1. Introduction
Parental care is a key aspect of the life history of many animals [1], including our

own species. It is perhaps not surprising then that we find it hard to forget the

sight of a small bird devoting its parental attention to a noisy and monstrously

large parasitic cuckoo chick that is so clearly, to our eyes, an imposter in the

nest. This reproductive strategy of having one’s offspring reared by another

species—brood parasitism—has fascinated naturalists and other curious minds

for centuries [2]. For example, Confucian texts from the sixth century BC

explained the reproductive habits of common cuckoos Cuculus canorus (the epon-

ymous brood-parasitic bird) as an opportunity for hosts to pay homage to an

exemplary ruler [3]. In the light of evolutionary theory (e.g. [4]), however, we

now know that the ‘exemplary ruler’ is a cheat, parasitizing the parental invest-

ment of host species. Such cheats have been of particular scientific interest as

striking and tractable examples of coevolution, the process through which two

or more species reciprocally affect each other’s evolution [4]: we can readily ident-

ify real selection pressures in the wild, and test them with field experiments. The

hallmarks of coevolution are its dynamism and its capacity to generate novelty, as
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each party experiences continually changing selection from a

nimble and ever-changing partner [5]. Our appreciation for

its power to shape beautiful adaptations in antagonists and

their victims comes in no small part from studies of brood

parasites and their hosts [6].

Where do we find brood parasites in nature? Parental care

strategies evolve when the fitness benefits to parents of caring

for their young outweigh the costs in terms of energy and

residual reproductive value [7]. These costs expose parents

to cheating, because individuals that can achieve the benefits

of parental care without paying the concomitant costs are

favoured by natural selection. It follows then that we might

expect obligate brood parasitism to evolve wherever we see

parental care.

Parental care is particularly prevalent in birds, and avian

brood parasitism has received the lion’s share of research

effort into brood parasites (for reviews, see [6,8–10]). Obligate

interspecific brood parasitism is found in approximately 1% of

all birds, has evolved independently seven times and can be

found on every continent except Antarctica [6]. Evolutionary

transitions to brood parasitism in birds vary from very ancient

(e.g. approx. 26 Myr ago in Indicator honeyguides [11]) to an

order of magnitude more recent (e.g. the black-headed duck

Heteronetta atricapilla, Molothrus cowbirds [12]). Typically,

avian brood parasites lay their eggs in the nests of host species

to take advantage of both incubation and chick-rearing behav-

iour. They may exploit the behaviour of a single pair of hosts

(parents) or of a unit of cooperatively breeding hosts (parents

plus helpers) (e.g. [13], and see [14] in this issue). Parasites have

a suite of adaptations across the life stages that allow successful

exploitation of hosts: adult females track the nesting progress of

hosts and lay eggs at the appropriate time to ensure optimal

development, eggshells often mimic the colour and pattern of

host eggs to avoid host detection and parasite chicks are

adept at winning the preferential care of host parents, some-

times with specialized adaptations to kill foster siblings

outright [15].

Among non-avian vertebrates, brood parasitism is known

only from a single fish [16]. Cuckoo catfish (Synodontis multi-
punctatus) take advantage of cichlid hosts that provide care

by mouthbrooding developing young. Cuckoo catfish biology

remains poorly known, but this issue includes new studies that

show the species is tractable for experimental research (see

[17,18], this issue). Why is brood parasitism not known from

the many other vertebrate clades that provide costly parental

care, such as mammals, amphibians and reptiles? We might

speculate that viviparity and extended gestation greatly limit

opportunities for inserting foreign young into another’s

brood, and for deceiving carers that another species is kin.

But this does not satisfactorily explain why, for example,

care-giving frogs or crocodilians (birds’ closest reptilian rela-

tives) seem not to experience brood parasitism [19–21]. It is

tempting to wonder whether examples may exist that have

yet to be detected.

The other major taxonomic group where hosts are co-opted

into raising offspring of other species is the insects (reviewed in

[22,23] in this issue). Brood-parasitic insects include some bee-

tles, butterflies, true bugs and both social and solitary-living

hymenoptera (ants, bees and wasps). Brood parasitism in

insects is typically defined by whether the parasite exploits

resources acquired by solitary parents (‘brood parasites’, or

‘kleptoparasites’), or by societies that care collectively for

their young (‘social parasites’) (see [23], this issue, for
discussion). In the latter case, the brood parasite often remains

in the host nest and uses the host’s workers to provision her off-

spring. For example, in the obligate slave-making ant Polyergus
breviceps, the invading queen kills off the resident host queen

and uses chemical manipulation to ensure that the host

workers care for her brood of future queens and males.

Female ‘kleptoparasites’, by contrast, tend to lay their egg/s

and leave. For example, cuckoo wasps (Chrysidinae) parasitize

solitary bee and wasp species by laying their eggs in the host’s

nest chamber, such that the parasitic larvae consume the stored

resources that had been intended for the host brood, and some-

times also the host egg itself. In this special issue, we take an

inclusive approach and define interspecific brood parasitism

as any case in which one species usurps the resources intended

for parental care by another species, regardless of whether the

costs are borne by host parents or cooperative groups (or

indeed, the brood; see Cotter et al. [24] in this issue), or whether

the adult brood parasite leaves or remains in the host nest.

Brood parasitism can also occur within a species, where one

female exploits the efforts of a conspecific [25], or it can be

facultative across species; however, the research in this special

issue focuses on obligate parasites, because these have the most

potential to influence the evolution of another species.

There has thus been long-standing interest in brood para-

sitism, both as a fascinating natural history phenomenon and

as a window into coevolution. Yet, there is still a great deal

that is unknown about when, why and how brood parasitism

evolves, and the extent to which it drives evolution in host

species. In particular, we lack a comprehensive understand-

ing of how ecology and evolutionary history constrain or

facilitate these adaptations, via the mechanisms that shape

or respond to selection. This special issue aims to illustrate

the diverse ways in which current research is addressing

gaps in our knowledge of brood parasitism, to bring together

examples of interspecific brood parasitism from across the

animal kingdom and to consider how research on brood

parasitism may benefit from, and in turn perhaps help to

inform, related topics such as social evolution and immunity.
2. Taxonomic boundaries to brood
parasitism research

An understanding of brood parasitism in any one system often

requires study of system-specific traits, which can obscure gen-

eral insights across taxa. For example, avian brood parasites

manipulate their hosts primarily in the visual or auditory sen-

sory domains (so far as is known), while insect brood parasites

must subvert predominantly chemical communication systems

to usurp host resources (but see [26] for an example of acoustic

mimicry in ants). This difference is at least partly responsible

for a tendency towards different types of research programmes

in the two taxanomic groups. The visual and acoustic signals of

avian parasites are amenable to manipulation in the field,

such that much research has focused on understanding how

parasites deceive. Evidence of this lies in the many field exper-

iments that add model eggs to nests, or use vocal playbacks of

nestlings begging, to understand host responses to alien eggs

and chicks (e.g. [27–29]). Chemical signals in insects are less

readily manipulated in this way, and insect nests are often

less accessible in situ. Much research into the brood parasitism

of insect societies also focuses on defence mechanisms of

hosts and counter-adaptations of the brood parasite. Yet
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Figure 1. Co-citation network of brood parasitism publications. The top 10% of co-cited documents from a Scopus search are plotted using a Fruchterman layout;
nodes represent co-cited documents (scaled by betweenness centrality) with key publications labelled (first author and year published given below, all plotted
publications listed in Supplementary Table 1), and edges represent co-citations (thickness indicates frequency, only edges . 5 are plotted). Node and edge
colour represent communities assigned by a walktrap clustering algorithm, and pale grey edges represent links among these communities. Inset photos show
the main taxa associated with the coloured co-citation communities: (a) host Temnothorax longispinosus (right) defends nest from slave-maker T. americanus
(left) (S. Foitzik); (b) Eurasian reed warbler, Acrocephalus scirpaceus, feeds a common cuckoo Cuculus canorus chick (W. LiQiang/Shutterstock); (c) Shiny cowbird
Molothrus bonariensis begs in the nest with chalk-browed mockingbird Mimus saturninus host nest-mates (R. Gloag). The green community to the left represents
coevolutionary theory and integrative reviews.
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these questions are naturally addressed in the context of social

living and indirect fitness (e.g. [22,23,30] in this issue); ques-

tions that are rarely considered in avian systems ([31] and

[30] in this issue).

To visualize how these and other differences affect the cross-

pollination of ideas and theory across taxonomic boundaries

(e.g. [32]), we used the bibliometrix package [33] in R (version

3.5.2 [34]) to construct a co-citation network [35,36]. Looking

simply at which papers are cited most often, or cited by other

papers within a search-set, can give an idea of how connected

a research topic is, but it is less effective at identifying how

sub-topics are connected. Co-citation networks, on the other

hand, are built by measuring which publications are cited

together by the papers within a search-set. The more that

papers are cited together, the more likely they represent key

ideas or concepts of a research topic (or sub-topic) [35,36].

First, we searched Scopus for all journal articles published with

‘brood parasitism’ or ‘social parasitism’ in the title, abstract or

keywords. We focused on obligate parasitism, and therefore

excluded papers using ‘intraspecific’ or ‘conspecific’ as search

terms. We also excluded journals unrelated to biology. Of 1933

articles meeting these criteria, 45.7% (883) included ‘bird’,

‘aves’ or ‘avian’ in the title, abstract or keywords, and 33.6%

(650) included ‘insect’, ‘hymenopt*’, ‘lepidopt*’, ‘coleopt*’,

‘beetle’, ‘butterfly’, ‘ant’, ‘wasp’ or ‘bee’. It is likely that this

simple search did not capture all papers published on brood

parasitism, as the use of taxonomic keywords can be inconsist-

ent. Nevertheless, we chose not to bias the search by including

‘cuckoo’ or ‘inquiline’, for example, as search terms. We next

used these two taxonomic groupings of papers (n ¼ 1533) to
be confident that we were capturing appropriate papers to

build the co-citation network. Here, we plot the top 10% of

articles that were cited most commonly with others for visual

clarity (figure 1). As expected, we can see clear subfields of

brood parasitism research that largely align with taxonomic

groupings identified by assigning each publication to the main

taxa it described (figure 1). Where co-citation occurred between

subfields (grey lines in figure 1), these involved a handful of

review papers comparing insects and birds (e.g. [31,49]),

reviews of the well-studied common cuckoo [6,50] or early

work on arms races and coevolution [4,51].
3. Integrating brood parasitism research
Taking an integrative approach to address key questions in

biology is not new, but it is currently experiencing a renais-

sance [52–54]. In part, this is because addressing questions

from multiple perspectives should provide a more comprehen-

sive understanding of what can, and cannot, evolve [53,55].

As well as asking both proximate and ultimate questions

about the same suite of traits, different taxa can also provide

different windows into the same strategy. Despite the obvious

life-history differences, there are many points of comparison

between brood parasitism in different systems, and compara-

tive work has a rich potential to identify general principles.

For example, Kilner & Langmore’s 2011 review [31] integrating

coevolutionary studies of brood-parasitic birds and insects was

able to derive general hypotheses about why host defences

differ so markedly across both taxa. They proposed that the
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relative balance of strategy facilitation (whereby one form of

defence promotes another) and strategy blocking (whereby

one form of defence relaxes selection on an another) may

explain this diversity, and predicted which general ecological

conditions should drive different coevolutionary trajectories

in both birds and insects. Nevertheless, these ideas remain

untested; we hope this special issue will increase researcher

dialogue across taxonomic boundaries. We have brought

together research and reviews on brood parasitism in birds,

insects and fish that address complementary questions. These

studies cover three key themes that are common to brood

parasitism, regardless of the study system.

(a) Adaptations for (and against) deception
All brood parasites must deceive their host to successfully

usurp resources, either by avoiding detection during nest inva-

sion (e.g. both common cuckoos and cuckoo wasps time

parasitism events for when hosts are less likely to be active at

the nest, see [24], this issue) or by avoiding recognition if

detected (e.g. many insect brood parasites rely on acquiring

chemical signatures of their hosts to reduce aggression; see

reviews in this issue [22–24]). Understanding which adap-

tations arise requires knowledge of reciprocal adaptations in

host defence, as these alter and determine the strength of selec-

tion acting on brood parasites (e.g. cuckoo finch Anomalospiza
imberbis hosts appear sensitive to higher-level pattern features

of alien eggs, implying that selection acts on parasites to

mimic these, see [56] in this issue). Similarly, elucidating the

mechanisms that underpin such adaptations is critical, as

these can constrain the direction of evolutionary pathways of

both parasite (see contributions by Litman [23] and Cotter

et al. [24] in this issue) and host (see Yang et al. [57] and Spot-

tiswoode & Busch [58] in this issue). New technologies and

modelling approaches have led to a recent surge in research

in the mechanisms underlying brood-parasite and host coevo-

lution, such as sensory systems, cognition, development and

genetics. In this special issue, these advances are highlighted

by Kaur et al. [59], who demonstrate how studies of gene

expression can provide clues as to how parasites manipulate

host defence, while Stoddard et al. [56] apply new mathemat-

ical models of pattern matching to reveal new depth in egg

recognition by avian hosts, and Hanley et al. [60] use visual

modelling to show surprising sensory biases in whether

hosts decide to reject a foreign egg. This new wave of mechan-

istic research has enabled a step-change in our understanding

of how parasite and host adaptations coevolve.

(b) Diversity and predictability of coevolution
Coevolution between brood parasites and hosts occurs across a

variety of degrees of phylogenetic distance; a parasite and its

host can come from either a different order (e.g. birds: cuculi-

form cuckoos versus passeriform hosts, insects: Maculinea
butterflies versus Myrmica ant hosts), a different family (e.g.

birds: icterid cowbirds versus parulid warbler hosts, insects:

cuckoo wasps targeting solitary bees) or different genera

within the same family (e.g. Vidua finches versus estrildid

finch hosts; inquiline ants that parasitize sister species [22,61]).

Brood parasitism is also diverse in its degree of specialism,

with some parasites specializing on a single host species (as

in Vidua finches, and many inquilines), and others (such as

the brown-headed cowbird Molothrus ater, and Maculinea
butterflies) using multiple host species. There is often also
variation within generalist species across a parasite’s range,

such that a host species is heavily parasitized in one locale,

but little or never targeted in another, setting the ecological

stage for possible geographical mosaics of coevolution that

may help to explain otherwise puzzling variation in coevolu-

tionary sophistication [62]. Insights into predictability of

brood-parasitic systems may then be gained by comparing

the different evolutionary routes by which parasites arise

from non-parasitic ancestors across taxonomic groups, the

extent to which parasites and hosts vary ecologically across

populations and how divergent coevolution among such popu-

lations may drive diversification [49]. Research at the

coevolutionary interface between ecology and evolution is

becoming more important as environments change (e.g. [63]).

In this issue, for example, Suhonen et al. [64] use a comparative

approach to identify bumblebees, ants and wasps that may play

host to brood parasites, many of which are species of conserva-

tion concern. Tartally et al. [65] examine the spatial mosaic in

host use across Europe by brood-parasitic Maculinea butterflies,

and shed light on the role of host switches and local extinctions

in the regional persistence of this spectacular genus.

(c) Windows into social evolution
Brood parasitism in any taxonomic group is a derived behav-

iour of parental care. Therefore, understanding how cheating

by brood parasites evolves requires knowledge of the costs

and benefits of providing parental care (see [24], this issue),

and who pays these costs (see [30], this issue). Any social be-

haviour is vulnerable to a cheater phenotype, and answering

the question of what keeps costly social behaviours, especially

social cooperation, evolutionarily stable is of broad relevance in

biology. Can brood parasitism provide insight into the evol-

ution of other life-history strategies? In this special issue, Cini

et al. [22] consider this for sociality, Gloag & Beekman [30]

for inclusive fitness and Riehl & Feeney [14] for cooperative

breeding. These studies focus on the brood parasites of social

insects and/or birds, but brood-parasitic cuckoo catfish may

provide new avenues for similar work if we can experimentally

modify the amount of care, or paternity certainty, of cichlid

host males (a point argued by Polacik et al. [17] in this issue).

In the final paper of this special issue, Cotter et al. [24] use

the concept of host defences as a social good to ask whether

viewing brood parasitism through the lens of social immunity

can help to inform our understanding of social defences.
4. Tinbergen’s ‘cuckoos’
Over 50 years ago, Tinbergen [66] published his landmark

paper that provided a framework for integrative studies into

behaviour. Here, he suggested that to fully comprehend how

and why a trait evolves, we must address ‘Four questions’

regarding: (i) the mechanisms that facilitate the trait, (ii) the

developmental environment that alters expression of the trait,

(iii) the fitness consequences of a trait, and (iv) the similarities

and differences of the trait across a phylogeny (also see [67]).

Arguably, research into brood-parasite evolution has focused

mostly on fitness consequences (that is, ‘Question Three’), a

bias that is not unusual in the study of animal behaviour

([53,68]). This has led to great advances in our understanding

of the requisite adaptations of brood parasites and counter-

adaptations for host defences (e.g. birds [8], ants [69], bees

[70], wasps [71]). Comparatively less attention has been given



Table 1. Contributions to this special issue according to Tinbergen’s Four Questions framework [54] for integrative studies (summaries of each question from
[55]) and examples of broad questions in each category that inform our understanding of the coevolutionary biology of brood parasitism. Note that several
contributions address more than one question and so appear more than once in the table.

‘4 Questions’ Special issue contributions Example research questions:

(1) Mechanism

“How does it work?”

Stoddard et al. [56]

Yang et al. [57]

Kaur et al. [59]

Hanley et al. [60]

McClelland et al. [76]

What cognitive rules do hosts use to distinguish kin from non-kin?

What molecular mechanisms underpin parasite adaptations?

How are host defences constrained by sensory mechanisms?

(2) Development

“How does it

develop?”

Cohen et al. [18]

Kaur et al. [59]

McClelland et al. [76]

Does rearing environment influence plasticity of defences?

Do parasites learn to recognise suitable hosts during development

via imprinting?

How do brood parasites overcome developmental constraints?

(3) Function

“What is it for?”

Polacik et al. [17]

Litman [23]

Yang et al. [57]

Spottiswoode & Busch [58]

Kaur et al. [59]

Tartally et al. [65]

Medina & Langmore [77]

What adaptations are necessary for parasites to succeed?

How do parasites differ in morphology, behaviour and physiology to

non-parasites?

Why do counter-adaptations used by hosts to defend against parasites vary?

Does hosting a brood parasite affect life-time reproductive success?

(4) Evolution

“How did it evolve?”

Riehl & Feeney [14]

Cohen et al. [18]

Cini et al. [22]

Gloag & Beekman [30]

Cotter et al. [24]

Suhonen et al. [64]

McClelland et al. [76]

Medina & Langmore [77]

How readily can parasites switch hosts?

Are the outcomes of coevolutionary arms’ races predictable?

Can inclusive fitness theory predict the evolution of parasitism?

What are the evolutionary origins of brood parasitism?
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to understanding these adaptations from a mechanistic view-

point, the role of the developmental environment in shaping

adaptations, or how they vary across species and time,

although recent research trends suggest this is changing. Ques-

tions of development in particular are becoming ever more

timely, alongside our increasing appreciation for the role of

phenotypic plasticity and learning in the evolutionary process

[72–74], and in the context of the pressing need to understand

and predict how populations will respond to rapid environ-

mental change [75]. For brood parasitism research, therefore,

the time seems ripe to revisit Tinbergen’s proposed framework.

The studies and reviews in this special issue all cover one or

more of Tinbergen’s Four Questions (table 1); for example,

McClelland et al. [76] demonstrate how combining analyses

of mechanisms across species sheds light on the traits

that may make brood-parasitic birds successful; Cohen et al.
[18] examine the ontogeny of brood-parasitic catfish and

non-parasitic congeners to show that advanced development

in this system is not an adaptation for parasitism, as we

might expect if we only compared it against its host; and

Medina & Langmore [77] link field experiments with evol-

utionary comparative analyses across hosts of brood-parasitic

birds to test how population density influences fitness.

We hope this encourages future research that integrates

mechanism, development and phylogeny with the fitness
consequences of traits to understand brood parasitism

evolution.

5. Conclusion
For many of us, brood parasitism is the perfect marriage of

natural history and evolutionary biology. Yet, at present, natu-

ral history is arguably more limiting to our efforts to understand

coevolution than either ideas or methods. This is because the

best way to test our current understanding is to validate it in

diverse natural systems. In the case of birds, a recent explosion

of studies in previously little-known systems has demonstrated

this truth, by challenging some long-standing ideas (for

example, that chick rejection cannot evolve [78–80]), and sup-

porting others (for example, the role of maternal inheritance

in the faithful transmission of parasitic specialization [81–

83]). The systems enjoying most new attention are tropical

and south-temperate species in Asia, Australasia, Africa and

South America, where selection pressures are often quite differ-

ent from those of the classic avian systems of the northern

hemisphere owing in part to longer reproductive lives and

opportunities for learning that likely shift the costs and benefits

of defensive decisions in any one breeding attempt. New natu-

ral history has similar potential in non-avian systems. For

example, the past decade has seen the discovery of several
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new species of inquilines of Neotropical attine fungus-growing

ants [84,85], including one in the process of speciating from its

host [86]. These have provided new opportunities to test the-

ories of inquiline evolution [86]. Looking ahead, we hope that

adventurous biologists continue to uncover the natural history

of the many brood parasites about which tantalizingly little

remains known, and perhaps to even discover brood parasitism

for the first time in new taxa.
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