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Despite a recent explosion of research on pattern recognition, in both neuro-

science and computer vision, we lack a basic understanding of how most

animals perceive and respond to patterns in the wild. Avian brood parasites

and their hosts provide an ideal study system for investigating the mechan-

isms of pattern recognition. The cuckoo finch, Anomalospiza imberbis, and its

host the tawny-flanked prinia, Prinia subflava, lay highly polymorphic eggs

with a great deal of variation in colour and patterning, with the cuckoo

finch capable of close egg mimicry. Behavioural experiments in Zambia

have previously shown that prinias use colour and multiple ‘low-level’

(occurring in early stages of visual processing) pattern attributes, derived

from spatial frequency analysis, when rejecting foreign eggs. Here, we explore

the extent to which host birds might also use ‘higher-level’ pattern attributes,

derived from a feature detection algorithm, to make rejection decisions. Using

a SIFT-based pattern recognition algorithm, NATUREPATTERNMATCH, we show

that hosts are more likely to reject a foreign egg if its higher-level pattern

features—which capture information about the shape and orientation of

markings—differ from those of the host eggs. A revised statistical model

explains about 37% variance in egg rejection behaviour, and differences in

colour, low-level and higher-level pattern features all predict rejection,

accounting for 42, 44 and 14% of the explained variance, respectively.

Thus, higher-level pattern features provide a small but measurable improve-

ment to the original model and may be especially useful when colour and

low-level pattern features provide hosts with little information. Understand-

ing the relative importance of low- and higher-level pattern features is a

valuable goal for future work on animal coloration, especially in the contexts

of mimicry, camouflage and individual recognition.

This article is part of the theme issue ‘The coevolutionary biology of

brood parasitism: from mechanism to pattern’.
1. Introduction
How do animals detect and recognize complex visual patterns, and to what

specific features do they respond? Systems in which visual signals have evolved

to be deceptive—such as in camouflage and mimicry—provide an especially

compelling lens through which to investigate this question, because information

is hidden by cheats and retrieved by those often duped [1]. The notorious

cheats of the avian world, the brood parasites (together with their hosts)

form an ideal system for testing the limits of pattern recognition. For example,

visual discrimination by hosts has sometimes resulted in sophisticated colour

and pattern mimicry by parasites at the egg, chick, fledgling and even adult
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stages of the life cycle [2–5]. In response to parasite mimicry,

some hosts have evolved more distinctive eggs [6,7] and

chicks [8,9], and sometimes better discrimination abilities

[10]. Overall, brood parasites and their hosts can be powerful

engines of phenotypic diversity, generating an extraordinary

range of colourful traits, many of which evolved to thwart

host recognition.

For most brood parasite–host pairs, the key evolutionary

battle is won or lost at the egg stage [11]. The parasite wins

(and host loses) if it successfully sneaks its egg into the host

nest, offloading all parental care to the host parents. The

host wins (and parasite loses) if it successfully detects and

rejects a foreign egg, evading the dual costs of rearing an

unrelated chick and (in many cases) losing its own offspring.

At this high-stakes moment, what visual cues does a host

bird use to detect a parasitic egg? Researchers have vigor-

ously explored this topic in recent years (reviewed in [12]),

continuing a long tradition of experimental work on host

egg recognition [13,14], but now using visual models appro-

priate for avian perception. In general, experiments have

shown that hosts use avian-perceived differences in egg

colour and pattern (spots, markings, speckles) to recognize

and reject parasitic eggs [12]. Which specific cues are used,

and their relative importance, varies from species to species.

Despite these advances, we still have much to learn,

especially with respect to pattern.

A decade ago, objective quantification of spatial patterns

and texture in studies of animal coloration was rare. Fortu-

nately, this paradigm has changed [15], largely owing to

the increased use of calibrated digital cameras [16] and

accessible image analysis tools [17]. In recent years, several

studies on egg recognition have used spatial frequency

analysis (sometimes called ‘granularity analysis’) to quantify

and compare egg patterns [18,19]. The analysis, which

applies a Fourier transform and subsequent filtering to the

image, breaks down information into different spatial

scales, so that it is easy to quantify basic pattern elements:

for example, the average size of the dominant markings

(or spots) and their relative contribution to overall energy

(or contrast) in the image. Overall, the process broadly

resembles early-stage spatial filtering in vertebrate vision

[20] and returns a set of low-level visual features that

are probably relevant to an animal’s sensory experience

[21–23]. But what about more complex features, such as

the shapes and orientations of blotches and markings on

the eggs? Can birds use these features to identify and

reject foreign eggs?

Relatively little is known about spatial vision and pattern

recognition in birds [24], in contrast to the extremely well-

studied neural mechanisms of birdsong [25]. However,

many aspects of vertebrate spatial vision appear to be

highly conserved [26], because many animals have neurons

whose receptive fields are tuned to different spatial frequen-

cies and orientations [23]. In the early stages of vision,

neurons act as spatial filters, breaking down the information

in a scene into different spatial frequencies. Subsequent

neural processes use these filter outputs to identify local fea-

tures, such as edges and boundaries, which are later

combined to form higher-level features like objects. Compu-

tationally, these two stages are simulated by spatial

frequency analysis (which gives the Fourier power spectrum)

and by edge- and feature-detection algorithms, respectively.

Granularity analysis stems from the Fourier power spectrum,
and there are good reasons for including the low-level

metrics it produces in studies of animal colour: they are

simple, relevant to animal vision and easy to quantify [27].

However, without further processing, the granularity spectra

alone will not reveal information about edges and objects. For

this, edge- and feature-detectors are required to build a more

complete representation of the scene [27]. Metrics derived

from granularity analysis are generally thought to be relevant

to low-level vision. Edges and other local features (corners,

lines) are also generally considered to be low- or mid-level,

while the objects they comprise are higher-level. For simpli-

city, in this paper we refer to visual features not directly

derived from granularity analysis as ‘higher-level,’ while

acknowledging that this distinction is an oversimplification

(see Methods).

Support for the idea that feature detectors might

extract visually meaningful information on bird eggs

comes from a study by Stoddard and colleagues [6].

Using NATUREPATTERNMATCH (NPM), a pattern recognition

algorithm based on the scale-invariant feature transform

(SIFT), they showed that host species that are most inten-

sely targeted by common cuckoos, Cuculus canorus, have

evolved more recognizable egg pattern signatures. How-

ever, this study did not directly relate to egg rejection

experiments, and whether pattern features captured by

SIFT provide additional information, relative to granular-

ity-based metrics, is unknown. Thus, it remains untested

whether birds actually respond to the potential infor-

mation presented by higher-level pattern features. In

addition, no study to date has tested the relative influence

of both low- and higher-level pattern information on egg

discrimination behaviour. Indeed, such tests remain rare

in any wild system. Egg discrimination behaviour pro-

vides an ideal model system for testing the relative

importance of low- and higher-level pattern features in a

natural setting, because individually distinctive egg mark-

ings provide cues with a range of potential information

content, and the behavioural response (egg acceptance

versus rejection) can be unambiguously scored.

Here, using an Afrotropical brood parasite–host system,

we investigate the extent to which host birds use low-level

and higher-level pattern features, combined with colour, to

identify and reject foreign eggs. We build on a previous

study by Spottiswoode & Stevens [19], which used field

experiments and avian perceptual modelling to investigate

egg rejection behaviour by the tawny-flanked prinia, Prinia
subflava, which is a host commonly parasitized by the

cuckoo finch, Anomalospiza imberbis. This system is character-

ized by extremely variable eggs in both the parasite and host,

differing among individual females in both colour and a

variety of pattern markings (figure 1), with the parasite

capable of close mimicry. Spottiswoode & Stevens [19]

found that egg rejection was predicted by disparity

between host and foreign eggs in colour and three low-level

pattern parameters (dominant marking size, variability in

marking size, dispersion of markings on the egg). Here,

using the same dataset, we apply NATUREPATTERNMATCH to

egg images, allowing us to quantify higher-level pattern

features on host and foreign eggs. Combining this with

data on colour and low-level pattern features, we build a

new model of egg rejection behaviour and evaluate the rela-

tive importance of colour, low- and higher-level pattern

features to host recognition.
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Figure 1. (a) Eggs laid by different prinia females (outer circle) and cuckoo finch females (inner circle). Photo by CNS, previously published in [28]. (b) Illustration of
feature extraction by NPM (using SIFT) and granularity analysis. Pattern dispersion is not derived from granularity analysis and is calculated separately. (c) Diagram
illustrating the methods for calculating pairwise measures. From left to right: (i) Host intraclutch distance; here calculated as the average of the blue lines. (ii) Host
interclutch distance; here the blue lines are averaged to find the distance between the left clutch and the top-right clutch. Following this, the red lines are averaged
to find the distance between the left clutch and bottom-right clutch. The average of these two measurements is the interclutch distance of the left-hand clutch.
(iii) Experimental – host distance; here the blue lines are averaged to find the distance between the host clutch (right) and an experimental egg (left, red).
(iv) Simulated parasite – host distance; here the blue lines are averaged to find the distance between the host clutch (right) and a cuckoo finch egg (left,
green; see main text). (d ) Boxplot of the overall distribution of distance metrics based on NPM extraction of SIFT features: NPM intraclutch and NPM interclutch
distances, NPM experimental – host distance, and NPM simulated parasite – host distance.
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2. Methods
(a) Study system and field experiments
Here we briefly review key information about the study

system and experimental design; full details can be found in

Spottiswoode & Stevens [19]. Egg rejection experiments were
performed in January to March 2007–2009 in the Choma Dis-

trict of southern Zambia. In each experiment, a foreign egg

was added to the nest of a host prinia female, and one host

egg was removed. The foreign experimental egg was laid by

a conspecific prinia female, here used as a proxy for a parasitic

egg. All eggs were measured with digital calipers and photo-

graphed using a Fuji Finepix S7000 camera with a 17%
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neutral grey card. The colour of one representative egg per

host clutch was measured using an Ocean Optics USB2000

spectrophotometer with a PX-2 pulsed xenon light source.

Eggs were measured at a 458 angle about 5 mm from the

probe tip. Experimental clutches were monitored every day

or two, and eggs were considered rejected if they disappeared

while the rest of the clutch remained intact (i.e. the clutch was

not predated), or accepted if they remained in the nest for at

least 3 days. Experiments were conducted in n ¼ 125 nests;

our statistical model is based on 122 nests, after eliminating

host clutches for which we had one egg image only, because

this did not permit calculation of NPM intraclutch variation.

See below and see the electronic supplementary material

for details.
Phil.Trans.R.Soc.B
374:20180197
(b) Quantifying colour and low-level pattern features
Here we provide a brief overview of the approach used by

Spottiswoode & Stevens [19] to quantify egg colour and low-

level pattern features. A model of avian (blue tit, Cyanistes
caeruleus) visual discrimination [29] was used to estimate the

colour difference (measured in just-noticeable differences, or

JNDs) between the host and experimental eggs in each exper-

iment. JNDs less than 1.00 suggest that two colours cannot be

discriminated; larger values suggest that the two colours

should be more easily discriminated. Next, egg images were

rescaled to 50 pixels per millimetre using egg measurements

taken in the field in order to enable meaningful comparisons

based on marking size/texture scale. Egg images were linear-

ized (so that pixel values scale uniformly with light captured

by the camera’s sensor) and equalized (so that the camera’s

channels respond equally to a grey standard, allowing the

image to be converted to reflectance) [16]. Greyscale images

from the green channel were produced because the medium-

wave sensor corresponds relatively closely to an avian

luminance channel, which is thought to be important for

achromatic/texture perception [30].

Using a modified approach from Stoddard & Stevens [18],

granularity analysis was performed on each egg image.

Regions-of-interest from the narrow, middle and wide regions

of the egg were selected and then subjected to fast Fourier trans-

form and band-pass filtering, resulting in a granularity spectrum

for each egg region. The spectrum (figure 1b) illustrates how

much information (or overall pattern ‘energy’) in the image is

present at different spatial scales, with small filter sizes corre-

sponding to large, low-spatial frequency markings, and large

filter sizes corresponding to small, high-spatial frequency mark-

ings. From the granularity spectrum, metrics describing the egg’s

pattern can be calculated. The spatial scale with the largest con-

tribution to overall pattern energy corresponds to the dominant

marking size (pattern filter size), and the proportion of the

total energy contained at this spatial scale (pattern proportion

energy) provides a measure of how dominant the marking

size is. An additional measure not based on the granularity

spectrum was calculated: the degree to which markings are

clustered toward the wide end of the egg (pattern dispersion)

(figure 1b). This was calculated by thresholding each egg

image (egg markings ¼ 1; ground colour ¼ 0) and quantifying

the difference in the proportion of markings between the two

poles of the egg, by subtracting the proportion value of the

narrow region from that of the wide region. We consider this

to be a low-level pattern measure.

Luminance (achromatic) contrast, several additional pattern

metrics, and morphometric and life-history metrics (e.g. egg

length, egg breadth, clutch size, incubation stage) were also

quantified by Spottiswoode & Stevens [19]; however, they were

not significant predictors of egg rejection, and so for clarity we

do not discuss them further.
(c) Quantifying higher-level pattern features using
NATUREPATTERNMATCH

To extract features using NPM, we applied histogram equaliza-

tion and median filtering to egg images. Histogram equalization

is a method for contrast enhancement in images, allowing

areas of low local contrast to gain higher contrast. Median filter-

ing reduces noise in images while preserving edges. These

modifications allowed us to compensate for less-than-perfect

image quality and lighting by enhancing otherwise ‘washed out’

pattern features.

Full details of the NPM program can be found in [6]. In brief,

the program uses SIFT [31,32] to detect local features in an image.

On egg patterns, SIFT features are associated with egg macula-

tion (blotches and markings) and provide information about a

marking’s shape, contrast and dominant orientation. Each SIFT

feature (pink arrows in figure 1b) is represented visually by a

vector whose magnitude corresponds to the feature’s dominant

scale (or size) and direction corresponds to the feature’s domi-

nant orientation. The vector shows the feature’s dominant size

and orientation only: in reality each feature encodes information

about the local pixels in a 128-dimensional feature vector

(figure 1b), capturing small details about a marking’s shape

and contrast. After extracting features, NPM then matches popu-

lations of features from one egg image to another, resulting in a

similarity score for each pair of images. Importantly, NPM’s

image-to-image pattern matching process is inspired by texture

similarity rather than object identity: the idea is to compare

two similar (but not identical) natural patterns.

SIFT is an algorithm for detecting, describing and matching

low- and mid-level visual features (i.e. points, edges, blobs, cor-

ners, patches). To detect features, the image is first convolved

with filters that resemble the circularly symmetrical difference-

of-Gaussian receptive fields of retinal neurons [32]. This step

approximates the Laplacian-of-Gaussian operation, which is

used in classic edge detection approaches [33] and is helpful

because it can be used to identify stable image features. The

next steps of the algorithm were not specifically designed to

mimic biological vision, but were inspired by the response prop-

erties of complex neurons in the visual cortex: these neurons

retain their orientation and spatial frequency specificity even if

a feature changes position slightly [31]. The algorithm works to

identify visual features that are generally of intermediate

complexity (i.e. more complex than a simple bar or line but

less complex than a face) and share properties with features

to which cortical neurons respond and use for object

recognition (in primates) [31]. SIFT features are generally invar-

iant (to a degree) to changes in size, rotation or location, so

that a given feature can be matched to another feature (on a

different egg) even if it appears somewhat warped, rescaled or

rotated. These are the kinds of features that might be important

for recognition.

Individual SIFT features are local (low- or mid-level) fea-

tures. In many applications, collections of SIFT features are

used to identify higher-level objects, but NPM uses them in a

more generic way to assess texture similarity (or difference).

We consider suites of SIFT features as used by NPM, which cap-

ture aspects of egg texture, to be ‘higher-level’ pattern

descriptors, in order to distinguish them from the low-level fea-

tures derived from spatial filtering/granularity analysis (i.e.

energy in different spatial frequency bands) and from individual

SIFT features. We therefore consider measures of the similarity or

difference between suites of SIFT features (as assessed by NPM,

which compares both the constituent features themselves and the

number of features—see below) to be higher-level measures of

egg pattern similarity or difference.

We quantified patterns using NPM on real host eggs, some of

which were used as experimental ‘parasite’ eggs (n ¼ 375 eggs in
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122 nests). We used the pairwise dissimilarity values generated

by NPM (1-similarity) to calculate the following:

1. NPM experimental–host distance: the average pairwise pattern

distance as calculated by NPM between the experimental egg

and each of the eggs in the host clutch (figure 1c). Here, the

host clutch includes eggs in the nest at the time of the exper-

iment, after removal of one of the host eggs (see Study system
and field experiments above).

To investigate any predictive effect of the number of SIFT

features extracted by NPM on experimental and host eggs, we

also calculated the following measure:

2. NPM experimental–host difference in feature number: the

average absolute difference in the number of features detected

on the experimental egg and the number of features detec-

ted on the eggs of the host clutch. Again, the host clutch

includes eggs in the nest at the time of the experiment, after

removal of one of the host eggs.

Measures generated by NPM are based on pairwise distances

(differences) between two eggs and provide a measure of differ-

ence. Therefore, ‘NPM experimental–host distance’ and ‘NPM

experimental–host difference in feature number’ are calculated

as the average pairwise distance between the experimental egg

and all eggs in the host clutch. It is not possible, for example, to

calculate average NPM pattern features on an ‘idealized’ host

egg by averaging across multiple eggs. In Spottiswoode & Stevens

[19], low-level pattern metrics across eggs in a clutch were

calculated slightly differently: these measures (pattern filter size,

pattern proportion energy, pattern dispersion) were averaged

across host eggs to calculate—for a given host clutch—the average

pattern filter size, pattern proportion energy, and pattern

dispersion, which were then compared with the experimental

egg to yield a clutch-level experimental–host distance. However,

the way we calculate experimental–host distance across eggs in a

clutch in the present study provides a comparable measure of the

average similarity between the host eggs and the foreign egg.

Our NPM-based pattern measures (above) are based on host

eggs after the experimental removal of one host egg, consistent

with the approach used by Spottiswoode & Stevens [19], which

was motivated by the observation that cuckoo finches remove

one or more host eggs from the clutch when they lay their own.

However, we also calculated the NPM-based measures (above)

using all eggs in the host clutch (including the one that was exper-

imentally removed), consistent with the idea that prinia hosts

use a template-based mechanism (at least in part) for recognizing

their own eggs and rejecting foreign eggs [34]. Calculated this

way, a host would have access to higher-level pattern features

on all of the eggs it laid, because this total information is relevant

to the host’s innate or learned template. These metrics were similar

regardless of the method of calculation (for example, for NPM

experimental–host distance, Pearson’s r ¼ 0.898, CI0.95¼ 0.857 to

0.928, t ¼ 22.328, d.f.¼ 120, p , 0.001) and yielded qualitatively

similar results for predicting rejection (see electronic supplemen-

tary material, table S5). For simplicity, in the main text we

discuss only the NPM-based pattern measures described above,

calculated not including the removed host egg.

To confirm that the pattern difference between real cuckoo

finch eggs and host eggs is approximated by the experimental

equivalent, which is based on prinia eggs only, we calculated

an additional measure: ‘NPM simulated parasite–host distance’

(figure 1d). This measure is a simulated estimate of the distance

between a parasite egg and host eggs, accomplished by finding

the distance between each host clutch and a randomly selected

cuckoo finch egg (n ¼ 85). While this simulation uses some

cuckoo finch eggs in multiple comparisons, it estimates the distri-

bution of distances possible and is indeed comparable to NPM
experimental–host distance (figure 1c). Similarly, Spottiswoode

& Stevens [19] demonstrated that conspecific prinia eggs are suit-

able surrogates for real parasitic eggs. Our simulation approach

assumes that cuckoo finches lay their eggs haphazardly in host

nests (i.e. they do not lay eggs in host clutches that provide the

best phenotype match to their own), consistent with field obser-

vations of cuckoo finches [19].

In addition, whereas Spottiswoode & Stevens [19] exclusively

examined differences between host and foreign eggs, here we also

measured host intraclutch and interclutch variation, as measured

by NPM (see electronic supplementary material, tables S1 and

S2). This allowed us to describe the degree of higher-level pattern

variation in the host population. It also allowed us to test whether

host rejection behaviour is influenced by the host’s egg pattern sig-

nature and/or by the pattern difference between the host’s eggs

and a foreign egg. In theory, a host with low intraclutch variation

and/or high interclutch variation would have a strong egg pattern

signature [6], which, independent of the parasite’s egg, could con-

tribute to successful egg recognition and rejection. We calculated

these measures as follows:

3. NPM intraclutch distance: the average pairwise distance

between a given host egg and all other host eggs in the

clutch, averaged to the clutch level. This measure includes

all host eggs laid by the host female, and not the experimen-

tal egg (figure 1c). This is a measure of how repeatable an

individual female host’s own egg patterns are.

4. NPM interclutch distance: the average pairwise distance

between a given host egg in clutch 1, and all host eggs in

each clutch [2 . . . N ], averaged across clutches [2 . . . N ],

which is then averaged for all eggs in clutch 1, giving a

clutch-level measure. N is the total number of clutches in the

population. This measure includes all host eggs laid by the

host female, and not the experimental egg (figure 1c). This is

a measure of how distinctive an individual female host’s egg

patterns are relative to other females in the population.

(d) Statistical analyses
To generate a predictive model of egg rejection behaviour, we used

logistic regression (function glm) in R [35]. We included the

following parameters in the initial model: NPM experimental–

host distance, NPM experimental–host difference in feature

number, pattern proportion energy, pattern dispersion, pattern

filter size, and colour. In all analyses, all predictors were standar-

dized (to have mean 0 and standard deviation 1). This had no

effect on the results but facilitated interpretation of regression coef-

ficients. The untransformed predictors are shown in the figures.

We then used a stepwise model selection technique, on the

basis of the Akaike information criterion (AIC), to drop the

least important terms from a comprehensive model containing

all predictors until the best model was selected (function stepAIC

in R package MASS). Following Spottiswoode & Stevens [19], the

explanatory power of the parameters retained in the final model

was assessed using hierarchical partitioning (package hier.part

in R), and the total explanatory power of the model was calcu-

lated using Nagelkerke’s R2 using the package rsq in R [36,37].

In the exploratory analysis presented in the electronic supple-

mentary material, we found only limited support for interactions

between model terms (electronic supplementary material, table

S3), so for clarity only main effects are considered in the main

text. We observed little correlation between predictors that were

retained in the final model (electronic supplementary material,

table S4). In the initial comprehensive model, there was a strong

correlation between NPM experimental–host distance and NPM

experimental–host difference in feature number (Pearson’s r ¼
0.641, CI0.95¼ 0.523 to 0.735, t ¼ 9.143, d.f. ¼ 120, p , 0.001),

which is discussed below.
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(i)
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(g)
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Figure 2. (a – e) Plots of the conditional effect of each predictor in the
selected model. The y-axis is predicted probability of rejection, x-axis is
predictor value. Plotted effects indicate the effect of changes in predictor
value when all other predictors are held at their mean values (see main
text). Shaded areas represent 95% confidence intervals. Tick marks on top
of the x-axis indicate the distribution of predictor values. For all predictors,
the predicted probability of rejection increases with greater measured differ-
ence between experimental and host eggs. ( f – j) Normalized histograms of
the values of each predictor retained in the final model; blue vertical line
indicates the mean value. Red vertical lines indicate values for rejected
eggs that fall in quadrant 1 (Q1) of figure 4; these refer to eggs for
which NPM experimental – host distance predicts rejection, but low-level
pattern and colour differences do not.
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Finally, we isolated the effects of colour, and low-level and

higher-level pattern features to investigate their respective contri-

butions to the final model. A given predictor’s influence on the

model’s output (predicted probability of rejection; using the pre-

dict.glm function in R package glm) can be eliminated by setting

the input values for that predictor to its mean (because all predic-

tors are standardized). This allowed us to use the same model and

coefficients to predict egg rejection in the (simulated) absence of

one or more predictors. To contrast the predictive power of

models including and excluding higher- and low-level pattern

measures, we generated two datasets and used these to predict

rejection. In one dataset, the data were unchanged from those in

the selected final model except that NPM experimental–host dis-

tance was fixed at its mean value (here rejection was predicted

only on the basis of colour and low-level pattern measures). In

the other dataset, colour and low-level pattern measures were

fixed to their respective mean values (here rejection was predicted

only on the basis of NPM experimental–host distance). A similar

approach was used to produce plots of the conditional effect of

each predictor in turn (figure 2a–e).

3. Results
(a) Quantifying egg pattern differences using

NATUREPATTERNMATCH
Using NPM to compare eggs within and among clutches

(figure 1c,d), we found that intraclutch variation was lower

on average than interclutch variation, although it was distrib-

uted over a much greater range. Differences in the two

distributions indicated that clutches were on average more

similar to themselves than to other clutches in terms of pat-

tern. The distribution of NPM experimental–host distances

was intermediate. In addition, there was overlap between

NPM experimental–host distances and NPM simulated

parasite–host distances; however, cuckoo finch egg patterns

were slightly more different on average to host clutches

than the experimental (conspecific prinia) eggs.

(b) What visual features are used by hosts to recognize
and reject eggs?

A binomial generalized linear model predicting egg rejection

with each of the final predictors from Spottiswoode &

Stevens [19]—colour, pattern dispersion, pattern proportion

energy, and pattern filter size—successfully replicated the

previously published findings [19].

Model selection on the basis of AIC indicated that the

best model of egg rejection contained only the previous

predictors and NPM experimental-host distance (i.e. NPM

experimental-host difference in number was not retained;

table 1 and figure 2, see also electronic supplementary

material). This model explained 36.7% of the variance in

egg rejection, compared with 31.9% reported in Spottiswoode

& Stevens [19]. Including NPM experimental-host distance in

the model resulted in a small but measurable improvement to

the original model. Much of the variance in egg rejection be-

haviour (approx. 63%) remains unexplained. In the revised

model, colour difference remained the most important pre-

dictor, making up 42% of the explained variance, followed

by pattern proportion energy (16%), pattern dispersion

(17%), NPM experimental-host distance (14%) and pattern

filter (marking) size (11%).



Table 1. Predictors of egg rejection in experimentally parasitized nests. I (%) is the proportion of overall variance explained by the model (36.7%) contributed
by each variable independently. VIF indicates variance inflation factors for each predictor. d.f. ¼ 116. Significance levels: ** p , 0.01, * p , 0.05.

estimate s.e. 95% CI z p-value I (%) VIF

(intercept) 0.110 0.220 20.317 – 0.553 0.500 0.617

NPM experimental-host distance 0.504 0.238 0.052 – 0.992 2.118 0.034* 14.313 1.089

pattern proportion energy 0.605 0.251 0.146 – 1.137 2.411 0.016* 15.586 1.053

pattern dispersion 0.570 0.236 0.121 – 1.057 2.411 0.016* 17.496 1.099

pattern filter size 0.480 0.224 0.047 – 0.933 2.142 0.032* 10.830 1.043

colour 1.064 0.281 0.555 – 1.663 3.782 0.0002** 41.776 1.163
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For completeness, we also produced a model using NPM

experimental-host distance only; it was a significant predictor

of egg rejection (d.f. ¼ 120, z ¼ 2.447, p ¼ 0.014), explaining

approximately 7% of the variance in egg rejection. In

addition, we produced a model with NPM experimental-

host distance and colour only: both were significant predic-

tors of egg rejection, as expected (d.f. ¼ 119, NPM

experimental-host distance, z ¼ 2.654, p ¼ 0.007; colour, z ¼
3.353, p ¼ 0.001), explaining approximately 20% of the var-

iance. Therefore, SIFT-based features can predict rejection

behaviour in the absence of colour and/or low-level pattern

metrics, but the overall model is better when colour,

low-level pattern and higher-level pattern measures are all

included. Critically, the significant parameters predicting egg

rejection (table 1) are not highly correlated with one another

(electronic supplementary material, table S4; note one signifi-

cant weak correlation between NPM experimental-host

distance and dispersion, Pearson’s r ¼ 0.276, CI0.95 ¼ 0.1 to

0.432, t ¼ 3.143, d.f. ¼ 120, p , 0.01), which suggests that

NPM is capturing non-redundant pattern information. In

other words, the information derived from NPM (about dis-

tinctive features with shapes and orientations) is different

from that derived from spatial frequency analysis (dominant

marking size and its relative contribution to the overall pattern

contrast).

In our initial analyses, we found that NPM experimental-

host distance and NPM experimental-host difference in

feature number were highly correlated (see Methods). When

we excluded NPM experimental-host distance from the initial

model, NPM experimental-host difference in feature number

was not retained by stepwise model selection; by contrast,

when we excluded NPM experimental-host difference in

feature number from the model, NPM experimental-host

distance was retained in the final model. This suggests that

NPM experimental-host distance, while correlated with the

absolute difference in feature number between eggs, contains

information about the shapes, gradients and orientations of

features that is useful for recognition. Just comparing the

number of features on host eggs with the number of features

on the experimental egg does not significantly predict

egg rejection.

In the main text, we concentrated on NPM experimen-

tal-host distance (and NPM experimental-host difference

in feature number) because it is most directly comparable

to the measures used in Spottiswoode & Stevens [19] in

that it compares the appearance of foreign and host eggs

(figure 3). Additional analyses that included host
intraclutch and interclutch variation as predictors of egg

rejection can be found in electronic supplementary

material, tables S1 and S2. Neither significantly predicted

egg rejection.

(c) When are higher-level features most important?
Figure 4 demonstrates how colour, low-level and higher-level

pattern features predict rejection. Red dots (representing

rejected eggs) in quadrant 1 indicate cases in which NPM

experimental-host distance does predict rejection (defined

as predicting a probability that the egg will be rejected greater

than 50%, based on NPM experimental-host distance when

the other predictor variables are set to their mean values),

but colour and low-level pattern metrics do not. These

rejected eggs are represented by red lines in figure 2f– j,
which suggest that when pattern proportion energy, pattern

dispersion and pattern filter size provide little information

(small differences between host and experimental eggs),

large differences in higher-level pattern features (as estimated

by NPM experimental-host distance) might contribute to

rejection. One specific example of this is shown in clutch 1

of figure 3 (see Discussion). Small differences in NPM exper-

imental-host distance do not usually impede rejection if there

is sufficient information in the other channels (quadrant 4 in

figure 4; clutches 2 and 3 in figure 3). See Discussion for

additional details.
4. Discussion
Understanding how animals perceive and prioritize lower-

and higher-level pattern information is a pressing goal for

sensory ecologists [27,38], with few explicit tests of this idea

in wild animals. Tawny-flanked prinias, a frequent host of

the parasitic cuckoo finch, have been shown previously to

use multiple visual cues when discriminating against foreign

eggs [19], making them ideal subjects for an in-depth analysis

of pattern recognition. In this study, we demonstrate that

both low-level and higher-level pattern information—

together with colour—predict egg rejection behaviour in

prinias. We find that including a measure of visual difference

(between experimental and host eggs) estimated using

higher-level pattern information in a model with colour and

low-level pattern features increases the explained variance

in rejection by about 5%, from 32 to 37%. This result suggests

that pattern metrics derived from collections of SIFT features,

which capture details about the shape and orientation of egg
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markings, provide novel, non-redundant information to

birds. Overall, using a mix of low- and higher-level pattern

information may improve the chances of successful egg rec-

ognition and rejection. The increase in predictive power in

the model when adding higher-level information is relatively

small, and only 14% of the explained variance in rejection is

based on differences in higher-level features between host

and experimental eggs. This suggests that egg rejection be-

haviour is primarily driven by colour and low-level pattern

differences. Higher-level features nonetheless provide some

additional information and appear to be as important for

rejection as any single low-level pattern measure (each
accounting for about 11–17% of explained variance in

rejection).

When are higher-level pattern features likely to be par-

ticularly beneficial? In our egg rejection experiments, there

were many trials in which prinias rejected experimental

eggs even though differences in low-level pattern metrics

were small (figure 3, clutch 1) and colour and low-level

metrics together were poor predictors of egg rejection

(figure 4, rejected eggs in quadrants 1 and 3). In many of

these cases, rejected eggs were substantially different from

host eggs in terms of SIFT features, such that NPM exper-

imental-host distance was high or moderate (figure 4,

rejected eggs in quadrant 1 and the top of quadrant 3). How-

ever, there were some cases in which high NPM

experimental-host distance appears to have been insufficient

to trigger rejection in the absence of large differences in

colour and low-level pattern metrics (figure 4, accepted

eggs in quadrant 1; see also additional analyses and discus-

sion in electronic supplementary material, figure S1). In

addition, some eggs were rejected when colour, low-level

and higher-level feature differences were all poor predictors

of rejection (figure 4, rejected eggs in quadrant 3; see also

additional analyses and discussion in electronic supplemen-

tary material, figure S2). What might explain these results?

Unexpected egg acceptance might be attributed to host

parents that were naive first-time breeders that had not yet

acquired a reliable template of their own egg’s appearance.

Unexpected egg rejection might be due to hosts’ ability to

make full use of other cues of parasitism, such as the sight

of adult brood parasites in the environment, as prinias are

known to do [5].

Taken together, these observations suggest that when

colour and low-level pattern metrics provide little infor-

mation to a host, differences in higher-level pattern features

may sometimes be uniquely informative for identifying a para-

site egg. One such scenario is highlighted in clutch 1 in
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figure 3, showing eggs from a trial in which the experimen-

tal egg was rejected. The colour and low-level pattern

differences between the experimental and host eggs are all

low; the dominant markings on the eggs are of similar

size, and the patterning (though much denser on host

eggs) is distributed relatively evenly across the narrow and

wide egg regions. By contrast, the dissimilarity of exper-

imental and host eggs when measured with NPM is high,

indicating that higher-level features likely contributed to

successful egg rejection.

These observations raise the questions of whether and

how host birds might prioritize certain types of visual infor-

mation. It is as yet unknown whether there is some sort of

hierarchy of features used in rejection, such that hosts first

use colour, then low-level pattern information, and then—

if those are uninformative—they switch to higher-level fea-

tures. Alternatively, hosts may somehow integrate all

features simultaneously, but give more weight to some

cues (like colour) than others. Our predictive model shows

that colour and low-level pattern metrics account for 42

and 44%, respectively, of the overall explained variance in

rejection (table 1), while higher-level pattern features

account for 14%. One possibility is that colour and low-

level pattern features are evaluated first, consistent with

the idea that initial colour and low-level pattern processing

occurs in the very early stages of vision [39]. If these two

channels do not provide large visual differences, higher-

level pattern features—processed slightly downstream—

might be assessed and sometimes (but not always) tip the

balance in favour of egg rejection (figure 4, quadrant 1). In

other words, when the forgery is very good, higher-level

pattern assessment might be necessary to spot the fake.

For a fascinating parallel in the art world, consult [40], in

which low-level pattern metrics (spatial frequency analysis

with wavelets) were sufficient for spotting a notorious van

Gogh forgery, but a more complex method (using multidi-

mensional histograms, much like SIFT features) was

required to successfully identify other non-van Gogh

paintings. So do birds process visual information in a

sequential manner, using higher-level pattern features

only if required? In all likelihood, vision in birds—as

in humans [41,42]—is not strictly feedforward, but

rather characterized by rich interactions and feedbacks.

Therefore, colour, low-level and higher-level pattern

information are probably integrated in complex ways.

We find that the significant parameters predicting egg

rejection (table 1) are not highly correlated with one another

(electronic supplementary material, table S4), indicating that

colour, low-level and higher-level pattern features may have

evolved to maximize information content on host eggs, as

suggested previously [7,18,19]. Moreover, this finding under-

scores the fact that NPM is capturing non-redundant pattern

information (i.e. different from the information represented

by low-level features derived from spatial frequency analysis

or measures of pattern dispersion). Interestingly, we did not

find that egg rejection behaviour was predicted by a host’s

intraclutch or interclutch variation, as measured by NPM

(electronic supplementary material, tables S1 and S2). This

may be because prinia hosts appear to base their rejection

decisions on the pattern cues that differ most reliably

between real and parasitic eggs in the population [19], so
that hosts are tuned to the traits that will most consistently

reveal a large difference between parasite and host eggs irres-

pective of the host’s own egg phenotype. In other words,

whether or not a host has a good egg pattern signature

(low intraclutch variation and/or high interclutch variation)

matters less than the host’s ability to compare effectively its

own eggs to the parasite egg. Prinias know the appearance

of their own eggs, rejecting foreign eggs when they differ

from an internal template [34]. Puzzlingly, prinias apparently

fail to use the one 100% reliable pattern cue—scribbled lines

(figure 1a) that they always produce (in highly variable quan-

tities among females) but cuckoo finches do not—to reject

parasitic eggs [19], because unscribbled parasite eggs are rou-

tinely accepted. However, prinias might detect and use

scribbled ‘information’ more than we realize. The SIFT algor-

ithm readily finds features along scribbled lines, and some

differences between a scribbled and unscribbled egg would

be captured by NPM experimental–host distance. Accord-

ingly, the presence (or absence) of scribbled lines might

affect rejection in subtle ways that we do not yet appreciate.

Rapid advances in image analysis and computer vision

have catapulted us into a new era of animal coloration

research: the age of pattern quantification, growing steadily

for years, has fully arrived. Pattern analysis methods, ran-

ging from the simple (spatial filtering) to the complex

(deep neural networks), are proliferating, and it will be cru-

cial for biologists to consider the biological relevance of such

methods [27]. Ultimately, detailed behavioural experiments

on birds and other animals will be needed to test which

techniques are the most appropriate and informative.

Where possible, these should include both low- and

higher-level pattern features. A recent study of camouflage

[38], for example, showed that low- and higher-level pattern

metrics together predicted a human’s ability to detect an

artificial prey item on a screen, but this depended on the

type of camouflage. Discovering whether camouflage and

mimicry evolved in response to similar (or different) forms

of low- and higher-level pattern detection is an exciting

prospect for the future. Because brood parasites and their

hosts have evolved ever-more elaborate visual tricks to

outwit each other, they form an ideal model system for

this area of inquiry.
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16. Stevens M, Párraga CA, Cuthill IC, Partridge JC,
Troscianko TS. 2007 Using digital photography to
study animal coloration. Biol. J. Linn. Soc. 90,
211 – 237. (10.1111/j.1095-8312.2007.00725.x)

17. Troscianko J, Stevens M. 2015 Image calibration and
analysis toolbox - a free software suite for objectively
measuring reflectance, colour and pattern. Methods Ecol.
Evol. 6, 1320 – 1331. (doi:10.1111/2041-210X.12439)

18. Stoddard MC, Stevens M. 2010 Pattern mimicry of
host eggs by the common cuckoo, as seen through
a bird’s eye. Proc. R. Soc. B 277, 1387 – 1393.
(doi:10.1098/rspb.2009.2018)

19. Spottiswoode CN, Stevens M. 2010 Visual modeling
shows that avian host parents use multiple visual cues
in rejecting parasitic eggs. Proc. Natl Acad. Sci. USA
107, 8672 – 8676. (doi:10.1073/pnas.0910486107)

20. Campbell FW, Robson JG. 1968 Application of
Fourier analysis to the visibility of gratings.
J. Physiol. Lond. 197, 551 – 566. (doi:10.1113/
jphysiol.1968.sp008574)

21. Godfrey D, Lythgoe JN, Rumball DA. 1987 Zebra
stripes and tiger stripes: the spatial frequency
distribution of the pattern compared to that of the
background is significant in display and crypsis.
Biol. J. Linn. Soc. 32, 427 – 433. (doi:10.1111/j.
1095-8312.1987.tb00442.x)
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