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Abstract
Objective: A correlation between physical exercise and cog-
nitive improvement has been found in Alzheimer’s disease 
(AD). This study aimed to investigate the effects of aerobic 
and resistance exercise on the recognition memory and ace-
tylcholinesterase (AChE) activity in beta amyloid (Aβ) model 
of AD in rat. Materials and Methods: Fifty male 8-week-old 
Wistar rats (250–280 g) were divided into 5 groups (n = 10 
each) of control, sham surgery, Aβ-received sedentary, Aβ-
received with aerobic exercise and Aβ-received with resis-
tance exercise. AD was induced by intracerebroventricular 
injection of Aβ25–35 peptide. The sham surgery group re-
ceived normal saline using the same route and condition. 

Two groups of Aβ-received animals were trained by tread-
mill for aerobic exercise and by ladder for strength exercise 
for 8 weeks (4 days/week). Novel object recognition (NOR) 
task was used to assess recognitional memory in groups. 
AChE activity in the brain tissue was assessed using the Spec-
trophotometry method. Results: There was no significant 
difference in memory index and AChE activity between the 
sham surgery and control groups (p > 0.05). Also, impairment 
of NOR indices was seen in the Aβ-injected sedentary rats 
(p < 0.05). However, both aerobic and strength training im-
proved the exploration index in this test (p < 0.05). Further, 
AChE activity increased in the Aβ-injected sedentary group 
but declined in the aerobic and resistance exercise groups 
(p < 0.01). Conclusion: Aerobic and resistance exercise could 
improve recognition memory and decrease AChE activity in 
Aβ-induced AD in rats. The decrease in AChE activity may be 
one of the mechanisms by which exercise improves cogni-
tion and memory in AD. © 2018 S. Karger AG, Basel
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Introduction

Alzheimer’s disease (AD) is the most common cause 
of dementia in elderly adults. Memory and cognitive im-
pairment due to the progressive loss of neurons is consid-
ered the hallmark of AD-type dementia [1–4]. From the 
histopathological point of view, AD progression is most-
ly associated with the extracellular deposition of beta am-
yloid (Aβ) peptides [5]. Evidence supports that Aβ plays 
the main role in the cholinergic dysfunction during AD 
[6]. 

According to the literature, physical activities or exer-
cise may improve memory decline and cognitive impair-
ment and also delay the onset of dementias including AD 
[7–10]. Similarly, investigations on the animal models of 
AD have provided compelling evidence for a preventive 
role of physical activity in AD [11–14]. There is evidence 
that following a strict exercise regimen during the middle 
age of an individual is associated with the reduction of 
dementia risk, improved cognitive scores, larger hippo-
campal volumes, and lower rate of gray matter volume 
loss [15]. However, the exact mechanisms by which phys-
ical activity improves cognitive performance remain un-
clear.

Physical activity may attenuate cognitive impairment 
through Aβ-dependent or independent mechanisms 
[10]. Cholinergic modulation of central nervous system 
in mild cognitive impairment or AD patients is one of the 
most frequently used methods for prevention of disease 
progression [16] and it seems that aerobic or resistance 
exercises could affect this neurotransmission. 

The aim of this study was to examine the effects of 
aerobic and resistance exercise on the recognitional 
memory and acetylcholinesterase (AChE) activity in Aβ-
induced AD in rat.

Materials and Methods

Study Design
Fifty male Wistar rats (8 weeks old, weighing 250–280 g) were 

randomly assigned to 5 groups of control, sham surgery, 
 Aβ-received sedentary, Aβ-received with aerobic exercise, 
and Aβ-received with resistance exercise (n = 10 in each). Con-
trol  animals did not receive any treatment or exercise. For 
 modeling  of AD, rats received aggregated Aβ25–35 via the 
 intracerebroventricular route; the sham surgery group received 
normal saline using the same route. Separate groups of Aβ-
received animals were divided into aerobic exercise, resistance 
exercise, and sedentary groups. All procedures were approved by 
the regional Ethics Committee of Tabriz University of Medical 
Sciences.

AD Induction
Aggregated Aβ Preparation
Aβ25–35 peptide (Sigma Aldrich, USA) was dissolved in 200 µL 

of distilled water at the concentration of 5 μg/μL and the solution 
was incubated at 37  ° C for 1 week before use.

Surgical Procedure
The rats were anesthetized intra-peritoneally using the mixture 

of ketamine (70 mg/kg) and xylazine (10 mg/kg) then were placed 
in a stereotaxic instrument. Using a micro-injection pump, 50 μg 
of the aggregated Aβ peptide was administrated into each of the 
ventricles over 3 min. The coordinates were chosen based on the 
Paxinos and Watson rat brain atlas (antero-posterior –0.8 mm, 
lateral ±1.6 mm and ventro-dorsal –4.5 mm). For prevention of 
reflux, the needle was left in place for 5 min before it was with-
drawn. Sham surgery group rats were injected with normal saline 
using the same procedure. Resistance training and aerobic training 
were started 1 week after the surgery.

Resistance Training 
Resistance training of the Aβ-received rats comprised of climb-

ing a ladder (100 cm length, 2 cm grid, 85° incline) with weights 
attached to their tails.

Three days before training, the rats were familiarized with 
the apparatus by climbing it twice with and without weight to 
reach a cage at the top of the ladder. When the rats reached the 
top of the ladder, they were allowed to recover in the resting 
area. After familiarization, the rats began resistance training 
with weights attached to the base of their tail with tape and strap. 
The rats were positioned at the bottom of the ladder and moti-
vated to climb the ladder by striking or touching their tail. The 
initial weight attached to the tail was 10% of the rat body weight 
and was escalated progressively until 100% throughout the 
8 weeks of the training period. The weight increase was at the 
beginning of each week and was not altered throughout that 
week. The resistance training consisted of 1 set of 10 repetitions 
with a 10–20 s rest interval between the repeats. The rats in the 
training groups were trained once a day (9–12 am) every 2 day 
for 8 weeks.

Aerobic Training Protocol
For aerobic exercise, rats were trained in a motorized treadmill. 

Animals were first subjected to a 1-week familiarity course in order 
to reduce handling and environment-related stimulants. Initially, 
rats were forced to run on a treadmill at a speed of 10 m/min for 
20 min. The speed and duration of running were gradually esca-
lated and at the end of the fourth week reached 20 m/min for 
40 min and the condition continued up to the end of the eighth 
week. A gentle 0.04 mA electric shock was sufficient to make the 
rats run and the entire training process was carried out without any 
further tail shock.

Behavioral Testing
Novel object recognition (NOR) task was used to assess learn-

ing and memory in the rats. This procedure consists of 3 phases: 
habituation, familiarization, and test phases. In the habituation 
phase, rats were habituated to the testing apparatus for 10 min. 
Animals were allowed to freely explore and manipulate the open 
field arena in the absence of objects. One day after the first phase 
and during the familiarization phase, animals were separately 
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placed in the open field arena containing 2 identical objects (A and 
A’) for 10 min. Then during the test phase (24 h after familiariza-
tion phase), animals were made to return to the open field arena 
with 2 objects one of which was identical and another one was 
novel (A and B). The time of objects exploration was measured up 
to 20 s and novel object exploration time was used as an index of 
memory.

Tissue Collection and Processing
One day after behavioral test, the rats were euthanized by de-

capitation under ketamine (70 mg/kg) and xylazine (10 mg/kg) 
anesthesia and brains were rapidly removed on ice and stored at 
–80  ° C until use.

Measurement of AChE Activity
The AChE activity assay was performed based on the method 

described by Ellman et al. [17]. This method measures the thioco-
line production rate by spectrophotometry, while AChE catalyzes 
the hydrolysis of acetylcholine. Rats’ brain tissues were homoge-
nized in 0.1 M of phosphate buffer (pH 8.0) and centrifuged at 
14,000 rpm, 4  ° C for 5 min. Then 0.2 mL of obtained supernatant 
was added to the cuvette containing 2.8 mL of 0.1 M phosphate 
buffer and 100 µL of Ellman’s reagent (0.01 M; 5,5’-dithiobis-2-ni-
trobenzoic acid). Accordingly, absorption was measured at 
412 nm. Then 20 µL of substrate (acetylthiocholine iodide) was 
added. After 2 min of incubation at 30  ° C, the product of thiocho-
line reaction with 5,5’-dithiobis-2-nitrobenzoic acid was deter-
mined at 412 nm for a period of 10 min at 2 min intervals for the 
absorbance per minute.

Statistical Analysis
Mean values and SEM were used for descriptive data. Also, the 

analysis of other data was performed using a one-way analysis of 
variance, and a Tukey post-hoc test. p < 0.05 was considered sta-
tistically significant. SPSS 17.0 software was used for all the statis-
tical analyses.

Results

Comparison of Memory Index within the Groups
Control and sham surgery groups showed no signifi-

cant difference in the memory index (p > 0.05). The Aβ-
injected sedentary group showed significantly lower nov-
el object exploring time compared to the control and 
sham surgery groups (p < 0.05). Novel object exploring 
time significantly increased in the Aβ-injected strength 
exercise or aerobic exercise groups compared with the 
Aβ-injected sedentary group (p < 0.05; Fig. 1).

Comparison of AChE Activity within the Groups
The brain AChE activities are presented in Figure 2. 

The highest AChE activity was observed in the Aβ inject-
ed sedentary group, and the lowest activity was observed 
in the sham surgery group. No significant difference in 
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Fig. 1. Exploration time of the novel object during the test phase 
of novel object recognition (NOR) task in different groups. Each 
bar represents the mean ± SEM (n = 10). * p < 0.05 compared to 
the control group and # p < 0.05 compared to the beta amyloid 
(Aβ)-received sedentary group respectively. All values were differ-
ent from the chance exploration (10 s) illustrated by the dashed 
line (p < 0.05).
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Fig. 2. AChE activity in different groups. Each bar represents the 
mean ± SEM, (n = 10). ** p < 0.01 compared to the control group 
and ##  p  < 0.01 compared to the Aβ-received without training 
group, respectively. $  p  < 0.05 compared to the Aβ-received 
strength training group.
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AChE activity was observed between control and sham 
surgery groups (p > 0.05). Strength and aerobic exercises 
reduced AChE activity in Aβ-injected groups compared 
to the Aβ-injected sedentary group (p < 0.001). The Aβ-
injected sedentary group showed significantly higher 
AChE activity in comparison with control and sham sur-
gery groups (p < 0.001). The aerobic exercise group re-
vealed significant decrease in AChE activity (p < 0.05) 
compared to the Aβ-injected strength exercise group.

Discussion

According to the cholinergic hypothesis of AD, the 
acetylcholine level significantly decreases in AD patients’ 
brain [18–20]. AChE is an important component of all 
cholinergic synapses in the brain, where it rapidly hydro-
lyzes the acetylcholine; so AChE inhibitors that reverse 
the activation of this enzyme are now used for the symp-
tomatic treatment of AD [21–23]. Moreover, the progres-
sive loss of cholinergic neurons and synapses is influ-
enced by the cholinergic enzymes activity.

There is evidence that physical activity and exercise 
could improve cognitive function and memory impair-
ment in AD [24–27]. Animal studies have shown that ex-
ercise improves decreased neurotrophic factors levels and 
enhances neurogenesis, synaptic plasticity, antioxidant 
capacity, and angiogenesis in AD models [28–30]. How-
ever, the exact mechanism is still unclear.

According to the Cho et al. [31] study, treadmill exer-
cise reversed cognitive impairment in AD animals. Ke 
et al. [32] evaluated the effects of treadmill exercise on the 
transgenic AD mice. They found that exercise improves 
learning and memory via an increase in the cholinergic 
neurons in the medial septum and vertical diagonal band 
[32]. Cassilhas et al. [33] showed that aerobic and resis-
tance exercise improves spatial memory through diver-
gent molecular mechanisms. The Souza et al. [34] study 
demonstrated that 8 weeks of swimming training pre-
vents recognition memory impairment in the Aβ-received 
animals. Also, according to the Yuede et al. [35] study, 
voluntarily running AD animals had better performance 
in the recognition memory tests compared with the sed-
entary group. In our study, NOR test results showed sig-
nificant improvement in memory following both resis-
tant and strength exercises in AD animals, which is in line 
with other similar studies [34, 35]. Based on the choliner-
gic hypothesis of AD, any reduction in the acetylcholine 
level is the probable cause of AD [36]. Also, the degen-
eration of cholinergic neurons in basal forebrain plays a 

key role in AD-induced memory loss and cognitive im-
pairment [37]. Aβ peptides deposition induces choliner-
gic denervation in AD [38]. Moreover, studies have 
shown that AChE could precipitate Aβ plaques deposi-
tion in the AD patients’ brain [39–41]. Somani et al. [42] 
showed that chemical and physical stressors decrease 
choline acetyltransferase and AChE enzymes in the brain. 
Kim et al. [43] showed a decreased hippocampal AChE 
activity after 21 days of treadmill training in the rat mod-
el of stroke. Our data show that the reduction of AChE 
activity in rats is parallel to the improvement in NOR 
task, which was used in this study for recognitional mem-
ory assessment.

In summary, the results of our study indicate that aer-
obic exercise reduces the AChE activity more effectively 
than resistance exercise. Also, exercise improves AD-in-
duced memory impairment. This is partly due to the 
change in the cholinergic function resulting from decline 
in the AChE activity.
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