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Abstract
Reinforcement learning has achieved tremendous success in 
recent years, notably in complex games such as Atari, Go, 
and chess. In large part, this success has been made possible 
by powerful function approximation methods in the form of 
deep neural networks. The objective of this paper is to intro-
duce the basic concepts of reinforcement learning, explain 
how reinforcement learning can be effectively combined 
with deep learning, and explore how deep reinforcement 
learning could be useful in a medical context.

© 2018 S. Karger AG, Basel

Introduction

Reinforcement learning (RL) algorithms have experi-
enced unprecedented success in the last few years, reach-
ing human-level performance in several domains, in-
cluding Atari video games [1] or the ancient games of Go 
[2] and chess [3]. This success has been largely enabled 
by the use of advanced function approximation tech-
niques in combination with large-scale data generation 
from self-play games. The aim of this paper is to intro-
duce basic RL algorithms and describe state-of-the-art 

extensions of these algorithms to deep learning. We also 
discuss the potential of RL in medicine and review the 
literature to study existing practical applications of RL. 
Even though RL offers several benefits in comparison to 
other artificial intelligence (AI) techniques, such as the 
ability to optimize long-term benefit to patients rather 
than immediate benefit, there are a number of obstacles 
that have to be overcome in order to apply RL on a large 
scale.

Reinforcement Learning

RL is an area of machine learning concerned with se-
quential decision problems [4]. Concretely, a learner or 
agent interacts with an environment by taking actions, 
and the aim of the agent is to maximize its expected cu-
mulative reward. Each action affects the next, and the 
agent cannot simply maximize the immediate reward that 
it will get, but rather has to plan ahead and select actions 
that will maximize reward in the long run.

Notation: Given a finite set X, a probability distribu-
tion on X is a vector µ ∈ RX whose elements are non-
negative (i.e., µ(x) ≥ 0 for each x ∈ X) and whose sum 
equals 1 (i.e., Σx µ(x) = 1). We use Δ(X) = {µ ∈ RX : Σx µ(x) 
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= 1, µ(x) ≥ 0 (∀x)} to denote the set of all such probabil-
ity distributions.

Markov Decision Processes
Sequential decision problems are usually modelled 

mathematically as Markov decision processes, or MDPs. 
An MDP is a tuple M = (S, A, P, r), where
•	 S is the finite state space,
•	 A is the finite action space,
•	 P : S × A → Δ(S) is the transition function, with P (s′ ∣ s,  

a) denoting the probability of moving to state s′ when 
taking action a in state s,

•	 r : S × A → R is the reward function, with r (s, a) denot-
ing the expected reward obtained when taking action 
a in state s.
Intuitively, the agent controls which action to select, 

while the environment controls the outcome of each ac-
tion. In each round t, the agent observes a state st ∈ S and 
selects an action at ∈ A. As a result, the environment re-
turns a new state st + 1 ∼ P ( •  ∣ st, at) and reward rt + 1 ∼ r 
(st, at). This process is illustrated in Figure 1. By repeating 
the procedure for t = 0, 1, 2, ... the result is a trajectory

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, ....

The aim of the agent is to select actions as to maximize 
some measure of expected cumulative reward. The most 
common reward criterion is the discounted cumulative 
reward
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where γ ∈ (0, 1] is a discount factor which ensures that the 
sum remains bounded. 

The decision strategy of the agent is represented by a 
policy π : S → Δ (A), with π (a | s) denoting the probabil-
ity that the agent selects action a in state s. For each poli-

cy π, we can define an associated value function Vπ, which 
measures how much expected reward the agent will ac-
cumulate from a given state when acting according to π. 
Specifically, the value in state s is defined as
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The values of consecutive states satisfy a recursive rela-
tionship called the Bellman equations:

         , , .
a s

V s a s r s a P s s a V s 



     
 

 | |  

As an alternative to Vπ, we can instead define an ac-
tion-value function Qπ, which measures how much ex-
pected reward the agent will accumulate from a given 
state when taking a specific action and then acting ac-
cording to π. The action-value for state s and action a is 
defined as
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There is a straightforward relationship between the value 
function Vπ and action-value function Qπ:
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Consequently, the Bellman equations can be stated either 
for Vπ or for Qπ.

We can also define the optimal value function V* as the 
maximum amount of expected reward that an agent can 
accumulate from a given state. The optimal value func-
tion in state s is given by V* (s) = maxπ Vπ (s), i.e., the 
maximum value among the individual policies. The opti-
mal policy π* is the policy that attains the maximum value 
in each state s, i.e., π* ( •  ∣ s) = arg maxπ Vπ (s). The optimal 
values of consecutive states satisfy the optimal Bellman 
equations
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Just as before, we can instead define the optimal action-
value function Q*, which is related to V* as follows:
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RL Algorithms
Most RL algorithms work by maintaining an estimate 

π̂ of the optimal policy, an estimate V̂ of the optimal value 
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Fig. 1. Illustration of the agent-environment interface [4]. 
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function, and/or an estimate Q̂ of the optimal action-val-
ue function. If the transition function P and reward func-
tion r are known, π̂ and V̂ can be estimated directly. Spe-
cifically, from the Bellman equations we can derive a Bell-
man operator Tπ which can be applied to a value function 
V̂ to produce a new value function TπV̂ defined as
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Likewise, from the optimal Bellman equations we can de-
rive an optimal Bellman operator T* that, when applied to 
a value function V̂, is defined as
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Value iteration works by repeatedly applying the opti-
mal Bellman operator T* to an initial value function esti-
mate V̂0:

V̂k + 1 = T*V̂k,	 k = 0, 1, 2, ...

If the value of each state is stored in a table, value iteration 
is guaranteed to eventually converge to the optimal value 
function V*.

Policy iteration instead starts with an initial policy es-
timate π̂0 and alternates between a policy estimation step 
and a policy improvement step. In the policy estimation 
step, we simply estimate the value function V̂π̂k associated 
with the current policy π̂k. To do so, we can repeatedly 
apply the Bellman operator T π̂k to an initial value function 
estimate V̂0:

V̂n + 1 = T π̂kV̂n,	 n = 0, 1, 2, ....

In the policy improvement step, we update the policy 
such that it is greedy with respect to the value function 
estimate V̂π̂k:
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If the value of each state is stored in a table, policy itera-
tion is also guaranteed to eventually converge to the op-
timal value function V*.

If the transition function P and reward function r are 
unknown, we have to resort to different techniques. In 
this case, π̂, V̂, and Q̂  have to be estimated from transitions 
on the form st, at, rt + 1, st + 1. Unlike value iteration and 
policy iteration, which update the values of all states in 
each iteration, temporal difference (TD) methods update 
the value of a single state for a given transition. The most 
popular TD method is Q-learning [5], which maintains 
an estimate Q̂t of the optimal action-value function, which 
is updated after each transition (st, at, rt + 1, st + 1). The new 

estimate Q̂t + 1 is identical to Q̂t for each state-action pair 
different from (st, at), while Q̂t + 1 (st, at) is given by
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Here, αt is a learning rate. If the value of each state-action 
pair is stored in a table and αt is appropriately tuned, Q-
learning is guaranteed to eventually converge to the opti-
mal action-value function Q*, even if the transition func-
tion P and reward function r are unknown.

Deep RL
In most realistic domains, the state space S is too large 

to store the estimated value function V̂ in a table. In this 
case, it is common to parameterize V̂θ (or π̂θ, Q̂θ) on some 
parameter vector θ. The value in a state is completely de-
termined by the current parameters in θ, and the update 
rules for RL algorithms are modified such that they no 
longer update the values of states directly, but rather the 
parameters in θ. In deep RL, V̂θ (or π̂θ, Q̂θ) is represented 
using a deep neural network, with θ being the parameters 
of the network. When the input is an image, a convolu-
tional neural network is typically deployed, such as the 
one in Figure 2.

A deep Q network, or DQN [1], is a deep neural net-
work that estimates the action-value function Q̂θ. Given a 
transition st, at, rt + 1, st + 1, the parameters θ of the neural 
network are updated as to minimize the Bellman error
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In order to prevent overfitting, the algorithm performs a 
technique called experience replay in which many transi-
tions are stored in a database. In each iteration, a number 
of transitions are sampled at random from the database 
in order to update the network parameters θ.

Asynchronous advantage actor-critic, or A3C [6], 
maintains both an estimate π̂θ of the policy (the actor) and 
an estimate V̂ϕ of the value function (the critic). Given a 
transition (st, at, rt + 1, st + 1), the parameter vector θ of π̂θ 
is updated using the regularized policy gradient rule

∇θ log π̂θ (at ∣ st) Âϕ (st, at) + β∇θH( π̂θ ( •  | st)), 

where Âϕ (st, at) is an estimate of the advantage function
Âϕ (st, at) = rt + 1 + γV̂ϕ (st + 1) − V̂ϕ (st),

H(π̂θ ( •  ∣ st)) is the entropy of the policy π̂θ in state st, and 
the parameter β controls the amount of regularization. 
The stability of the algorithm increases by using n-step 
returns, i.e., reward accumulated during n consecutive 
transitions. Moreover, the vectors θ and ϕ often share pa-
rameters, e.g., in a neural network setup all non-output 
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layers are shared, and only the output layers differ for π̂θ 
and V̂ϕ.

AlphaZero [3, 7] also maintains both a policy estimate 
π̂θ and a value estimate V̂ϕ. The parameters are not up-
dated using the policy gradient rule; rather, the algorithm 
performs Monte-Carlo tree search (MCTS) to estimate a 
target action distribution p( • ) given by the empirical vis-
itation count of each branch of the search tree (MCTS 
also determines which action at to perform next). The 
parameters are then updated using the loss function

l = (Rt – V̂ϕ (st))2 – p( • )T log π̂θ ( •  ∣ st) + β ∣ ∣ θ ∣ ∣ 2,

where Rt is the observed return from state st, and β again 
controls the amount of regularization.

RL in Medicine

Many decision problems in medicine are by nature se-
quential. When a patient visits a doctor, the doctor has to 
decide which treatment to administer to the patient. Lat-
er, when the patient returns, the treatment previously ad-
ministered affects their current state, and consequently 
the next decision regarding future treatment. This type of 
decision problem can be effectively modelled as an MDP 
and solved using RL algorithms.

In most AI systems implemented in medicine, the se-
quential nature of decisions is ignored, and the systems 
instead base their decisions exclusively on the current 
state of patients. RL offers an attractive alternative to such 
systems, taking into account not only the immediate ef-
fect of treatment, but also the long-term benefit to the 
patient.

In spite of the potential of RL in medicine, there are a 
number of obstacles that have to be overcome in order to 
apply RL algorithms in the hospital. RL algorithms typi-
cally learn by trial-and-error, but submitting patients to 
exploratory treatment strategies is of course not an option 
in practice. Instead, RL algorithms would have to learn 
from existing data collected using fixed treatment strate-
gies. This process is called off-policy learning and will 
play an important role in practical RL algorithms, espe-
cially in a medical setting.

Another important issue is to establish what the re-
ward should be, which in turn determines the behavior of 
the optimal policy. Defining an appropriate reward func-
tion involves weighing different factors against each oth-
er, such as the monetary cost of a given treatment versus 
the life expectancy of a patient. This dilemma is not ex-
clusive to RL, however, and is already being discussed on 
a large scale in different countries.

There exist several examples of medical RL applica-
tions in the literature. RL has been used to develop treat-
ment strategies for epilepsy [8] and lung cancer [9]. An 
approach based on deep RL was recently proposed for 
developing treatment strategies based on medical registry 
data [10]. Deep RL has also been used to learn treatment 
policies for sepsis [11].

In nephrology, the problem of anemia treatment in he-
modialysis patients is particularly well-suited to model as 
a sequential decision-making problem. A common treat-
ment for patients with chronic kidney disease are eryth-
ropoiesis-stimulating agents (ESAs), but the effects of 
ESAs are unpredictable, making it necessary to closely 
monitor the patient’s condition. At regular time intervals, 
the medical team has to decide what action to take, and 
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Fig. 2. Convolutional neural network. By Aphex 34 (CC BY-SA 4.0 [https://creativecommons.org/licences/by-sa/ 
4.0]), from Wikimedia Commons.
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in turn, this action will affect the patient’s condition in the 
future. Several authors have proposed using RL to control 
the administration of ESAs [12, 13].
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