
Review Article

Kidney Dis 2019;5:18–22

Deep Reinforcement Learning in
Medicine

Anders Jonsson

Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain

Received: August 3, 2018
Accepted: August 6, 2018
Published online: October 12, 2018

Anders Jonsson
Department of Information and Communication Technologies
Universitat Pompeu Fabra, Roc Boronat 138
ES–08018 Barcelona (Spain)
E Mail:anders.jonsson @ upf.edu

© 2018 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/kdd

DOI: 10.1159/000492670

Keywords
Artificial intelligence · Reinforcement learning · Deep
learning

Abstract
Reinforcement learning has achieved tremendous success in
recent years, notably in complex games such as Atari, Go,
and chess. In large part, this success has been made possible
by powerful function approximation methods in the form of
deep neural networks. The objective of this paper is to intro-
duce the basic concepts of reinforcement learning, explain
how reinforcement learning can be effectively combined
with deep learning, and explore how deep reinforcement
learning could be useful in a medical context.

© 2018 S. Karger AG, Basel

Introduction

Reinforcement learning (RL) algorithms have experi-
enced unprecedented success in the last few years, reach-
ing human-level performance in several domains, in-
cluding Atari video games [1] or the ancient games of Go
[2] and chess [3]. This success has been largely enabled
by the use of advanced function approximation tech-
niques in combination with large-scale data generation
from self-play games. The aim of this paper is to intro-
duce basic RL algorithms and describe state-of-the-art

extensions of these algorithms to deep learning. We also
discuss the potential of RL in medicine and review the
literature to study existing practical applications of RL.
Even though RL offers several benefits in comparison to
other artificial intelligence (AI) techniques, such as the
ability to optimize long-term benefit to patients rather
than immediate benefit, there are a number of obstacles
that have to be overcome in order to apply RL on a large
scale.

Reinforcement Learning

RL is an area of machine learning concerned with se-
quential decision problems [4]. Concretely, a learner or
agent interacts with an environment by taking actions,
and the aim of the agent is to maximize its expected cu-
mulative reward. Each action affects the next, and the
agent cannot simply maximize the immediate reward that
it will get, but rather has to plan ahead and select actions
that will maximize reward in the long run.

Notation: Given a finite set X, a probability distribu-
tion on X is a vector µ ∈ RX whose elements are non-
negative (i.e., µ(x) ≥ 0 for each x ∈ X) and whose sum
equals 1 (i.e., Σx µ(x) = 1). We use Δ(X) = {µ ∈ RX : Σx µ(x)

Contribution from the 2nd meeting of “Science for Dialysis,” orga-
nized at the University Hospital of Bellvitge, L’Hospitalet de Llobre-
gat, Barcelona, Spain, on September 28, 2018.

Deep RL in Medicine 19Kidney Dis 2019;5:18–22
DOI: 10.1159/000492670

= 1, µ(x) ≥ 0 (∀x)} to denote the set of all such probabil-
ity distributions.

Markov Decision Processes
Sequential decision problems are usually modelled

mathematically as Markov decision processes, or MDPs.
An MDP is a tuple M = (S, A, P, r), where
•	 S is the finite state space,
•	 A is the finite action space,
•	 P : S × A → Δ(S) is the transition function, with P (s′ ∣ s,

a) denoting the probability of moving to state s′ when
taking action a in state s,

•	 r : S × A → R is the reward function, with r (s, a) denot-
ing the expected reward obtained when taking action
a in state s.
Intuitively, the agent controls which action to select,

while the environment controls the outcome of each ac-
tion. In each round t, the agent observes a state st ∈ S and
selects an action at ∈ A. As a result, the environment re-
turns a new state st + 1 ∼ P (• ∣ st, at) and reward rt + 1 ∼ r
(st, at). This process is illustrated in Figure 1. By repeating
the procedure for t = 0, 1, 2, ... the result is a trajectory

s0, a0, r1, s1, a1, r2, s2, a2, r3, s3,

The aim of the agent is to select actions as to maximize
some measure of expected cumulative reward. The most
common reward criterion is the discounted cumulative
reward

2 1
1 2 2

1
,t

t
t

r r r r  






 
       

 
 

where γ ∈ (0, 1] is a discount factor which ensures that the
sum remains bounded.

The decision strategy of the agent is represented by a
policy π : S → Δ (A), with π (a | s) denoting the probabil-
ity that the agent selects action a in state s. For each poli-

cy π, we can define an associated value function Vπ, which
measures how much expected reward the agent will ac-
cumulate from a given state when acting according to π.
Specifically, the value in state s is defined as

  1
0

1
.t

t
t

V s r s s


 



 
  

 
 |

The values of consecutive states satisfy a recursive rela-
tionship called the Bellman equations:

         , , .
a s

V s a s r s a P s s a V s 



     
 

 | |

As an alternative to Vπ, we can instead define an ac-
tion-value function Qπ, which measures how much ex-
pected reward the agent will accumulate from a given
state when taking a specific action and then acting ac-
cording to π. The action-value for state s and action a is
defined as

  1
0 0

1
, , .t

t
t

Q s a r s s a a


 



 
   

 
 |

There is a straightforward relationship between the value
function Vπ and action-value function Qπ:

     

       

, ,

, , , .
a

s

V s a s Q s a

Q s a r s a P s s a V s

 

 



 

  





|

|

Consequently, the Bellman equations can be stated either
for Vπ or for Qπ.

We can also define the optimal value function V* as the
maximum amount of expected reward that an agent can
accumulate from a given state. The optimal value func-
tion in state s is given by V* (s) = maxπ Vπ (s), i.e., the
maximum value among the individual policies. The opti-
mal policy π* is the policy that attains the maximum value
in each state s, i.e., π* (• ∣ s) = arg maxπ Vπ (s). The optimal
values of consecutive states satisfy the optimal Bellman
equations

       max , , .
a s

V s r s a P s s a V s 



    
 

 |

Just as before, we can instead define the optimal action-
value function Q*, which is related to V* as follows:

   
       

max , ,

, , , .
a

s

V s Q s a

Q s a r s a P s s a V s

 

 





    |

RL Algorithms
Most RL algorithms work by maintaining an estimate

π̂ of the optimal policy, an estimate V̂ of the optimal value

rt+1

st+1 Environment

Action
at

State
st

Reward
rt

Agent

Fig. 1. Illustration of the agent-environment interface [4].

JonssonKidney Dis 2019;5:18–2220
DOI: 10.1159/000492670

function, and/or an estimate Q̂ of the optimal action-val-
ue function. If the transition function P and reward func-
tion r are known, π̂ and V̂ can be estimated directly. Spe-
cifically, from the Bellman equations we can derive a Bell-
man operator Tπ which can be applied to a value function
V̂ to produce a new value function TπV̂ defined as

         ˆ ˆ, , .
a s

T V s a s r s a P s s a V s



     
 

 | |

Likewise, from the optimal Bellman equations we can de-
rive an optimal Bellman operator T* that, when applied to
a value function V̂, is defined as

       ˆ ˆmax , , .
a s

T V s r s a P s s a V s



    
 

 |

Value iteration works by repeatedly applying the opti-
mal Bellman operator T* to an initial value function esti-
mate V̂0:

V̂k + 1 = T*V̂k,	 k = 0, 1, 2, ...

If the value of each state is stored in a table, value iteration
is guaranteed to eventually converge to the optimal value
function V*.

Policy iteration instead starts with an initial policy es-
timate π̂0 and alternates between a policy estimation step
and a policy improvement step. In the policy estimation
step, we simply estimate the value function V̂π̂k associated
with the current policy π̂k. To do so, we can repeatedly
apply the Bellman operator T π̂k to an initial value function
estimate V̂0:

V̂n + 1 = T π̂kV̂n,	 n = 0, 1, 2,

In the policy improvement step, we update the policy
such that it is greedy with respect to the value function
estimate V̂π̂k:

ˆ
1

ˆˆ arg max .k
k T V 
 

 

If the value of each state is stored in a table, policy itera-
tion is also guaranteed to eventually converge to the op-
timal value function V*.

If the transition function P and reward function r are
unknown, we have to resort to different techniques. In
this case, π̂, V̂, and Q̂ have to be estimated from transitions
on the form st, at, rt + 1, st + 1. Unlike value iteration and
policy iteration, which update the values of all states in
each iteration, temporal difference (TD) methods update
the value of a single state for a given transition. The most
popular TD method is Q-learning [5], which maintains
an estimate Q̂t of the optimal action-value function, which
is updated after each transition (st, at, rt + 1, st + 1). The new

estimate Q̂t + 1 is identical to Q̂t for each state-action pair
different from (st, at), while Q̂t + 1 (st, at) is given by

        1 1 1
ˆ ˆ ˆ, 1 , max , .t t t t t t t t t t ta

Q s a Q s a r Q s a       

Here, αt is a learning rate. If the value of each state-action
pair is stored in a table and αt is appropriately tuned, Q-
learning is guaranteed to eventually converge to the opti-
mal action-value function Q*, even if the transition func-
tion P and reward function r are unknown.

Deep RL
In most realistic domains, the state space S is too large

to store the estimated value function V̂ in a table. In this
case, it is common to parameterize V̂θ (or π̂θ, Q̂θ) on some
parameter vector θ. The value in a state is completely de-
termined by the current parameters in θ, and the update
rules for RL algorithms are modified such that they no
longer update the values of states directly, but rather the
parameters in θ. In deep RL, V̂θ (or π̂θ, Q̂θ) is represented
using a deep neural network, with θ being the parameters
of the network. When the input is an image, a convolu-
tional neural network is typically deployed, such as the
one in Figure 2.

A deep Q network, or DQN [1], is a deep neural net-
work that estimates the action-value function Q̂θ. Given a
transition st, at, rt + 1, st + 1, the parameters θ of the neural
network are updated as to minimize the Bellman error

   1 1
ˆ ˆmax , , .t t t ta

r Q s a Q s a   

In order to prevent overfitting, the algorithm performs a
technique called experience replay in which many transi-
tions are stored in a database. In each iteration, a number
of transitions are sampled at random from the database
in order to update the network parameters θ.

Asynchronous advantage actor-critic, or A3C [6],
maintains both an estimate π̂θ of the policy (the actor) and
an estimate V̂ϕ of the value function (the critic). Given a
transition (st, at, rt + 1, st + 1), the parameter vector θ of π̂θ
is updated using the regularized policy gradient rule

∇θ log π̂θ (at ∣ st) Âϕ (st, at) + β∇θH(π̂θ (• | st)),

where Âϕ (st, at) is an estimate of the advantage function
Âϕ (st, at) = rt + 1 + γV̂ϕ (st + 1) − V̂ϕ (st),

H(π̂θ (• ∣ st)) is the entropy of the policy π̂θ in state st, and
the parameter β controls the amount of regularization.
The stability of the algorithm increases by using n-step
returns, i.e., reward accumulated during n consecutive
transitions. Moreover, the vectors θ and ϕ often share pa-
rameters, e.g., in a neural network setup all non-output

Deep RL in Medicine 21Kidney Dis 2019;5:18–22
DOI: 10.1159/000492670

layers are shared, and only the output layers differ for π̂θ
and V̂ϕ.

AlphaZero [3, 7] also maintains both a policy estimate
π̂θ and a value estimate V̂ϕ. The parameters are not up-
dated using the policy gradient rule; rather, the algorithm
performs Monte-Carlo tree search (MCTS) to estimate a
target action distribution p(•) given by the empirical vis-
itation count of each branch of the search tree (MCTS
also determines which action at to perform next). The
parameters are then updated using the loss function

l = (Rt – V̂ϕ (st))2 – p(•)T log π̂θ (• ∣ st) + β ∣ ∣ θ ∣ ∣ 2,

where Rt is the observed return from state st, and β again
controls the amount of regularization.

RL in Medicine

Many decision problems in medicine are by nature se-
quential. When a patient visits a doctor, the doctor has to
decide which treatment to administer to the patient. Lat-
er, when the patient returns, the treatment previously ad-
ministered affects their current state, and consequently
the next decision regarding future treatment. This type of
decision problem can be effectively modelled as an MDP
and solved using RL algorithms.

In most AI systems implemented in medicine, the se-
quential nature of decisions is ignored, and the systems
instead base their decisions exclusively on the current
state of patients. RL offers an attractive alternative to such
systems, taking into account not only the immediate ef-
fect of treatment, but also the long-term benefit to the
patient.

In spite of the potential of RL in medicine, there are a
number of obstacles that have to be overcome in order to
apply RL algorithms in the hospital. RL algorithms typi-
cally learn by trial-and-error, but submitting patients to
exploratory treatment strategies is of course not an option
in practice. Instead, RL algorithms would have to learn
from existing data collected using fixed treatment strate-
gies. This process is called off-policy learning and will
play an important role in practical RL algorithms, espe-
cially in a medical setting.

Another important issue is to establish what the re-
ward should be, which in turn determines the behavior of
the optimal policy. Defining an appropriate reward func-
tion involves weighing different factors against each oth-
er, such as the monetary cost of a given treatment versus
the life expectancy of a patient. This dilemma is not ex-
clusive to RL, however, and is already being discussed on
a large scale in different countries.

There exist several examples of medical RL applica-
tions in the literature. RL has been used to develop treat-
ment strategies for epilepsy [8] and lung cancer [9]. An
approach based on deep RL was recently proposed for
developing treatment strategies based on medical registry
data [10]. Deep RL has also been used to learn treatment
policies for sepsis [11].

In nephrology, the problem of anemia treatment in he-
modialysis patients is particularly well-suited to model as
a sequential decision-making problem. A common treat-
ment for patients with chronic kidney disease are eryth-
ropoiesis-stimulating agents (ESAs), but the effects of
ESAs are unpredictable, making it necessary to closely
monitor the patient’s condition. At regular time intervals,
the medical team has to decide what action to take, and

Convolutions

Input

Feature maps

f.maps
f.maps

Output

Subsampling Convolutions Subsampling Fully connected

Fig. 2. Convolutional neural network. By Aphex 34 (CC BY-SA 4.0 [https://creativecommons.org/licences/by-sa/
4.0]), from Wikimedia Commons.

JonssonKidney Dis 2019;5:18–2222
DOI: 10.1159/000492670

in turn, this action will affect the patient’s condition in the
future. Several authors have proposed using RL to control
the administration of ESAs [12, 13].

Acknowledgements

This work is partially funded by the grant TIN2015-67959 of
the Spanish Ministry of Science.

Statement of Ethics

The author has no ethical conflicts to disclose.

Disclosure Statement

The author has no conflicts of interest to declare.

References

  1	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA,
Veness J, Bellemare MG, et al. Human-level
control through deep reinforcement learning.
Nature. 2015 Feb; 518(7540): 529–33.

  2	 Silver D, Huang A, Maddison CJ, Guez A, Si-
fre L, van den Driessche G, et al. Mastering the
game of Go with deep neural networks and
tree search. Nature. 2016 Jan; 529(7587):
484–9.

  3	 Silver D, Hubert T, Schrittwieser J, Antono-
glou I, Lai M, Guez A, et al. Mastering Chess
and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. arXiv. 2017;

1712.01815.
  4	 Sutton RS, Barto AG. Introduction to Rein-

forcement Learning. 1st ed. Cambridge (MA):
MIT Press; 1998.

  5	 Watkins CJ, Dayan P. Q-learning. In: Ma-
chine Learning. 1992. p. 279–92.

  6	 Mnih V, Badia AP, Mirza M, Graves A, Lil-
licrap TP, Harley T, et al. Asynchronous
Methods for Deep Reinforcement Learning.
arXiv. 2016; 48: 1–28.

  7	 Silver D, Schrittwieser J, Simonyan K, An-
tonoglou I, Huang A, Guez A, et al. Mastering
the game of Go without human knowledge.
Nature. 2017 Oct; 550(7676): 354–9.

  8	 Pineau J, Guez A, Vincent R, Panuccio G,
Avoli M. Treating epilepsy via adaptive
neurostimulation: a reinforcement learning
approach. Int J Neural Syst. 2009 Aug; 19(4):

227–40.
  9	 Zhao Y, Zeng D, Socinski MA, Kosorok MR.

Reinforcement learning strategies for clinical
trials in nonsmall cell lung cancer. Biometrics.
2011 Dec; 67(4): 1422–33.

10	 Liu Y, Logan B, Liu N, Xu Z, Tang J, Wang Y.
Deep reinforcement learning for dynamic
treatment regimes on medical registry data.
2017 IEEE International Conference on
Healthcare Informatics (ICHI); 2017 Aug. p.
380–5.

11	 Raghu A, Komorowski M, Ahmed I, Celi LA,
Szolovits P, Ghassemi M. Deep reinforcement
learning for sepsis treatment. CoRR. 2017;
abs/1711.09602.

12	 Escandell-Montero P, Chermisi M, Martínez-
Martínez JM, Gómez-Sanchis J, Barbieri C,
Soria-Olivas E, et al. Optimization of anemia
treatment in hemodialysis patients via rein-
forcement learning. Artif Intell Med. 2014
Sep; 62(1): 47–60.

13	 Martín-Guerrero JD, Gomez F, Soria-Olivas
E, Schmidhuber J, Climente-Martí M, Jimé-
nez-Torres NV. A reinforcement learning
approach for individualizing erythropoietin
dosages in hemodialysis patients. Expert Syst
Appl. 2009; 36(6): 9737–42.

https://www.karger.com/Article/FullText/492670?ref=1#ref1
https://www.karger.com/Article/FullText/492670?ref=2#ref2
https://www.karger.com/Article/FullText/492670?ref=4#ref4
https://www.karger.com/Article/FullText/492670?ref=4#ref4
https://www.karger.com/Article/FullText/492670?ref=7#ref7
https://www.karger.com/Article/FullText/492670?ref=8#ref8
https://www.karger.com/Article/FullText/492670?ref=9#ref9
https://www.karger.com/Article/FullText/492670?ref=10#ref10
https://www.karger.com/Article/FullText/492670?ref=10#ref10
https://www.karger.com/Article/FullText/492670?ref=12#ref12
https://www.karger.com/Article/FullText/492670?ref=13#ref13
https://www.karger.com/Article/FullText/492670?ref=13#ref13

