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Abstract

A stochastic model for a general system of first-order reactions in which each reaction may be 

either a conversion reaction or a catalytic reaction is derived. The governing master equation is 

formulated in a manner that explicitly separates the effects of network topology from other 

aspects, and the evolution equations for the first two moments are derived. We find the surprising, 

and apparently unknown, result that the time evolution of the second moments can be represented 

explicitly in terms of the eigenvalues and projections of the matrix that governs the evolution of 

the means. The model is used to analyze the effects of network topology and the reaction type on 

the moments of the probability distribution. In particular, it is shown that for an open system of 

first-order conversion reactions, the distribution of all the system components is a Poisson 

distribution at steady state. Two different measures of the noise have been used previously, and it 

is shown that different qualitative and quantitative conclusions can result, depending on which 

measure is used. The effect of catalytic reactions on the variance of the system components is also 

analyzed, and the master equation for a coupled system of first-order reactions and diffusion is 

derived.

1. Introduction

Understanding the time-dependent behavior of a system of interacting species is necessary 

for analyzing numerous problems, including the dynamics of chemical reactions, gene 

expression profiles, signal transduction, and other biochemical processes. Many of these 

systems are characterized by low numbers of interacting species: for example, gene 

transcription involves interactions between 1–3 promoter elements, 10–20 polymerase 

holoenzyme units, 10–20 molecules of repressor proteins, 3000 RNA polymerase molecules, 

and ca. 1000 ribosomes (Kuthan, 2001). Since interactions at the molecular level are 

inherently stochastic there is an inherent “irreproducibility” in these dynamics, which has 

been demonstrated experimentally for single cell gene expression events (Ozbudak et al., 

2002; Spudich and Koshland, 1976; Levsky and Singer, 2003). A major unsolved problem is 

to understand how the interplay between the nature of the individual steps and the 

connectivity or topology of the entire network affects the dynamics of the system, 

irrespective of whether a deterministic or a stochastic description is the most appropriate. In 
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this paper we formulate and analyze the master equation that governs the time evolution of 

the number density of species that participate in a network of first-order reactions. The 

network may comprise both conversion reactions of the form A → B, in which one 

component is converted to another, and catalytic reactions of the form ϕ
B

A, in which the 

rate of formation of a particular component depends on the concentration of the other (the 

catalyst), but the concentration of the catalyst is unchanged by the reaction. This is the first 

step in the analysis of higher-order reaction networks.

There are numerous examples of first-order reaction networks that involve a small number of 

molecules, for which this analysis is directly applicable. Transcription and translation have 

been modeled as first-order catalytic reactions (Thattai and van Oudenaarden, 2001). The 

evolution of the surface morphology during epitaxial growth involves the nucleation and 

growth of atomic islands, and these processes may be described by first-order adsorption and 

desorption reactions coupled with diffusion along the surface. Proteins exist in various 

conformational states, and the reversible transitions between states may be described as a 

first-order conversion processes (Mayor et al., 2003). Fluctuating protein conformations are 

important in the movement of small molecules through proteins such as myoglobin; hence it 

is important to understand the distribution of these states (Iorio et al., 1991; Austin et al., 

1975). RNA also exists in several conformations, and the transitions between various folding 

states follow first-order kinetics (Bokinsky et al., 2003).

One of the earliest investigations of stochastic effects in reactions is by Delbruck (1940), 

who studied the distribution of the number of molecules for a single reacting species in an 

auto-catalytic one-component system, and derived an expression for the variance as a 

function of the mean and initial values of the mean and variance. Siegert (1949) derived the 

probability distribution for the momentum of a gas as a function of time, and formulated the 

first stochastic model of a system of first-order conversion reactions, using a matrix 

formulation to derive the master equation for first and second-order reaction networks. He 

also outlined the generating function approach for characterizing the distribution of the 

network components. The system he studied is equivalent to a closed system (i.e., the total 

mass is conserved) of conversion reactions. He proved that one eigenvalue of the matrix of 

reaction rate constants is zero and the rest are real and negative. Unfortunately, this 

important work was largely overlooked in the field of stochastic chemical reaction kinetics 

for more than a decade, until Krieger and Gans (1960) re-derived these results formulating 

the problem as a chemical reaction network problem.

Klein (1956) used Siegert’s results to analyze the Ehrenfest Urn problem, in which balls are 

transferred between two urns with given probabilities. Klein treated the number of balls in 

an urn as a measure of the occupancy of an energy state, and calculated the probability of the 

number of balls in an urn as a function of the transition probability and the initial 

distribution. This can be interpreted as a closed system with one first-order reversible 

reaction, with the urns characterizing the reactant and product of the reversible reaction. He 

showed that the stationary distribution is independent of the initial distribution, but assumed 

that transitions occur at fixed intervals of time. Kendall (1948) formulated a master equation 

for a birth–death process starting with one ancestor and computed the extinction time of the 
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population. He also discussed the case of time-dependent rate constants. Birth processes 

may be modeled as auto-catalytic production reactions and death as a first-order degradation 

reaction. Bartholomay (1958) was apparently the first to derive the master equation for a 

unimolecular reaction allowing steps at random times, and he used the generating function 

approach to calculate the mean and standard deviation of the number of reactant molecules. 

He also showed that the stochastic process is “consistent in the mean” with the deterministic 

description, and later showed how to calculate the observed first-order rate constant 

(Bartholomay, 1959).

At about the same time Montroll and Shuler (1958) modeled chemical decomposition as a 

random walk between reflecting and absorbing barriers, and Kim (1958) computed mean 

first passage times for general first-order stochastic processes. Shuler (1960) analyzed the 

relaxation kinetics of a multi-state system, which is equivalent to a closed first-order system 

of reversible conversion reactions, and pointed out that there was no single characteristic 

“relaxation time”. He re-derived the property that such a system cannot exhibit any form of 

periodic behavior, and showed that the relaxation of any one of the moments of the 

distribution does not convey any information about the relaxation of the distribution.

A systematic analysis of a closed system of first-order conversion reactions was done by 

Krieger and Gans (1960), who showed that a multinomial distribution characterizes the 

temporal evolution of the system. This generalized results of Montroll and Shuler, who had 

proved that the end states were characterized by a multinomial distribution. Gans extended 

this and previous analyses of closed systems to an open system of first-order conversion 

reactions (Gans, 1960). Following Krieger and Gans (1960), he derived a condition for the 

eigenvalues associated with the evolution of the mean to be negative (αii ≤ ∑j αij), but did 

not analyze the evolution of the higher moments or their relation to the mean. McQuarrie 

(1963) derived solutions for the mean and variance of closed systems with reactions of the 

type as A → B, A ⇌ B, and A → B, A → C. He also discussed the use of a cumulant 

generating function as a method of generating lower-order moments. Gani (1965) 

formulated a birth–death model for bacteriophage kinetics that was similar to an open 

system model for one species. Fredrickson (1966) computed the stochastic mean and 

variance for the concentrations in a closed cyclic ternary system, and again showed that 

these moments do not oscillate in time. Darvey and Staff (1966) presented the first 

derivation for the time-dependent mean and variance of all the species present in a closed 

system with first-order conversion reactions. They derived an expression for the moment 

generating function for a case when only one species is present initially, and showed that the 

first moment is the same as the solution of the corresponding deterministic system, but did 

not analyze the evolution of the variance.

Other processes such as the waiting times in a queue have also been analyzed, and some of 

these results can be applied to reaction networks. Kelly (1979) considered reversible queuing 

processes in which “customers” enter a queue either with a defined distribution from a 

source or defined transition probabilities from other queues. Every queue has a finite number 

of “servers”, with a characteristic waiting time associated with the service. The entry into a 

queue from another queue can be regarded as a conversion process, entry from the source is 

equivalent to production from the source, and service can be thought of as a degradation 
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process that removes customers from the queue. A pure conversion process can be 

considered as an infinite server queue (see Appendix), but catalytic reactions have no 

apparent analog in queuing theory. Kelly considered several aspects of the process, such as 

whether it was open or closed, and the nature of the connections between the queues (linear 

vs. looped), and derived the important result that the equilibrium distribution for a closed 

system tends to the equilibrium distribution for an open system when the number of 

individuals is large. We show later that this result is also true for open and closed systems 

where all the reactions are first-order conversion reactions. For a particular class of open 

migration processes in which the transition probabilities between queues (or colonies) is 

proportional to the number of individuals in the colony, Kelly proved that the number of 

individuals in each queue has a Poisson distribution, assuming that the inflow of individuals 

to queues (or colonies) from outside the system (source) are Poisson processes. If one 

considers each colony to be a distinct species, the open migration process is equivalent to an 

open conversion reaction system, and the proof for the stationary distribution of the number 

of individuals in each colony stated by Kelly (1979) may be considered as another proof for 

the distribution of the number of each species in an open conversion network that we derive 

later. Branching Markov processes also give rise to problems with a similar mathematical 

structure to that in kinetics (Harris, 1963; Athreya and Ney, 1972). Athreya and Ney (1972) 

considered continuous-time, multi-type branching processes initiated by one particle of each 

type and derived first and second moments of the distribution of the number of particles of 

each type. Catalytic reactions can be interpreted as the death of a particle with two offspring, 

one identical to the original and the other possibly different, but a systematic analysis of the 

effect of catalytic reactions on the resulting probability distribution has not been reported 

earlier to our knowledge.

Thattai and van Oudenaarden (2001) presented the first analysis of a system of first-order 

catalytic reactions. They formulated a procedure for deriving the master equation for such 

systems, similar to the general procedure given in Gardiner (1983). They incorporated a 

negative feedback regulation of some reactions (production from source), and derived the 

steady-state means and covariances for a system of catalytic transformations with one source 

term, and first-order degradation of all the species. Recently, Brown (2003) derived the 

probability of the number of forward and reverse steps in a reversible first-order conversion 

reaction in which the transition probabilities are time-dependent.

A major objective of many of the analyses treating biological systems is prediction of the 

stochastic variations or noise of the concentrations. Two measures of the noise have been 

used in the past. Until recently the standard measure was the coefficient of variation (CV), 

defined as the standard deviation divided by the mean (Delbruck, 1940; Singer, 1953; Kepler 

and Elston, 2001), or its square. The CV is used as a measure of noise in McQuarrie et al. 

(1964), Darvey et al. (1966), Laurenzi (2000), Elowitz et al. (2002) and Swain et al. (2002), 

while the Fano factor ℱ, defined as the variance divided by the mean, was introduced by 

Thattai and van Oudenaarden (2001), and used in Blake et al. (2003) and Ozbudak et al. 

(2002). It has been shown that the use of different measures of noise may lead to different 

conclusions concerning the importance of noise in the underlying process (Swain et al., 

2002).
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Our objectives here are (i) to introduce a derivation of the master equation that clarifies the 

separate roles of reaction rates and network topology in the master equation, (ii) to develop a 

unified treatment of first-order networks, including the evolution of both the mean and the 

variance of any species and (iii) to understand the effect of network topology on the 

stochastic fluctuations in specified components. We compare the noise in the amount of a 

species as measured by the Fano factor or the coefficient of variation for both conversion 

and catalytic reactions, as well as for species in open and closed systems. We also 

demonstrate through simple examples the utility of this framework in the analysis of the 

effect of reaction network topology on the variation of the number of molecules of each 

network component. All of the preceding analyses can be treated as special cases of the 

general framework that we develop here. No previous analysis of first-order reaction systems 

has to our knowledge considered a system consisting of both catalytic and conversion 

reactions, nor has a systematic comparison of the stochastic behavior of conversion and 

catalytic systems been made.

2. Formulation of the master equation

We first derive the master equation for a general system of reactions to provide a framework 

for the analysis of reactions of arbitrary order. We then focus on first-order reactions and 

specialize the general result for a very large class of first-order processes.

2.1. The master equation for a general system of reactions

We begin with some background on a general deterministic description of reacting systems, 

and then derive the master equation for an arbitrary network of reacting species. The abstract 

formulation is presented in brief here and follows that given elsewhere (Othmer, 1979, 

1981).

Suppose that the reacting mixture contains the set ℳ of s chemical species ℳi that 

participate in a total of r reactions. Let vij be the stoichiometric coefficient of the ith species 

in the jth reaction. The vij are non-negative integers that represent the normalized molar 

proportions of the species in a reaction. Each reaction is written in the form

∑
i

reac .
vi j

reacℳi = ∑
i

prod
vi j

prodℳi j = 1, …, r, (1)

where the sums are over reactants and products, respectively in the jth reaction. In this 

formulation, the forward and reverse reaction of a reversible pair are considered separately 

as two irreversible reactions.

For each reaction, once the reactants and products are specified, the significant entities so far 

as the network topology is concerned are not the species themselves, but rather the linear 

combinations of species that appear as reactants or products in the various elementary steps. 

Following Horn and Jackson (1972), these linear combinations of species will be called 

complexes. A species may also be a complex (as is the case for first-order reactions). We 
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assume that changes in temperature, pressure and volume V of the mixture during reaction 

are negligible. Thus the state of the system is specified by the concentration vector c = (c1, 

… , cs)T, where ci is the non-negative concentration of species ℳi measured in moles/liter.

Let ℳ be the set of linear combinations with integral coefficients of the species, and let 

𝒞 = C(1), …, C(p)  be a set of complexes. A reaction network consists of the triple 

ℳ, ℳ, 𝒞 , together with a stoichiometric function v  :  ℳ 𝒞 and a binary relation 

R ⊂ 𝒞 × 𝒞. The function v, which identifies a linear combination of species as a complex is 

onto, and the relation R has the properties (i) (C(i), C(j)) ∈ R if and only if there exists one 

and only one reaction of the form C(i) → C(j), (ii) for every i there is a j ≠ i such that (C(i), 
C(j)) ∈ R, (iii) (C(i), C(i)) ∉ R. Thus every complex is related to at least one other complex 

and the trivial reaction C(i) → C(i) that produces no change is not admitted. Therefore R is 

never reflexive and in general it is neither symmetric nor transitive.

The relation on 𝒞 gives rise is to a directed graph 𝒢 in the following way. Each complex 

identified with a vertex Vk in 𝒢 and a directed edge Eℓ is introduced into 𝒢 for each reaction. 

Each edge carries a non-negative weight ℛ𝓁(c) given by the intrinsic rate of the 

corresponding reaction. 𝒢 provides a concise representation of the reaction network.

The topology of 𝒢 is in turn represented in its vertex–edge incidence matrix ℰ, which is 

defined as follows.

ℰi𝓁 =
+1  if E𝓁 is incident at V i and is directed toward it 
−1  if E𝓁 is incident at V i and is directed away from it 
0 otherwise.

(2)

If there are r reactions on 𝒞, then ℰ has p rows and r columns and every column has exactly 

one +1 and one −1. The rate ℛ𝓁(C) of an elementary reaction C(j) → C(k) is generally not a 

function of C(j), but of the concentration or activity of the individual species in the complex. 

Once the complexes and reactions are fixed, the stoichiometry of the complexes is specified 

unambiguously, and we let ν denote the s × p matrix whose jth column encodes the 

stoichiometric amounts of the species in the jth complex. Then the temporal evolution of the 

composition of a reacting mixture is governed by

dc
dt = vℰℛ(c), (3)

where the columns of ν are given by the columns of νreac and νprod, and the initial condition 

is c(0) = c0. It follows from (2) that the columns of the product vℰ are the stoichiometric 

vectors of reactions written according to the standard convention. When the reactions are 

first-order this deterministic equation also governs the evolution of the mean in the Markov 

process description discussed later.
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A special but important class of rate functions is that in which the rate of the ℓth reaction can 

be written as

ℛ𝓁(c) = k𝓁R j(c) (4)

for every reaction that involves the jth complex as the reactant. This includes ideal mass 

action rate laws, in which the rate is proportional to the product of the concentrations of the 

species in the reactant complex, each concentration raised to a power equal to the 

stoichiometric coefficient of the corresponding species in the complex. In that case

R j = ∏
i = 1

s
ci

vi j . (5)

For mass-action kinetics (4) implies that

ℛ(c) = K R(c) (6)

where K is an r × p matrix with k𝓁 j
> 0 if and only if the ℓth edge leaves the jth vertex, and 

k𝓁 j
= 0 otherwise. The topology of the underlying graph 𝒢 enters into K as follows. Define 

the exit matrix ℰo of 𝒢 by replacing all 1’s in ℰ by zeros, and changing the sign of the 

resulting matrix. Let K be the r × r diagonal matrix with the kℓ’s, ℓ = 1, … , r, along the 

diagonal. Then it is easy to see that K = Kℰ0
T and therefore

dc
dt = vℰK R(c) = vℰKℰo

T R(c) . (7)

It follows from the definitions that (i) the (p, q)th entry, p ≠ q, of ℰKℰ0
T is nonzero (and 

positive) if and only if there is a directed edge (q, p) ∈ 𝒢, (ii) each diagonal entry of ℰKℰ0
T is 

minus the sum of the k’s for all edges that leave the jth vertex, and (iii) the columns of ℰK0
T

all sum to zero, and so the rank of ℰKℰ0
T is ≤ p − 1. When all complexes are species and all 

reactions are first-order, ν = I for a closed system and ν = [I | 0] for an open system, where I 

is the s × s identity matrix and 0 is the zero vector, and the right-hand side reduces to the 

usual form Kc for a suitably-defined matrix K. In the following section we will treat the 

stochastic analysis of first-order systems in detail.

As it stands, (5) includes all reacting species, but those whose concentration is constant on 

the time scale of interest can be deleted from each of the complexes in which it appears and 

its concentration or mole fraction can be absorbed into the rate constant of that reaction in 
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which it participates as reactant.3 As a result of these deletions, it will appear that reactions 

which involve constant species do not necessarily conserve mass. Furthermore, some 

complexes may not comprise any time-dependent species; these will be called zero or null 

complexes. Each null complex gives rise to a column of zeros in ν and the rate of any 

reaction in which the reactant complex is a null complex is usually constant. For instance, 

any transport reaction of the form ℳ0 ℳi introduces a null complex and the 

corresponding flux of ℳi represents a constant input to the reaction network, provided that 

rate of the transport step does not depend on the concentration of a time-dependent species. 

Of course, a constant species that appears in a complex which also contains a variable 

species likewise represents an input to the network, and to distinguish these from inputs due 

to null complexes, the former are called implicit inputs and the latter are called explicit 
inputs.

An alternate description of the deterministic dynamics is obtained by introducing an extent 

for each reaction and expressing composition changes in terms of extents. It follows from (3) 

that the composition changes due to reaction lie in a coset by c0 of the range of vℰ, and this 

coset is called the reaction simplex (Othmer, 1979, 1981). Therefore, by choosing 

coordinates in the simplex, the composition changes can be expressed in terms of an extent 

for each reaction as follows

c = c0 + vℰξ . (8)

If the reactions are all independent, i.e. if the rank of vℰ is r, it follows from (3) and (8) that

dξ
dt = ℛ c0 + vℰξ , (9)

but in general we can only conclude that

dξ
dt = ℛ c0 + vℰξ + ∑

k
γk𝒩k, (10)

where 𝒩k  is a basis for the null space of vℰ. The γk can be chosen so as to remove all 

dependent steps, in particular, those that arise from cycles in the graph.

We can also describe the evolution in terms of the number of molecules present for each 

species. Let n = (n1, n2, … , ns) denote the discrete composition vector whose ith component 

ni is the number of molecules of species ℳi present in the volume V. This is the discrete 

version of the composition vector c, and they are related by n = 𝒩AVc, where 𝒩A is 

Avogadro’s number. From (3) we obtain the deterministic evolution for n as

3Hereafter s will denote the number of species whose concentration may be time-dependent.
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dn
dt = vℰℛ(n) (11)

where ℛ(n) ≡ 𝒩AVℛ n/𝒩AV . In particular, for mass-action kinetics

ℛ𝓁(n) = 𝒩AVk𝓁ℛ j n/𝒩AV = 𝒩AVk𝓁 ∏
i = 1

s ni
𝒩AV

vi j

=
k𝓁

𝒩AV
∑i vi j − 1 ∏

i = 1

s
ni

vi𝓁 = k 𝓁 ∏
i = 1

s
ni

vi j .

(12)

The number of molecules can be expressed in terms of the integer extents of each reaction as

n = n0 + vℰη, (13)

and it follows from (11) that

dη
dt = ℛ n0 + vℰη + ∑

k
γk𝒩k . (14)

The description in terms of the number of molecules present assumes that there are sufficient 

numbers present so that we can assume they vary continuously in time, but the same 

assumption is needed for (4).

2.2. The stochastic description

The first level of stochastic description is to consider an ensemble of deterministic systems 

that differ in the initial condition. Let P(c, t) be the probability that the state of the system is 

c; then the evolution of P is governed by

∂P
∂t + ∑

i = 1

s ∂
∂ci

(vℰR(c))iP = 0 (15)

subject to the initial condition P(c, 0) = P0. The characteristic equations for this hyperbolic 

equation are precisely the evolution equations given at (3).

At the next level of description the numbers of the individual components are followed in 

time and the reactions are modeled as a continuous-time Markov jump process. Let Ni(t) be 

a random variable that represents the number of molecules of species ℳi at time t, and let N 

denote the vector of Ni s. Further, let P(n, t) be the joint probability that N(t) = n, i.e., N1 = 
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n1, N2 = n2, …,Ns = ns. Clearly the state of the system at any time is now a point in 𝒵0
s , 

where 𝒵0 is the set of non-negative integers. Formally the master equation that governs the 

evolution of P is

d
dt P(n, t) = ∑

m ∈ 𝒮(n)
ℛ(m, n) ⋅ P(m, t) − ∑

m ∈ 𝒯(n)
R(n, m) ⋅ P(n, t) (16)

where ℛ(m, n) is the probability per unit time of a transition from state m to state n, ℛ(n, m)
is the probability per unit time of a transition from state n to state m, 𝒮(n) is the set of all 

states that can terminate at n after one reaction step, and 𝒯(n) is the set of all states reachable 

from n in one step of the feasible reactions. The notation is meant to suggest the ‘source’ 

and ‘target’ states at n; one could also call 𝒮(n) the predecessors of state n and 𝒯(n) the 

successors of state n. The predecessor states must be non-negative for production reactions 

and positive for conversion, degradation and catalytic reactions. Similar bounds on the target 

states are naturally enforced by zero rates of reaction when the reactants are absent.

The sets 𝒮(n) and 𝒯(n) are easily determined using the underlying graph structure. It follows 

from the definition of ν and ℰ that the ℓth reaction C(j) → C(k) induces a change 

Δn(𝓁) = vℰ(𝓁) in the number of molecules of all species after one step of the reaction, where 

subscript ℓ denotes the ℓth column. Therefore the state m = n − νℰ(𝓁) is a source or 

predecessor to n under one step of the ℓth reaction. Similarly, states of the form m = n + νℰ(𝓁)
are reachable from n in one step of the ℓth reaction.4 Once the graph of the network and the 

stoichiometry are fixed, we can sum over reactions rather than sources and targets, and 

consequently the master equation takes the form

d
dt P(n, t) = ∑

𝓁
ℛ𝓁 n − vℰ(𝓁) ⋅ P n − vℰ(𝓁), t − ∑

𝓁
ℛ𝓁(n) ⋅ P(n, t) . (17)

However, the transition probabilities ℛ𝓁(n) are not simply the macroscopic rates 𝒫 if the 

reactions are second-order (or higher), because as Gillespie (1976) and others have noted, 

combinatorial effects may play a significant role when the number of molecules is small. 

Hereafter we restrict attention to mass-action kinetics, and we suppose that the ℓth reaction 

involves conversion of the jth to the kth complex: C(j) → C(k). Then using the notation of 

Gillespie (1976), we can write,

ℛ𝓁 = c𝓁h j(𝓁)(n) (18)

4A slightly more abstract way of stating this is that each complex defines an equivalence class E ⊂ 𝒵0
s , and the change in number of 

molecules due to one step of the kth reaction lies in the direction ν(j) − ν(i) in Ei ∩ Ej.
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where cℓ is the probability per unit time that the molecular species in the jth complex react, 

j(ℓ) denotes the reactant complex for the ℓth reaction, and hj(ℓ)(n) is the number of 

independent combinations of the molecular components in this complex. Thus

c𝓁 =
k𝓁

𝒩AV
∑i vi j(𝓁) − 1 = k 𝓁 (19)

and

h j(𝓁) = ∏
i

ni

vi j(𝓁)
. (20)

In the definition of h we use the standard convention that 
n
0 = 1.

We can write the master equation in terms of integer extents in the form

d
dt 𝒫(η, t) = ∑

𝓁
ℛ𝓁 n0 + vℰη − vℰ(𝓁) ⋅ P n0 + vℰη − vℰ(𝓁), t − ∑

𝓁
ℛ𝓁 n0 + vℰη

⋅ P n0 + vℰη, t

= ∑
𝓁

ℛ𝓁 η − vℰ(𝓁) ⋅ P η − vℰ(𝓁), t − ∑
𝓁

ℛ𝓁(η) ⋅ P(η, t) .

(21)

Moments of this equation or of (16) can be used to obtain the evolution equations for 

average extents and from this, the equations for the average change in the numbers. Only in 

the linear case is the right-hand side of the equation for the first moment the deterministic 

rate, as is shown in the following subsection. Others have derived a similar master equation 

for reacting systems, without the explicit inclusion of the underlying graph-theoretic 

structure (Gardiner, 1983; Rao and Arkin, 2003).

2.3. The master equation for general system of first-order reactions

The stochastic analysis of first-order reaction networks can be done in essentially complete 

generality, and in this section we analyze all cases in which every reactant and product 

complex is a species. We thereby exclude only those first-order splitting reactions of the type 

ℳi ℳ j + ℳk. Our aim is to separate the effects of various types of reactions (catalytic, 

conversion) on the distribution of the chemical species, and to this end we divide the set of 

all reactions, represented by the directed edges Eℓ, ℓ = 1, 2, …,r into four subsets 

corresponding to the following reactions: production from a constant source (which in fact is 

a zero-order step), degradation, conversion to another species, and production catalyzed by 

another species. These four types are summarized in Table 1. The first type represents an 

explicit input to the system, whereas the last type represents an implicit input.
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Every species ℳi can be produced from a source at a specific rate ki
s, and every species can 

be removed by degradation at a rate proportional to its concentration, with rate constant 

given by ki
d. Each species may participate in two other types of first-order reactions: 

conversion reactions, in which species ℳi is converted to species ℳ j at a rate proportional to 

its concentration, and catalytic reactions, in which species ℳi catalyzes the formation of 

species ℳ j from a source, but is itself unchanged during the process. The first-order rate 

constant for the conversion reaction of species ℳi to species ℳ j is denoted by k ji
con, and the 

first-order rate constant for the catalytic production of species ℳ j, with species ℳi

catalyzing the reaction, is denoted by k ji
cat. Thus there are s uncatalyzed source reactions, s 

first-order decay reactions, s(s − 1) conversion and s2 catalytic reactions, for a total of up to 

2s2 + s reactions.

Since all reactant and product complexes are species, the stoichiometric matrix is

v = I 0

if at least one reaction of type I, II, or IV is present, and

v = [ I ]

if the system is closed. The corresponding incidence matrices for the different types are 

equally simple, and if we order the types as in Table 1, then ℰ can be written as follows.

ℰ = I
−1T

−I
1T ℰcon I

−1T (22)

where 1T = (1, 1, …,1), I is the identity matrix of the appropriate dimension, and ℰcon is the 

incidence matrix for the conversion network. Thus the stoichiometry of the reactions and the 

topology of the network are easily encoded in ν and ℰ, respectively.

It follows easily that the deterministic equations for the first-order reaction network can be 

written as

dc
dt = Ks1 − Kdc + Kcatc + Kconc (23)

where Ks =  diag ki
s , Kd =  diag ki

d , Ki j
cat = ki j

cat and Kcon is defined as follows.
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Ki j
con =

ki j
con  if i ≠ j

−∑
k

′
kk j
con  if i = j .

It is clear that type I and IV reactions induce an increase of 1 in the number of species i 
without other changes, type IV induces a decrease of one in i alone, and type III induces a 

decrease of one in j and an increase of 1 in i. Therefore, for reactions of type I the 

predecessor state to state n is 𝒮i
−1n ≡ n1, n2, …, ni − 1, …, ns , and the successor state is 

𝒮i
+1n ≡ n1, n2, …, ni + 1, …, ns , where 𝒮i

k is the shift operator that increases the ith 

component of n by an integer amount k. For degradation of ℳi, the predecessor state is 𝒮i
+1n

and the successor state is 𝒮i
−1n. In type III reactions the predecessor state is 𝒮i

−1𝒮 j
+1n and 

the successor state is 𝒮i
+1𝒮 j

−1n. Finally, for the catalytic reaction the predecessor and 

successor states are 𝒮i
−1n and 𝒮i

+1n, respectively. Using these, the master equation for the 

first-order reaction network can be written as follows (here and hereafter we drop the 

explicit time dependence in P(., .)).

dP n
dt = ∑

i = 1

s
Kii

s 𝒮i
−1 − 1 P n + ∑

j = 1

s
Ki j

con 𝒮i
−1𝒮 j

+1 + Ki j
cat 𝒮i

−1 − 1 − Ki j
d 𝒮i

+1 − 1

n jP n

(24)

where Si
k niP(n) = Si

kni ⋅ P Si
kn .

3. Evolution equations for the mean and variance

The master equation derived in the previous section cannot be solved analytically except for 

a small number of specific simple systems. Usually the objective of a stochastic analysis is 

to calculate the moments of the distribution of the number of reactant molecules. There are 

several ways in which evolution equations for the moments of the distribution function can 

be obtained. One is to multiply both sides of the master equation by ni, ni nj, ni nj nk etc and 

sum over all possible values of n. Alternatively, one can use the moment generating function 

(MGF) approach, which is what we use here to calculate the mean and variance for all the 

reactants in an arbitrary network. The advantage of the MGF approach is that it allows us to 

get an analytical solution for the MGF of purely conversion systems, thus enabling the 

calculation of the probability distribution function for the distribution of each reactant in 

such systems.

Let z ≡ (z1, … , zs) where zi ∈ [0, 1]; then the MGF is defined as
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G(z, t) = ∑
ni = 0

∞
z1
n1 ⋯ zs

ns P(n) .

It follows that G(z, t)|z = 1 = 1. The first and second moments can be obtained through 

successive derivatives of the MGF evaluated after setting all zi to one.

Mk(t) = ∂G(z, t)
∂zk z = 1

≡ Gk(z, t) z = 1 = E Nk

Vlk(t) = Glk(z, t) z = 1 =
E NlNk  if l ≠ k

E Nk
2 − E Nk  if l = k

where E[ ] denotes the expectation of the quantity in the square brackets, and for any 

combination of indices we define

Gi jk…, t = ∂
∂zi

∂
∂z j

∂
∂zk

⋯ ∂
∂t G .

The probability distribution of the number of molecules of the ith species (Ni) at steady state 

can be derived from the MGF. Differentiating the MGF k times w.r.t. zi, we get

∂kG(z, t)
∂zi

k = ∑
ni = k

∞ ni!

ni − k !
zi
ni − k

∑
n j = 0, j ≠ i

∞
z1
n1 ⋯ zi − 1

ni − 1zi + 1
ni + 1 ⋯ zs

ns P(n, t),

and therefore

∂kG(z, t)
∂zi

k
zi = 0, z j = 1, j ≠ i

= k! ∑
n j, j ≠ i

Pn1, …, ni − 1, k, ni + 1, …, ns
(t) = k!PNi

(k, t),

where PNi
(k, t) represents the marginal probability density function of Ni. Therefore

PNi
(k, t) = 1

k!
∂kG(z, t)

∂zi
k

zi = 0, z j = 1, j ≠ i
.

These relationships are valid for the MGF corresponding to any reaction network. In the case 

of a system of reactions with first-order kinetics we obtain the partial differential equation 

for the MGF as
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Gt = ∑
i = 1

s
zi − 1 Kii

s G + ∑
j = 1

s
Ki j

con + Ki j
catz j − Ki j

d G j . (25)

Alternatively, and somewhat more directly, one can use a backward equation to obtain Eq. 

(25) (see the Appendix).

For simple network topologies with a small number of nodes, (25) can be solved analytically 

to get the complete characterization of the evolution of the probability distribution function 

P(n). We shall later derive such expressions for systems where only conversion reactions 

occur. However, this is not feasible for an arbitrary network structure, and therefore we first 

outline the procedure for obtaining the evolution equation for the moments, and then we 

focus on the first two moments. Differentiating Eq. (25) with respect to zk, we obtain

Gk, t = ∑
i = 1

s
zi − 1 Kii

s Gk + ∑
j = 1

s
Ki j

con + Ki j
catz j − Ki j

d G jk + Kik
catGk

+ Kkk
s G + ∑

j = 1

s
Kk j

con + Kk j
catz j − Kk j

d G j .

(26)

Therefore the evolution equation for the mean of the kth component is

E Nk ′ = ∑
j = 1

S
Kk j

con + Kk j
cat − Kk j

d E N j + Kkk
s

or in matrix form

M(t)′ = Kcon + Kcat − Kd M(t) + Ks1 (27)

= 𝒦M(t) + Ks1, (28)

where M(t) = [E[N1(t)], …,E[Ns(t)]]T and 𝒦 is defined by the second equality. From this 

one sees that the explicit inputs contained in the last term serve as a nonhomogeneous 

forcing term for the evolution of the mean. This equation is identical to Eq. (23) given earlier 

for the evolution of the deterministic first-order system. Therefore a general stochastic 

system of first-order interactions is “consistent in the mean” with the corresponding system 

for systems comprised of catalytic and conversion reactions, as is well known (Darvey and 

Staff, 1966).

Higher moments of the distribution are obtained by successive differentiation of (25). For 

the second moment we obtain
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Glk, t = ∑
i = 1

s
zi − 1 Kii

s Gkl + ∑
j = 1

S
Ki j

con + Ki j
catz j − Ki j

d G jkl + Kik
catGkl + Kil

catGlk

+ Kll
s Gk + ∑

j = 1

s
Kl j

con + Kl j
catz j − Kl j

d G jk + Klk
catGk + Kkk

s Gl + ∑
j = 1

s
Kk j

con + Kk j
catz j − Kk j

d G jl + Kkl
catGl .

Thus the matrix containing the second-order moments can be written as

V(t)′ = 𝒦V(t) + (𝒦V(t))T + Γ(t) + ΓT(t) (29)

where

Γi j(t) ≡ Ki j
cat + Kii

s M j(t) .

It is noteworthy that in this equation both the implicit and explicit inputs, as well as the 

mean, appear in the forcing term for the evolution of the second moments. In the equation 

for the mean the forcing is time-independent, but here the forcing is time-dependent via the 

appearance of the mean in this term. Later we will see how this time-dependence is filtered 

via the action of the kinetic matrix. The somewhat unusual structure on the right-hand side 

arises from the fact that V is a symmetric matrix, and thus the evolution equation for it must 

be symmetric as well.

The equations for the mean and the second moments can be integrated to get the first two 

moments of the distribution. Thus we now have an algorithm to compute both the steady-

state and time-dependent behavior of the mean and variance of every species in a general 

first-order network. Next we analyze this behavior in detail.

3.1. The steady-state and time-dependent solution for the mean

The steady-state solution Ms for the mean is the solution of

𝒦Ms = − Ks1 = − ks (30)

where ks = k1
s , …, ks

s . The nature of the reaction types and rates, as reflected in the spectral 

structure of 𝒦, dictates the steady-state mean. In general, if 𝒦 is singular then Ks1 must lie 

in the range of 𝒦, and in particular, if there are no explicit inputs (Ks = 0) then M1
s  is given 

by an eigenvector corresponding to a zero eigenvalue of 𝒦. On the other hand, if 

degradation reactions are the only type present, and all species react, then 𝒦 is nonsingular 

and M1
s = 0 is the only solution. This case is of little interest and will be excluded in what 

follows. Results concerning the localization of the spectrum of 𝒦 are summarized in the 

following theorem.
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Theorem 1. The eigenvalues of 𝒦 have non-positive real parts if either of the following 
conditions hold.

a. The sum of the specific rates of formation for each species ℳi by conversion and 

catalytic reactions does not exceed the sum of the specific rates of loss of ℳi by 

conversion reactions and degradation (this implies that the column sums of 𝒦 are 

non-positive).

b. The sum of the specific rates of formation catalyzed by each species ℳi is less 

than or equal to the sum of the specific rates of degradation of that species.

Proof. The statement in (a) can be translated into the inequality

∑
j ≠ i

Ki j
con + ∑

j
Ki j

cat ≤ ∑
j ≠ i

K ji
con + Kii

d . (31)

Since all the terms are non-negative, each of the terms on the left-hand side of the inequality 

is less than the right-hand side. In particular,

Kii
cat ≤ ∑

j ≠ i
K ji

con + Kii
d, (32)

and therefore

𝒦ii = Kii
con + Kii

cat − Kii
d (33)

= − ∑
j ≠ i

K ji
con + Kii

cat − Kii
d (34)

≤ 0. (35)

Using the definition of Kii
con and 𝒦ii, we can rewrite (31)

∑
j ≠ i

Ki j
con + Ki j

cat ≤ − Kii
con + Kii

cat − Kii
d (36)

∑
j ≠ i

𝒦i j ≤ − 𝒦ii . (37)
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Now, bounds on the eigenvalues of 𝒦 are given by the Levy–Hadamard theorem (Bodewig, 

1959), which states that for every eigenvalue λ of 𝒦,

λ − 𝒦ii ≤ ∑
j ≠ i

𝒦i j .

Since the off-diagonal elements of 𝒦 are non-negative, this can be written as

λ − 𝒦ii ≤ ∑
j ≠ i

𝒦i j ≤ − 𝒦ii (38)

where the second inequality follows from (37). Since 𝒦ii < 0, it follows that Re(λ) ≤ 0, 

which proves (a).

To prove (b) we do a similar analysis, using the Levy–Hadamard theorem expressed in terms 

of a sum over the columns of 𝒦. The constraint (b) can be written as

∑
j

K ji
cat ≤ Kii

d .

By reasoning similar to that used in the proof of (a), this constraint leads to the relations

𝒦ii ≤ 0

∑
j ≠ i

𝒦 ji ≤ − 𝒦ii .

The Levy–Hadamard theorem applied to the columns of 𝒦 states that

λ − 𝒦ii ≤ ∑
j ≠ i

𝒦 ji,

and the proof of (b) now follows as before. □

Remark 2. (i) A special case of (a) shows that in a closed system the eigenvalues have non-

negative real parts, for in that case Kii
d = 0, Kii

cat = 0 and K j j
con = − ∑i ≠ jKi j

con. In fact in that 

case it is known that the eigenvalues are all real as well if the system satisfies detailed 

balance (Gans, 1960; Wei and Prater, 1962). If the underlying graph is strongly connected, 

then there is exactly one zero eigenvalue (Othmer, 1979).

The theorem gives conditions for the stability of an arbitrary first-order system of reactions 

in terms of the specific rates of the reactions. The first sufficient condition for stability is 

easily understood, as it is expected that for stability of a system the specific rates of 
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production for all species should be less than the specific rates of degradation for every 

component of the system. The second criterion, which requires that the rate at which any 

component catalyzes the formation of other species is less than its degradation rate, is less 

immediately obvious. This is however an important relationship that can be used to 

guarantee stability of the mean of artificial transcriptional networks. In particular, once the 

inequality between the catalytic and degradation rates is satisfied, the system will be stable 

irrespective of the conversion reactions in the system, and may be used in the design of such 

networks. In the theory of branching processes condition b is equivalent to the assumption 

that the offspring distribution has mean less than or equal to 1.

Further information about the structure of the solution can be gotten from a spectral 

representation of 𝒦. Hereafter we assume that 𝒦 is semisimple (i.e., it has a complete set of 

eigenvectors), which is the generic case, and then it has the spectral representation

𝒦 = ∑
i

λiPi (39)

where λi is the ith eigenvalue of 𝒦 and Pi is the associated projection onto the span of the 

eigenvectors associated with λi. Since 𝒦 is assumed to be semisimple, they have the 

property that ∑i Pi = I.

The projections have the representation

Pi = ∑
p = 1

mi
ϕp * ϕp* (40)

where mi is the algebraic multiplicity of the ith eigenvalue, ‘*’ represents the dyad product, 

and the ϕ’s and ϕ*’s are the corresponding eigenvectors and adjoint eigenvectors, defined via

𝒦ϕp = λiϕp for p = 1, mi (41)

𝒦Tϕp* = λiϕp* for p = 1, mi . (42)

They can be chosen to satisfy the orthogonality relations

ϕp*, ϕq = ∑
i = 1

mi
ϕp* i

ϕq i
= δpq

and the projection of any vector is defined as
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Piu ≡ ∑
p = 1

mi
ϕp * ϕp*  u = ∑

p = 1

mi
ϕp*, u ϕp .

When 𝒦 is invertible the steady-state mean can be written as

M1
s = − ∑

i

Pi
λi

ks = − ∑
i

∑
p = 1

mi ϕp*, ks

λi
ϕp . (43)

Thus in the nonsingular case the steady-state mean is the weighted sum of projections onto 

the ith eigenspace of 𝒦, weighted by the corresponding eigenvalue. In particular, projections 

corresponding to eigenvalues of large modulus contribute less to the sum than those of small 

modulus. If 𝒦 has a d-dimensional null space there are vectors {η1, η2, …,ηd} with the 

property that the functionals 〈η, M〉 are time-invariant, and this restricts the dynamics and 

steady-state solution to a lower-dimensional set. We leave the details of this case to the 

reader.

The transient solution of (28) is given by

M(t) = e𝒦tM(0) + ∫
0

t
e𝒦(t − τ)dτ  Ks1

= ∑
i

e
λit Pi  M(0) + ∫

0

t
∑

i
e

λi(t − τ)
Pidτ  Ks1

= ∑
i

e
λit Pi  M(0) − ∑

i
1 − e

λit Pi
λi

Ks1 .

(44)

Since e𝒦t is non-negative, i.e. all its entries are non-negative, the solution remains 

nonnegative if M(0) is non-negative. Therefore if there are no eigenvalues with a positive 

real part the solution converges to a non-negative steady state. If the real part of all 

eigenvalues is negative, the solution is globally asymptotically stable. However these 

conditions do not guarantee that the solution has strictly positive components, i.e. that it 

does lie on the boundary of the positive ‘orthant’ of Rs. Under stronger hypotheses one can 

guarantee that the solution lies in the interior of the orthant, as shown in the following 

theorem.

Theorem 3. Suppose that the graph 𝒢 associated with the reactions is strongly connected, 

and that the eigenvalues of 𝒦 have negative real parts. Then 𝒦−1 < 0 and if there is at least 
one species produced by a source then the solution (30) is component-wise positive.

Proof. Notice that 𝒦 is irreducible since the graph 𝒢 is strongly connected. Write 

𝒦 = 𝒦+ − κI, where 𝒦+ ≥ 0 and κ > 0. Observe that 𝒦+ is also irreducible. Let
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Q = − 𝒦 = κ I − 𝒦+ . (45)

Since the eigenvalues of 𝒦 have negative real parts by hypothesis, the eigenvalues λ(Q) of 

Q have positive real parts and

λ(Q) = κ − λ 𝒦+ .

Let ρ 𝒦+  be the spectral radius of 𝒦+; then by Perron–Frobenius theorem ρ 𝒦+  is a 

simple positive real eigenvalue of 𝒦+ and κ − ρ 𝒦+  is an eigenvalue of Q. Thus 

κ − ρ 𝒦+ > 0, i.e., ρ 𝒦+ /κ < 1. Since ρ 𝒦+ /κ < 1, the series

I + 𝒦+
κ + 𝒦+

κ

2
+ ⋯

converges, and so

I − 𝒦+
κ

−1
= ∑

n = 0

∞ 𝒦+
κ

n
.

Since I + 𝒦+
κ  is an s × s irreducible non-negative matrix with positive diagonal elements, it 

can be obtained that

I + 𝒦+
κ

s − 1
> 0,

which implies that

I + 𝒦+
κ + 𝒦+

κ

2
+ ⋯ + 𝒦+

κ

s − 1
> 0.

Therefore

Q−1 = κ−1 I − 𝒦+
κ

−1

= 1
κ I + 𝒦+

κ + 𝒦+
κ

2
+ ⋯

> 0.
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Thus Q−1 > 0, so 𝒦−1 < 0 and finally, if there is at least one species produced by a source, 

i.e., ki
s > 0 for at least one i, then

Ms = − 𝒦−1ks > 0.

Next we analyze the evolution of the second moment, and find that the conditions (a) and (b) 

in Theorem 1 will also guarantee the stability of the second moments.

3.2. Evolution of the second moment

One can show (cf. Appendix) that the evolution equation for the second moment (29) can be 

written in the form5

dv
dt = 𝒱v + γ (46)

where

v(t) = col(V(t)) 𝒱 = 𝒦 ⊗ In + In ⊗ 𝒦 and γ(t) = col Γ(t) + Γ(t)T .

Here the notation col(A) denotes a vector of length s2 whose elements are the columns of A 
stacked in order (cf. Appendix). By the definition of the tensor product

𝒱  ϕi ⊗ ϕ j = 𝒦 ⊗ In + In ⊗ 𝒦 ϕi ⊗ ϕ j = 𝒦ϕi ⊗ Inϕ j + Inϕi ⊗ 𝒦ϕ j
= λi + λ j ϕi ⊗ ϕ j ,

(47)

and therefore ϕi ⊗ ϕj are the eigenvectors of 𝒦 ⊗ In + In ⊗ 𝒦 corresponding to λi + λj. It 

follows that if Pi and Pj are the projections associated with the ith and jth eigenvalues, 

respectively, then

Pi j ≡ Pi ⊗ P j = ∑
p = 1

mi
ϕp * ϕp* ⊗ ∑

p = 1

m j
ϕp * ϕp* (48)

is the projection associated with λi + λj. Consequently

𝒱 = ∑
i, j

λi + λ j Pi j .

5A reviewer has pointed out that the equation for second moments in the form (29) is solved formally i.e. converted to an integral 
equation, in Athreya and Ney (1972) and estimates of the growth rate derived from this. However, an explicit solution is not given.
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After some simplification one finds (cf. Appendix) that the solution for the second moment 

is

v = e𝒱tv 0 + ∫
0

t
e𝒱 t − τ γ τ dτ

= ∑
i, j

e
λi + λ j t

Pi jv 0 + ∑
i, j

∫
0

t
e

λi + λ j t − τ
Pi jγ τ dτ

= ∑
i, j

e
λi + λ j t

Pi jv 0 + ∑
i, j

e
λi + λ j t

− e
λit

λ j
PiM0 ⊗ P j

+ 1
λiλ j

e
λi + λ j t

− e
λit − 1

λi λi + λ j
e

λi + λ j t
− 1 PiS ⊗ P j

+ e
λi + λ j t

− e
λ jt

λi
Pi ⊗ P jM0 + 1

λiλ j
e

λi + λ j t
− e

λ jt − 1
λ j λi + λ j

e
λi + λ j t

− 1

Pi ⊗ P jS col Ks + ∑
i, j

∫
0

t
e

λi + λ j t − τ
PiK

cat ⊗ P j + Pi ⊗ P jK
cat col Mddτ,

(49)

where M0 = [M(0)|M(0)|⋯|M(0)], S = [ks|ks|⋯|ks] and Md = diag{M1 (t), M2 (t)⋯Mn(t)}. 

From (49) and (47) it is clear that the time-dependent behavior of the covariance is governed 

by the set of eigenvalues λi
𝒦 + λ j

𝒦, and if the eigenvalues of 𝒦 have negative real parts, so 

do the eigenvalues of 𝒱. Thus the sufficient conditions for the stability of the mean derived 

in the preceding section also guarantee the stability of the second moment. For a closed 

system, one of the eigenvalues is zero and hence the longest characteristic time for the 

evolution of M and V will be identical. For an open system, the characteristic time for the 

evolution of the second moment will be twice as large as that for the evolution of M. Note 

however that Vii = (E [Ni (t)2] – E [Ni (t)]), and therefore this should not be interpreted to 

imply that the variance of the number of molecules of a particular species evolves twice as 

rapidly as the mean.

From the expression for v, one obtains the variance of the lth species (cf. Appendix) 

explicitly as

σl
2(t) = − ∑

i, j
e

λi + λ j t
Pi ⊙ P jM(0)

l
+ ∑

i
e
λit PiM(0)

l
+

Pik
s l

λi
− ∑

i

1
λi

Pik
s

l
+ ∑

i, j
∑
k

D(l, k, j

) ∑
r

PrM(0)
k

+
Prks

k
λr

f r, i, j(t) −
PrkS

k
λr λi + λ j

e
λi + λ j t

− 1 ,
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where

D(l, k, j) = P j lk
C(l, k, i) + Pi lk

C(l, k, j) ,

C(l, k, i) = ∑
m = 1

n
Pi lm

Kmk
cat

f r, i, j(t) =

1
λr − λi − λ j

e
λrt

− e
λi + λ j t

 if λr ≠ λi + λ j

te
λi + λ j t

 if λr = λi + λ j

and ⊙ denotes element-wise multiplication. Using the expression for the mean of the lth 

reactant given in (44), we obtain the relationship between the mean and variance of every 

species in the reaction network.

σl
2(t) = − ∑

i, j
e

λi + λ j t
  Pi ⊙ P jM(0)

l
+ Ml(t)+∑

i, j
∑

k
D(l, k, j)

∑
r

PrM(0)
k

+
Prk

S
k

λr
f r, i, j(t)−

Prk
s

k

λr λi + λ j
e

λi + λ j t
− 1 .

(50)

From this expression one can calculate the evolution of the Fano factor ℱ = σl
2/Ml and CV = 

σl/Ml for every species, and thus determine the effect of various network structures and 

reaction types on the noise. We study several examples in the following section.

4. The effect of network structure on the dynamics

The master equation for a system of first-order chemical reactions reflects three major 

characteristics of the system, (i) whether it is open or closed, (ii) the topology of the network 

of the chemical interactions, and (iii) whether or not the reacting mixture is spatially 

uniform, i.e., whether or not diffusive or other transport mechanisms play an important role. 

The effect of each of these factors on the distribution of species undergoing first-order 

catalytic and conversion reactions can be studied using the general results of the preceding 

section.

4.1. Open and closed conversion systems

In the context of first-order reaction dynamics, catalytic systems are necessarily open 

because they involve production from a source catalyzed by a time-dependent species (cf. 

Table 1). Thus the comparison of open and closed systems can only be made for those in 
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which there are no catalytic reactions. Therefore we compare open conversion networks in 

which there is at least one Type I reaction and one Type II reaction, with closed networks in 

which all reactions are type III and thus the total mass is constant.

The equation for the MGF for a system of stochastic conversion reactions can be solved 

analytically (Gans, 1960; Darvey and Staff, 1966), and for closed conversion networks it has 

been shown that the distribution is multinomial when the eigenvalues are distinct (Darvey 

and Staff, 1966). We derive the general result via a backward equation. For open systems we 

prove that the distribution is Poisson, and we demonstrate how the choice of the noise 

measure leads to differing conclusions about the noise in open and closed conversion 

networks.

4.1.1. Closed conversion systems—In a closed system of linear reactions the 

molecules independently execute a random walk through the states, where the state of a 

molecule is the property of being a molecule of type i; i = 1, s, where s is the number of 

species or states. We let X (t) be the random process whose value at t is the state of a given 

molecule. Let Pij be Pr{X(t) = j | X(0) = i}; then the matrix P of transition probabilities 

satisfies the backward Kolmogorov differential equation

dP(t)
dt = KTP(t), (51)

where K = Kcon. Since P(0) = I, this has the solution

P(t) = eKTt .

If we denote by pi(t) the probability that the molecule is of type i at time t, then p(t) = (p1(t), 
… , ps(t))T is the solution of

dp
dt = K p

and therefore

p(t) = P(t)T p(0) = eKt p(0) . (52)

Assume that the graph of the underlying network is strongly-connected; then K has exactly 

one zero eigenvalue and the equilibrium probability distribution is given by

πi =
ϕ1, i

∑ j ϕ1, j
(53)

where ϕ1 is the unique positive eigenvector of K corresponding to the zero eigenvalue.
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Now if there are a total of N molecules in the system, the joint equilibrium distribution is the 

multinomial distribution

π n1, n2, …, ns = N !
n1!n2!⋯nS! ∏

i = 1

S
πi

ni, (54)

since there are s classes to put the N molecules into, and the probability of the ith class is πi. 

In particular, the number of individuals of the ith species is binomially distributed according 

to

π ni =
N
ni

πi
ni 1 − πi

N − ni . (55)

If in addition the joint distribution of molecular numbers of two species is multinomial 

initially, then the joint distribution at any time t is also multinomial. First suppose there are 

only two molecular species and N molecules initially. Then for 0 ≤ m ≤ N, one can show that 

(see the Appendix for details)

Pr N1 t = m, N2 t = N − m

= ∑
i = 0

N
 Pr  N1 t = m, N2 t = N − m N1 0 = i, N2 0 = N − i ⋅  Pr  N1 0 = i, N2 0 = N − i

= ∑
k = 0

m
∑

i = k

N − m + k i
k

pt
k 1, 1 pt

i − k 1, 2 N − i
m − k

× pt
m − k 2, 1 pt

N − i − m + k 2, 2 N
i

p1 0 i p2 0 N − i

= N
m

p1 t m  p2 t N − m

where the last step follows from (52). Thus {N1(t), N2(t)} has a binomial distribution if 

initially it has a binomial distribution. By induction, it follows that the joint distribution of 

{N1(t), N2(t), …,Ns(t)} is multinomial if the initial distribution is multinomial. That is to 

say, if the initial joint distribution of molecular numbers of species is multinomial, i.e.,

P(n, 0) ≡  Pr N1(0) = n1, …, Ns(0) = ns = N !
n1! ⋯ ns! p1(0)

n1 ⋯  ps(0)
ns,

then the joint distribution at any time t is also multinomial and the density function is given 

by

P N1(t) = n1, …, Ns(t) = ns = N !
n1! ⋯ ns! p1(t)

n1 ⋯  ps(t)
ns,

where the probabilities pi(t), 1 ≤ i ≤ s are given by (52).
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It follows from (55) that the mean and variance for the mth species at the steady state are 

given by

Mm = Nπm = E Nm

σ2 Nm = Nπm  1 − πm = E Nm 1 −
E Nm

N .

(56)

Notice that πm is the steady-state fraction of the mth molecular species in a deterministic 

description, and since this is fixed by the reaction rates, the variance σ2(Nm) does not 

approach the mean even as N → ∞. Thus the distribution is never Poisson in a closed 

conversion network. The maximum variance is attained for that species for which πm is 

closest to 1/2. The Fano factor ℱm = 1 − πm is always less than 1 for all m, it is independent 

of N, and it is fixed entirely by the network topology and reaction rates. Thus it is an 

inappropriate measure of stochastic fluctuations in these networks.

In contrast,

CVm = 1
N

1 − πm
πm

=
1 − πm

Mm
(57)

varies as 1/ N, while for fixed N it is monotone decreasing with πm. In both cases the 

measures are smallest for the most-abundant species in the system.

4.1.2. Open conversion systems—Next we derive the steady-state distribution of 

species in an open conversion network. Here 𝒦 = Kcon − Kd, and (25) can be written as

∂G
∂t − ∑

j = 1

s
∑

i = 1

s
𝒦i j zi − 1 ∂G

∂z j
= ∑

i = 1

s
Ki

s zi − 1 G .

We find the solution of this PDE using the method of characteristics, analogous to the 

procedure outlined by Gans (1960). The result is that

G = exp 1
det Φ ∑

i

s
Ki

s∑
k

s 1
λk

Φki  e
λkt

− 1 ∑
j

s
ϕk j z j − 1 ⋅ ∏

i
1 + 1

det Φ ∑
k

Φki∑
j

ϕk j z j − 1 e
λkt

mi
,

where Φ is the matrix whose rows are the eigenvectors ϕk, Φkj is the cofactor of ϕkj, and mi 

is the number of molecules of species i present initially. Therefore at steady state

G(z, ∞) = exp  − 1
det Φ ∑

i
Ki

s∑
k

1
λk

Φki∑
j

ϕk j z j − 1 ,
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and the steady-state value of the mean is given by

Mm = E Nm = ∂G(z, ∞)
∂zm

= − 1
det Φ ∑

i

s
Ki

s∑
k

1
λk

Φkiϕki .

To obtain the probability distribution, we differentiate k times to get

∂kG(z, ∞)
∂zm

k = − 1
det Φ ∑

i
Ki

s∑
k

1
λk

Φkiϕkm

k
× exp  − 1

det Φ ∑
i

Ki
s∑

k

1
λk

Φki∑
j

ϕk j z j − 1

and then

PNm
(k, ∞) = 1

k!
∂kG(z, ∞)

∂zm
k

zm = 0, z j = 1, j ≠ m

= 1
k! Mm

k e
−Mm .

This defines the density for a Poisson distribution, and as in any Poisson distribution, the 

variance is equal to the mean. This shows that the steady-state distribution of any species in 

an open first-order conversion network is a Poisson distribution, but this does not extend to 

the transient dynamics unless one assumes that the initial distribution of molecules is a 

Poisson distribution, rather than the Dirac distribution generally used.6

4.1.3. The noise during transients in conversion systems—The time-dependent 

variance in an open conversion system is given by (50) wherein Kcat = 0. In that case C(l, k, 
i) = 0 and (50) reduces to

σm
2 (t) = − ∑

i, j
e

λi + λ j t
  Pi ⊙ P jM(0)

m
+ Mm(t) .

Evidently limt ∞σm
2 (t) = limt ∞Mm(t) and if M(0) = 0, then σm

2 (t) = Mm(t). Thus ℱm will 

always be 1 for open conversion systems when no species is present initially (M(0) = 0, 

which is by definition a Poisson initial distribution), and for more general initial conditions, 

ℱm = 1 for all species at the steady state. On the other hand, it is easy to see that the CVm is 

always inversely proportional to the square root of the mean for all these situations where 

ℱm is a constant. There is thus a clear difference in the qualitative estimation of the noise 

predicted by the two factors during transients as well as at steady state.

For closed systems, ℱm = 1 − pm at steady state, while CVm is given by (57). When Mm ~ N 

for some m, pm ~ 1 and ℱm and CVm are both small. However when N ≫ Mn, ℱm 1, 

while CVm is inversely proportional to Mm. We illustrate this and the transient behavior of 

6A reviewer has remarked that the distribution in an open system is Poisson at time t if the initial distribution is Poisson.
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the noise measures with an example of a closed three-component system shown in the 

following figure, where arrows indicate conversion reactions, and the symbols on the arrows 

indicate the specific rate constant associated with that reaction.

Using the procedure given earlier, one can find the means and covariances by solving

M(t)′ = 𝒦M(t) (58)

V(t)′ = 𝒦V(t) + (𝒦V(t))T, (59)

where

𝒦 =

−k21 − k31 k12 0

k21 −k12 − k32 k23
k31 k32 −k23

.

The eigenvalues of 𝒦 are given by

λ1 = 0

λ2, 3 = 1
2 −k12 − k21 − k23 − k31 − k32

± k12 + k21 + k23 + k31 + k32
2 − 4 k12k23 + k21k23 + k12k31 + k23k31 + k21k32 + k31k32

and because

k12 + k21 + k23 + k31 + k32
2 − 4 k12k23 + k21k23 + k12k31 + k23k31 + k21k32 + k31k32 > 0,

the eigenvalues are distinct and 𝒦 is semisimple. Thus,
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M(t) = e𝒦tM(0)

= ∑
i = 1

3
e
λit PiM(0)

k

and furthermore

σk
2(t) = ∑

i, j
e

λi + λ j t
  −Pi ⊙ P jM(0)

k
+ ∑

i = 1

3
e
λit  PiM(0)

k
.

Assuming that only one species ℳl for l ∈ {1, 2, 3} is present initially with N molecules, we 

find that for k = 1, 2, 3,

Mk(t) = N ∑
i = 1

3
e
λit Pi kl

and so

σk
2 t = ∑

i, j = 1

3
e

λi + λ j t
−Pi ⊙ P jM 0

k
+ Mk t

= Mk t − ∑
i, j = 1

3
e

λi + λ j t
Pi kl

P j kl
 N

= Mk t 1 −
Mk t

N .

Fig. 1 shows the evolution of the Fano factor and CV for two components of the network. 

Since the sum of the number of molecules of all components at any instant is equal to the 

sum of the initial number, the mean and variance of the first component can be calculated 

from the mean and variance of the other two. It is clear that for these values of the rate 

parameters, which produce a steady state in which most of the total molecules exist as 

Species 3 and the steady-state value of the mean for Species 2 is a small fraction of the total 

number of molecules, the Fano factor for species 2 is close to one at steady state, and does 

not change as the total number of molecules is increased 10-fold. For Species 3 the steady-

state value of the mean is almost equal to the total number of molecules, and both the Fano 

factor and the CV predict that the steady-state noise will not change appreciably when the 

total number of molecules in the system is changed.

4.2. The effect of network topology on stochastic reaction networks

The structure of the graph of interactions among the network components influences the 

transient stochastic evolution of the network through its effect on the eigenvalues and 

eigenvectors of 𝒦. However, we have shown that the steady-state distribution is always 
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multinomial for a closed conversion system and Poisson for an open conversion system, and 

these conclusions are independent of the topology of the network. In both cases the 

distribution is completely characterized by the mean, and the effect of topology on the mean 

of the various species can be derived from an analysis of the structure of the vertex–edge 

incidence matrix ℰ (Othmer, 1979). We illustrate the effects of a change in network topology 

on the steady-state distribution of a simple catalytic network, and on the evolution of the 

distribution to the steady state for general conversion or catalytic networks through a simple 

example.

We consider reaction networks that either form closed “loops” (Fig. 2(b)), with either a 

feedforward or feedback interaction, and compare the results with the evolution of the 

distribution in linear reaction networks of the form shown in Fig. 2(a). In general, for a 

conversion chain the ith species is formed from the (i − 1)st species and is converted to the (i 
+ 1)st species; and in a catalytic chain the ith species is formed from the source with the 

reaction being catalyzed by the (i − 1)st species, and catalyzes the formation of the (i + 1)st 

species. All species undergo first-order degradation. The conversion chain is an example of 

an open conversion system, and we have shown that the distribution of the number of 

molecules of all components is a Poisson distribution. The analysis of the dynamics of the 

mean for feedback networks has been carried out earlier (Tyson and Othmer, 1978).

Consider an example of a feedback loop with s = 2, where only ℳ1 has a non-negative rate 

of production from the source. Table 2 gives the steady-state mean of both species for 

conversion and catalytic reactions, and the steady-state variance for a network of catalytic 

reactions (the variance is equal to the mean in the conversion case).

It is clear that the presence or absence k12
con = 0  of a feedback loop in a conversion network 

changes the mean value of both ℳ1 and ℳ2, but the variance is always equal to the mean 

and the Fano factor is always equal to one. In contrast, for a catalytic network the presence 

of a feedback loop changes not only the mean, but also the steady-state fluctuations, as is 

most clear from the change in the Fano factor for ℳ1 from a value of one in the absence of a 

feedback k12
cat = 0 , to the value indicated in Table 2 for a network with feedback. We will 

further explore the differences in the variance of conversion and catalytic networks in the 

following subsection.

We can also compare the change in the evolution rates for these networks. For the reaction 

networks in Fig. 2, the matrix of reaction rates takes the form

𝒦 =

𝒦11 0 0 … 𝒦1s
𝒦21 𝒦22 0 … 0

0 𝒦32 𝒦33 … 0

⋮ ⋱ ⋱ ⋱ ⋮
0 0 … 𝒦ss − 1 𝒦ss

.

For the linear network, the value of 𝒦1s is zero and 𝒦ii are its eigenvalues.
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The characteristic equation f (λ) of 𝒦 is given by

f (λ) = 𝒦11 − λ 𝒦22 − λ  ⋯  𝒦ss − λ + −1 s + 1𝒦1s𝒦21 ⋯ 𝒦ss − 1

= −1 s ∏
i = 1

S
λ − 𝒦ii − 𝒦1s𝒦21 ⋯ 𝒦ss − 1 ≡ −1 sg(λ) .

Consider a looped network that conforms to the stability condition (1) that the specific rate 

of production of each species is less than the specific rate of degradation. This requires that

𝒦21 < − 𝒦11, 𝒦32 < − 𝒦22, …, 𝒦ss − 1 < − 𝒦s − 1s − 1, 𝒦1s < − 𝒦SS

and this implies that

𝒦1s𝒦21𝒦32 ⋯ 𝒦ss − 1 < ∏
i = 1

s
−𝒦ii .

Hence, for all 𝒦kk, 1 ≤ k ≤ s we have

g 𝒦kk = − 𝒦1s𝒦21 ⋯ 𝒦ss − 1 < 0

and

g(0) = ∏
i = 1

S
−𝒦ii − 𝒦1n𝒦21𝒦32 ⋯ 𝒦SS − 1 > 0.

Therefore there is a real root λr of g(λ) = 0 such that maxi 𝒦ii < λr < 0, which implies that 

in the loops there exists at least one real negative eigenvalue λr of 𝒦 which is bigger than 

maxi 𝒦ii.

Thus the presence of a loop leads to a slowing down of the evolution of the moments to the 

steady-state values. Notice that for a feed-forward looped network (i.e. Fig. 2(b) with the the 

arrow from ℳ1 to ℳs reversed), the corresponding reaction rate ks1 is still in the lower 

triangular part of 𝒦 and the eigenvalues will be identical to those of the corresponding linear 

system.

4.3. Effect of the nature of the chemical reaction

Previous analyses of stochastic first-order reaction systems have been restricted to either all-

conversion or all-catalytic systems, but they have not been compared directly. Let us 

consider reactions of the form shown in Fig. 2(a) in which the first component is produced 

from a source, and then is either converted to the second species (conversion chain), or 

catalyzes the formation of the second species (catalysis chain). As we know, the distribution 
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of the number of molecules is a Poisson distribution for an open conversion chain, the Fano 

factor is one for all species at steady state, and the CV is inversely proportional to the square 

root of the mean. The results are quite different for a catalytic chain. In Fig. 3 we show the 

Fano factor and CV for a catalytic chain with rate parameters such that the means are 

identical 3(a) and different 3(b). It is clear that for a catalytic chain with identical means 

ki(i − 1)
cat = ki

d ∀i ≥ 2 , the variance reaches a limiting value as the chain length is increased. 

This agrees with the results of Thattai and van Oudenaarden (2001), who studied catalytic 

chains with hyperbolic activation functions. However, it is important to note that variance 

may not saturate when the means are different, which is almost always the case in biological 

systems. When the means are the same, the Fano factor and CV give estimations of the noise 

that are qualitatively consistent, but when the means are different the use of the two 

measures of noise give different predictions of the effect of increasing the number of species 

in a catalytic chain on the level of fluctuations.

5. The effect of diffusion on stochastic reaction networks

Heretofore we have ignored the possible effects of spatial nonuniformity in the distribution 

of species, but when transport is solely by diffusion we can analyze a suitably-discretized 

spatial model within the preceding framework, because diffusion is a linear process. As the 

reader will appreciate after the development of the equations, the same analysis applies to 

compartmental models in which transport between compartments is linear in the 

concentration of the species. Here we restrict the discussion to a closed system containing an 

isotropic medium having no diffusive coupling between species, but the general formulation 

of the corresponding deterministic linear equations allows for bi-directional exchange with a 

reservoir, diffusive coupling, anisotropy in the transport (Othmer and Scriven, 1971).

For simplicity of exposition we begin with a symmetric domain that is subdivided into 

identical cubical compartments, and denote the number of molecules of species ℳi present 

in the jth compartment as Nji. Diffusive transport from compartment j to compartment k can 

be represented as the reaction (Nj,i, Nk,i) → (Nj,i, − 1, Nk,i, + 1) at a rate given by Di/δ2, 

where δ is the length scale of each compartment and Di is the diffusion constant for species i 
(Nicolis and Prigogine, 1977; Stundzia and Lumsden, 1996).

Suppose that there are Nc cells and s reacting species. As before, 𝒦 is the s × s reaction rate 

constant matrix = Kcat + Kcon + Kd defined for reactions without diffusion. Let Δ be the Nc × 

Nc structural matrix of the network of cells, whose elements Δjk for j ≠ k are 1 or 0, resp., if 

cell k is connected to cell j, or not, resp., and −Δjj is the number of cells connected to cell j. 
Δ encodes the connectivity of the network, and in the simple case treated here simply 

reflects the discretization of the Laplace operator on the domain in question. We define 𝒟 as 

the s ×s diagonal matrix of diffusion rates Di/δ2 for the species.

The deterministic evolution of the system is governed by

dc
dt = Ωc,
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where c is the composition vector for all cells and the ns · Nc × ns · Nc matrix 

Ω ≡ INc
⊗ K + Δ ⊗ D. It follows immediately that the equations for the means and second 

moments are

M(t)′ = ΩM t + Ks · 1

V(t)′ = ΩV(t) + [ΩV(t)]T + C + CT .

Here the matrix of means is defined as

M(t) =  diag M11(t),M12(t), … M1s(t), M21(t), … M2s(t), … MNc1(t), … MNcs(t)]

and Ks is a matrix containing the rate constants for production of each of the Nc × s species, 

given by

Ks = diag k11
s , k12

s , … k1s
s , k21

s , … k2s
s , … kNcs

s ,

where ki j
S  is the rate of inflow of species j from sources.

The covariance matrix V(t) has matrix-valued elements Vij defined as

Vi j(k, m) =
E Nik(t)2 − E Nik(t) if i = j and k = m

E Nik(t)N jm(t) otherwise.

Finally, C = W + Ks1 · M(t)T where W is a block-diagonal matrix, with each block defined 

as Wkk(i, j) = Ki j
catE Nk j(t) .

It is clear from earlier sections that the evolution of the first and second moments are 

formally known once the eigenvalues and eigenvectors of Ω are known, and these are known 

from earlier work. Let αk be an eigenvalue of the symmetric matrix Δ; then the eigenvalues 

λkj of Ω are solutions of the family of Nc sth-order determinantal equations

𝒦 + αk𝒟 − λkIs = 0 (60)

(Othmer and Scriven, 1971). It is known that whenever 𝒦 is not diagonal there may be 

counter-intuitive effects of diffusion on the eigenvalues determined by (60), and this lies at 

the heart of Turing’s mechanism of pattern formation (Turing, 1952; Othmer, 1969).
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The foregoing has been formulated for a regular discretization of a domain, but it holds 

whatever the topology of the connections between the compartments, as long as transport 

depends only on the concentration difference between compartments. The advantage of the 

present formulation is that the effects of network structure in the reaction dynamics can be 

separated to the maximal extent possible from the topology of the compartmental 

connections, and effects due to spatial variations arise from the effect of the αk’s for 

different spatial modes. It should be noted here that in our treatment of reaction–diffusion 

systems there is an assumption that individual compartments are well-mixed, and for this to 

be valid, the size of each compartment should be related to the diffusion coefficient (and 

ultimately to the mean free path) of the diffusing species. However, the basis for the choice 

of compartment size is not clear for a system containing species with very different diffusion 

coefficients. On the one hand, if the size is based on the faster-diffusing species the well-

mixed assumption may not be true for species that diffuse slowly, but if the size is computed 

using the slower-diffusing species, any solution algorithm will become computationally 

inefficient. More generally, the problem of how to treat wide disparities in time scales in the 

full master equation remains to be solved.

6. Discussion and conclusion

We have analyzed a general system of first-order reactions amongst s species that can be 

produced from sources, converted to other species or degraded, and catalyze the formation 

of other species. All previous stochastic analyses of systems of first-order reactions can be 

formulated as special cases of the general model studied here. We have derived explicit 

evolution equations for the mean and variance of the number of molecules of each reactant, 

and have solved them explicitly in a number of cases when the rate matrix 𝒦 is semisimple. 

We find that the evolution of the second moments is completely determined by the spectral 

properties of 𝒦 and the mean itself. To our knowledge this is the first report of a method to 

analytically compute the first two moments for an arbitrary first-order network comprising 

both conversion and catalytic reactions.

We have used the general framework to explore the effect of changes in the network 

topology on the distribution of the number of reactant molecules, and the difference between 

conversion and catalytic networks with the same topology. We prove that for an open system 

of first-order conversion reactions, the distribution of the number of molecules of every 

species is always a Poisson distribution. This is not the case for closed conversion systems, 

since the total number of molecules is constant. This result can be directly applied to the 

interpretation of experimental results on protein conformational-state transitions. The 

folding of a protein from its unfolded state to the fully folded (“native”) state occurs through 

a series of intermediates. The first-order rate constants governing the reversible transitions 

from the unfolded state to the native state are calculated experimentally (Mayor et al., 2003). 

The above theory suggests the distributions that the experimental data may be fitted to in 

order to derive accurate estimates of the first-order transition rates. If ingress and egress 

through flow is allowed for the measurement device, each of the protein folding states will 

exhibit a Poisson distribution. If the system is closed, each state will be characterized by a 

multinomial distribution with a mean that is lower than the variance. A protein molecule 

undergoing conformational-state transitions is but one example of a set of chemical reactions 
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that may be carried out in a closed or batch process, where there is no inflow or outflow of 

the chemical species, or in an open or continuous process, where one or more chemicals are 

introduced at a constant rate, or removed from the system. The inflows may be modeled as 

production reactions of the form ϕ ℳi where species ℳi is produced at a constant rate 

from a source. The outflows are modeled as degradation reactions that result in a depletion 

of species at a rate proportional to their concentration, with the specific rate constant 

corresponding to the dilution rate for the reactor. These equations exactly describe the 

addition and removal of species in microfluidic devices which may be modeled as 

continuous stirred-tank reactors. Our analysis of open and closed systems may be used to 

distinguish between the effects of batch-mode operations and continuous operations on the 

stochastic behavior of the chemical species undergoing the same set of chemical conversion 

reactions.

Two measures are used to estimate the stochastic fluctuations of reactant concentrations: the 

Fano factor and the coefficient of variance. We have shown that the equilibrium distribution 

of all components is a Poisson distribution for open conversion networks, in which case use 

of the Fano factor as the measure of noise leads to the prediction that the fluctuations of all 

components in an open conversion reaction system are identical. Thus a species that has a 

mean of 10 molecules will exhibit the same amount of noise as a species that has a mean 

concentration of 1M. This is clearly not correct, and the use of the CV as the measure of the 

noise will correctly predict that the noise is inversely proportional to the square root of the 

mean value. The only instance when the use of the Fano factor has a distinct advantage is 

when noise is defined as a deviation from the Poisson distribution. Our work is the first 

instance where the two measures have been compared theoretically, and we conclude that 

the only instance where either measure can be used to compare the noise of two species is 

when the mean values are identical. We have also shown that the use of the two measures 

leads to contradictory conclusions about the noise when the means are not identical.

We use the example of a linear reaction chain with and without feedback to demonstrate the 

effect of changes in the species interconnectivity on the dynamics of the evolution of the 

moments of the distribution. For the same interconnectivity, the nature of the distribution 

changes depending on whether the reactions are conversion reactions or catalytic reactions. 

It has been shown for a catalytic chain whose mean values are equal at steady state that the 

variance of the last species in the chain increases as the number of species in the chain 

increases (Thattai and van Oudenaarden, 2001), but ultimately saturates for long chains. We 

show with a counterexample that the ratio of the variance to the mean does not show this 

saturation behavior when the steady-state mean values of all the components are different.

The mathematical formulation that leads to a direct solution of the moment equations for a 

well-stirred system can be extended to arbitrary networks of well-mixed compartments that 

are coupled by diffusion. We demonstrate that the eigenvalues that govern the evolution in 

such distributed systems are solutions of a one-parameter family of modified kinetic 

matrices and thus one can formally display the solution for the first two moments in this case 

as well. However much remains to be done for this case to develop computationally-efficient 

algorithms.
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We anticipate that the analytical framework presented here will be extended to the stochastic 

analysis of nonlinear reaction networks, and our analysis of first-order reaction network will 

lead to insights into the local linear behavior of such networks.
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Appendix

An alternate approach to the evolution equation for the MGF7

To obtain the generating function for the first-order network, one may use the Kolmogorov 

backward equation instead of the master equation (24), which is generally used in the field 

of chemical reaction networks.

The Kolmogorov backward equation is given by

d
dt E[ f (N(t))] = E[𝒜 f (N(t))],

where

𝒜 f (n) = ∑
i

ki
s 𝒮i

+1 f (n) − f (n) + ∑
i, j

ki j
conn j 𝒮i

+1𝒮 j
−1 f (n) − f (n) + ∑

i, j
ki j
catn j 𝒮i

+1 f (n) − f (n)

+ ∑
i

ki
dni 𝒮i

−1 f (n) − f (n) .

Notice that G(z, t) = E ∏ zi
Ni(t) , and therefore, taking f (N(t)) = ∏ zi

Ni(t),

d
dt G(z, t) = d

dt E ∏ zi
Ni(t) = ∑

i
ki
s zi − 1 E ∏ zi

Ni(t) + ∑
i, j

ki j
con zi

z j
− 1 E N j(t)∏ zi

Ni(t)

+ ∑
i, j

ki j
cat zi − 1 E N j(t)∏ zi

Ni(t) + ∑
i

ki
d 1

zi
− 1 E Ni(t)∏ zi

Ni(t) .

Using the fact that

E N j(t)∏ zi
Ni(t) = z j

∂
∂z j

E ∏ zi
Ni(t) ,

we obtain Eq. (24).

7We thank a reviewer for pointing out this approach.
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Tensor products and the column operation

Here we record a few basic facts about tensor products and the col operation that are used 

throughout.

Let x = (x1, x2, … , xn)T and y = (y1, y2, … , ym)T. Then we define the tensor product of x 
and y as (cf. Othmer and Scriven (1971) and references therein)

x ⊗ y = x1y, x1y, ⋅ , x1y

= x1y1, x1y2, … , x1yn, x2y1, x2, y2, … , x2yn, … , xnym
T .

For any n × n matrix B = [bij] and an m × m matrix C, we define

(B ⊗ C) =

b11C b12C … b1nC

b21C b22C … b2nC

⋮ ⋮ ⋱ ⋮
bn1C bn2C … bnnC

.

Let B(i) be the ith column of a n × n matrix B. Then define the column operation as

colB =

B(1)
B(2)

⋮
B(n)

.

Then we have

col(BC) =

BC(1)
BC(2)

⋮
BC(n)

=

B
B

⋱
B

C(1)
C(2)

⋮
C(n)

= In ⊗ B colC .

Similarly

col(CB) = BT ⊗ In colC .

We can use these results to rewrite (29) as follows. We have

V(t)′ = 𝒦V(t) + (𝒦V(t))T + Γ(t) + ΓT(t)

and therefore

col V(t)′ = col(𝒦V(t)) + col (𝒦V(t))T + col Γ(t) + ΓT(t) .
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We apply the above to the first term on the right-hand side by setting B = 𝒦 and C = V, and 

to the second term by setting B = 𝒦T and C = V, and noting that V is symmetric. This leads 

to (46).

Evolution of the moments

We consider the differential equation for the second moment

dv
dt = 𝒱v + γ

where

v(t) = col(V(t)) 𝒱 = 𝒦 ⊗ In + In ⊗ 𝒦 and γ(t) = col Γ(t) + Γ(t)T .

Since

[Γ(t)]i j = Ki j
catE N j(t) + ki

sE N j

and Ks and Md are diagonal matrices,

γ(t) = col Γ(t) + Γ(t)T

= col KcatMd(t) + KcatMd(t) T + col KsL(t) + KsL(t) T

= Kcat ⊗ In + In ⊗ Kcat colMd + LT ⊗ In + In ⊗ LT colKs .

Thus

Pi jγ(t) = Pi jcol KcatMd + KcatMd
T + KsL + KsL

T

= Pi ⊗ P j Kcat ⊗ In + In ⊗ Kcat colMd + Pi j LT ⊗ In + In ⊗ LT colKs

= PiK
cat ⊗ P j + Pi ⊗ P jK

cat colMd + PiL
T ⊗ P j + Pi ⊗ P jL

T colKs .

We have that

PiM(t) = Pi ∑
i

e
λitPi M(0) − ∑

i

1 − e
λit

λi
Pik

s

= e
λitPiM(0) −

1 − e
λit

λi
Pik

S
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and

PiL
T = Pi[M(t) ⋯ M(t)]

= PiM(t) ⋯ PiM(t)

= e
λitPiM0 −

1 − e
λit

λi
PiS,

where M0 = [M(0)|M(0)|⋯|M(0)], and S = [ks|ks|⋯|ks]. Thus

Pi jγ t = PiK
cat ⊗ P j + Pi ⊗ P jK

cat colMd + e
λit PiM0 ⊗ P j − 1 − e

λit

λi
PiS ⊗ P j + e

λ jt Pi ⊗ P jM0

− 1 − e
λ jt

λ j
Pi ⊗ P jS colKs

and therefore

v = e𝒱tv 0 + ∫0
t
e𝒱 t − τ γ τ dτ

= ∑
i, j

e
λi + λ j t

Pi jv 0 + ∫0
t∑

i, j
e

λi + λ j t − τ
Pi jγ τ dτ

= ∑
i, j

e
λi + λ j t

Pi jv 0 + ∑
i, j

e
λi + λ j t

− e
λit

λ j
PiM0 ⊗ P j

+ 1
λiλ j

e
λi + λ j t

− e
λit − 1

λi λi + λ j
e

λi + λ j t
− 1 PiK

S ⊗ P j + e
λi + λ j t

− e
λ jt

λi
Pi ⊗ P jM0

+ 1
λiλ j

e
λi + λ j t

− e
λ jt − 1

λ j λi + λ j
e

λi + λ j t
− 1 Pi ⊗ P jK

s colKs

+ ∑
i, j

∫0
t
e

λi + λ j t − τ
PiK

cat ⊗ P j + Pi ⊗ P jK
cat colMddτ .

Using the fact that col(ABC) = (CT ⊗ A)col B, we obtain
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V t = ∑
i, j

e
λi + λ j t

P jV 0 Pi
T + ∑

i, j

e
λi + λ j t

− e
λit

λ j
P jK

s PiM0
T

+ e
λi + λ j t

− e
λit

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jK

s PiS
T + e

λi + λ j t
− e

λ jt

λi
P jM0KsPi

T

+ e
λi + λ j t

− e
λ jt

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jSKsPi

T + ∑
i, j

∫0
t
e

λi + λ j t − τ
P jMd PiK

cat T + P jK
catMdPi

T

dτ .

Thus

Vll t = ∑
i, j

e
λi + λ j t

P jV 0 Pi
T ll + ∑

i, j

e
λi + λ j t

− e
λit

λ j
P jK

s PiM0
T

ll

+ e
λi + λ j t

− e
λit

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jK

s PiS
T

ll
+ e

λi + λ j t
− e

λ jt

λi
P jM0KsPi

T
ll

+ e
λi + λ j t

− e
λ jt

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jSKsPi

T
ll

+ ∑
i, j

∫0
t
e

λi + λ j t − τ
P jMd PiK

cat T + P jK
catMdPi

T
ll

dτ .

We have

P jMd =

P j11M1 P j12M2 ⋯ P j1nMn
P j21M1 P j22M2 ⋯ P j2nMn

⋮ ⋱ ⋱ ⋮
P jn1M1 P jn2M2 ⋯ P jnnMn

PiK
cat T =

∑
j

Pi1 jK j1
cat ∑

j
Pi2 jK j1

cat ⋯ ∑
j

Pin jK j1
cat

∑
j

Pi1 jK j2
cat ∑

j
Pi2 jK j2

cat ⋯ ∑
j

Pin jK j2
cat

⋮ ⋱ ⋱ ⋮

∑
j

Pi1 jK jn
cat ∑

j
Pi2 jK jn

cat ⋯ ∑
j

Pin jK jn
cat

.
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Thus

P jMd PiK
cat T

ll
= P jl1M1 ∑

j
Pil jK j1

cat + P jl2M2 ∑
j

Pil jK j2
cat + ⋯ + PilnMn ∑

j
Pil jK jn

cat

= ∑
k

P jlkMkC i, k, l

where

C(i, k, l) = ∑
j

Pil jK jk
cat .

Similarly

P jK
catMdPi

T
ll

= ∑
m

PilmMmC( j, k, l) .

Thus
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∫0
t
e

λi + λ j t − τ
P jMd PiK

cat T + P jK
catMdPi

T
ll

dτ

= e
λi + λ j t∫0

t
e
− λi + λ j τ

∑
k

P j lk
MkC i, k, l + ∑

k
Pi lk

MkC j, k, l dτ

= e
λi + λ j t∫0

t
e
− λi + λ j τ

∑
k

P j lk ∑
r

e
λrτ

PrM 0
k

− ∑
r

1 − e
λrτ

λr
Prks

k
C i, k, l

+ ∑
k

Pi lk ∑
r

e
λrτ

PrM 0
k

− ∑
r

1 − e
λrτ

λr
PrkS

k
C j, k, l dτ

= e
λi + λ j t

∑
k

P j lk∑
r

C i, k, l PrM 0
k∫0

t
e

λr − λi − λ j τ
dτ −

Prks
k

λr

× ∫0
t
e
− λi + λ j τ

dτ − ∫0
t
e

λr − λi − λ j τ
dτ + e

λi + λ j t
∑
k

Pi lk∑
r

C j, k, l

PrM 0
k∫0

t
e

λr − λi − λ j τ
dτ −

PrkS
k

λr
∫0

t
e
− λi + λ j τ

dτ − ∫0
t
e

λr − λi − λ j τ
dτ

= ∑
k

P j lk
C i, k, l + Pi lk

C j, k, l × ∑
r, λr ≠ λi + λ j

PrM 0
k

1
λr − λi − λ j

e
λrt

− e
λi + λ j t

−
PrkS

k
λr

1
λi + λ j

e
λi + λ j t

− 1 − 1
λr − λi − λ j

e
λrt

− e
λi + λ j t

+ ∑
r, λr = λi + λ j

PrM 0
k
te

λi + λ j t

−
PrkS

k
λr

1
λi + λ j

e
λi + λ j t

− 1 − te
λi + λ j t

,

where

C(i, k, l) = ∑
m = 1

n
Pilm Kmk

cat .

Thus the (l, l) component of V is
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Vll t = ∑
i, j

e
λi + λ j t

P jV 0 Pi
T

ll
+ ∑

i, j

e
λi + λ j t

− e
λit

λ j
P jK

s PiM0
T

ll

+ e
λi + λ j t

− e
λit

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jK

s PiS
T

ll
+ e

λi + λ j t
− e

λ jt

λi
P jM0KsPi

T
ll

+ e
λi + λ j t

− e
λ jt

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jSKsPi

T
ll

+ ∑
i, j

∑
k

P j lk
C i, k, l + Pi lk

C j, k, l

× ∑
r, λr ≠ λi + λ j

PrM 0
k

1
λr − λi − λ j

e
λrt

− e
λi + λ j t

−
PrkS

k
λr

1
λi + λ j

e
λi + λ j t

− 1 − 1
λr − λi − λ j

e
λrt

− e
λi + λ j t

+ ∑
r, λr = λi + λ j

PrM 0
k
te

λi + λ j t

−
PrkS

k
λr

1
λi + λ j

e
λi + λ j t

− 1 − te
λi + λ j t

.

Note that

E Nl(t) = [M(t)]l = ∑
i

e
λit PiM(0)

l
− ∑

i

1 − e
λit

λi
Pik

S
l

and that

E Nl t 2 = M t l
2 = ∑

i, j
e

λi + λ j t
PiM 0

l
P jM 0

l
+ ∑

i, j

1 − e
λit 1 − e

λ jt

λiλ j
Pik

s
l

P jk
s

l

− 2∑
i, j

e
λit 1 − e

λ jt

λ j
PiM 0

l
P jk

s
l
.

Therefore we have the variance of lth species
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σl
2 t = Vll t + M t l − M t l

2

= ∑
i, j

e
λi + λ j t

P jV 0 Pi
T n + ∑

i, j

e
λi + λ j t

− e
λit

λ j
P jK

s PiM0
T

ll

+ e
λi + λ j t

− e
λit

λiλ j
− e

λi + λ j t
− 1

λi λi + λ j
P jK

s PiS
T

ll
+ e

λi + λ j t
− e

λ jt

λi
P jM0KsPi

T n + e
λi + λ j t

− e
λ jt

λiλ j

− e
λi + λ j t

− 1
λ j λi + λ j

P jSKsPi
T

ll
+ ∑

i, j
∑
k

P j lk
C i, k, l + Pi lk

C j, k, l

× ∑
r, λr ≠ λi + λ j

PrM 0
k

1
λr − λi − λ j

e
λrt

− e
λi + λ j t

−
PrkS k

λr

1
λi + λ j

e
λi + λ j t

− 1 − 1
λr − λi − λ j

e
λrt

− e
λi + λ j t

+ ∑
r, λr = λi + λ j

PrM 0
k
te

λi + λ j t

−
PrkS

k
λr

× 1
λi + λ j

e
λi + λ j t

− 1 − te
λi + λ j t

− ∑
i, j

e
λi + λ j t

PiM 0
l

P jM 0
l

− ∑
i, j

1 − e
λit 1 − e

λ jt

λiλ j
Pik

s
l

P jk
s

l
+ 2∑

i, j

e
λit 1 − e

λ jt

λ j
PiM 0

l
P jk

s
l
.

After some computation we get

σl
2 t = − ∑

i, j
e

λi + λ j t
Pi ⊙ P jM 0

l
+ ∑

i
e
λit PiM 0

l
+

Pik
S

l
λi

− ∑
i

1
λi

Pik
S

l
+ ∑

i, j
∑
k

D i, j, k, l

∑
r

PrM 0
k

+
Prks

k
λr

f r, i, j t −
PrkS

k
λr λi + λ j

e
λi + λ j t

− 1 ,

where
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C(i, k, l) = ∑
m = 1

n
Pi lm

Kmk
cat,

D(i, j, k, l) = P j lk
C(i, k, l) + Pi lk

C( j, k, l) ,

f r, i, j(t) =

1
λr − λi − λ j

e
λrt

− e
λi + λ j t

 if λr ≠ λi + λ j

te
λi + λ j t

 if λr = λi + λ j,

and ‘⊙’ is componentwise matrix multiplication.

If there is no catalysis in the system, then

D i, j, k, l = 0

and we have

σl
2 t = − ∑

i, j
e

λi + λ j t
Pi ⊙ P jM 0

l
+ ∑

i
e
λit PiM 0

l
+

Pik
S

l
λi

− ∑
i

1
λi

Pik
s

l
.
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Details for the proof of the binomial distribution

P N1 t = m, N2 t = N − m

= ∑
i = 0

N
P N1 t = m, N2 t = N − m N1 0 = i,N2 0 = N − i ⋅ P N1 0 = i, N2 0 = N − i

= ∑
k = 0

m
∑

i = k

N − m + k i
k

pt
k 1, 1 pt

i − k 1, 2 N − i
m − k

pt
m − k 2, 1 pt

N − i − m + k 2, 2 N
i

p1 0 ip2 0 N − i

= ∑
k = 0

m
∑

i = k

N − m + k i
k

N − i
m − k

N
i

⋅ p1 0 pt 1, 1 k p1 0 pt 1, 2 i − k p2 0 pt 2, 1 m − k × p2 0 pt 2, 2 N − i − m + k

= ∑
k = 0

m
∑

l = 0

N − m k + l
k

N − k + l
m − k

N
k + l

⋅ p1 0 pt 1, 1 k p1 0 pt 1, 2 l p2 0 pt 2, 1 m − k

× p2 0 pt 2, 2 N − m − l,  by letting l = i − k

= ∑
k = 0

m
∑

l = 0

N − m N
m

m
k

N − m
l

p1 0 pt 1, 1 k p1 0 pt 1, 2 l × p2 0 pt 2, 1 m − k p2 0 pt 2, 2 N − m − 1

= N
m ∑

k = 0

m m
k

p1 0 pt 1, 1 k p2 0 pt 2, 1 m − k ⋅ ∑
l = 0

N − m N − m
l

p1 0 pt 1, 2 l p2 0 pt 2, 2 N − m − l

= N
m

p1 0 pt 1, 1 + p2 0 pt 2, 1 m × p1 0 pt 1, 2 + p2 0 pt 2, 2 N − m

= N
m

p1 t m p2 t N − m,  by  52

where we used the fact that

k + l
k

N − k + l
m − k

N
k + l

= k + l !
k!l!

N − k + l !
m − k ! N − l − m !

N !
k + l ! N − k + l !

= N !
m! N − m !

m!
m − k !k!

N − m !
l! N − m − l !

= N
m

m
k

N − m
l

.

Queuing theory and chemical reaction networks

There are formal similarities between chemical reaction networks and queuing networks 

(Arazi et al., 2004) that can be used to translate results between the two contexts. For 

example, the following shows that an open conversion network is equivalent to an M/M/∞ 
queuing network.

Consider an irreducible or strongly connected network consisting of M/M/∞ queues with s 
stations. The notation M/M/∞ means Poisson arrivals, exponential service time and an 

infinite number of servers. The scheme of this queuing network is as follows:
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• Each station has M/M/∞ queuing scheme.

• ai = rate of arrivals from outside the network into station i.

• When station i has n occupants, then individuals may depart the system at rate 

din.

• A customer leaving station i goes to station j with probability λij, for i ≠ j.

The connection between the network of M/M/∞ queue and the open conversion network is 

as follows.

Network of M/M/∞ queues Open conversion network

Station Species

Customer Molecule

Number of customers in station Number of molecules of species

Arrival of a customer from outside the system Production of a molecule from source

Departure out of system Degradation

Transition from ith to jth station Conversion from ith species to jth species

From this table we can see that Ni (t), the number of customers in the ith station at time t, 
corresponds to the number of molecules of the ith species at time t, and the rate ai can be 

considered as ki
s, di as ki

d and λij as K ji
con.

It can be shown that in a network of M/M/∞ queues the stationary distribution is Poisson. 

Furthermore, the distributions of N1(t), …,Ns(t) for each time t are independent Poisson if 

the system is empty initially (Durrett, 1999).
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Fig. 1. 
Time-evolution (x-axis) of the mean scaled to the total number of molecules (-.-.-.), Fano 

factor (solid line) and CV (dashed line) for Species 2 (left) and Species 3 (right) for two 

values of N = 100 and N = 1000. Profiles for the fraction in each state and the Fano factor 

are independent of N. These plots illustrate the fact that use of the Fano factor leads to the 

conclusion that the noise of both species does not change on increasing N, whereas use of 

the CV predicts that increasing N reduces the noise in Species 2, whereas the noise in 

Species 3 remains essentially unchanged at steady state. The values of the rate constants are 

(in units of time−1) k21 = 100, k31 = 100, k12 = 1, k23 = 1, k32 = 100 and all N molecules 

exist as ℳ1 initially.
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Fig. 2. 
Linear (a) and looped (b) reaction networks. The arrows represent the dependence of one 

species on the rate of formation of the species at the head of the arrow: the reactions may be 

conversion (solid lines) or catalytic (dashed lines).
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Fig. 3. 
Fano factor (solid line) and CV (dashed line) at steady state for the ith species in a catalytic 

chain with equal (a) and unequal (b) means. In (a) all species have a steady-state mean value 

of 3, resulting from setting all catalysis and degradation rate constants to 2 and the 

production rate for ℳ1 to 2, random parameters for rate constants lead to mean values 

between 10−4 and 120 for species in (b). In both simulations, one molecule of each species 

was assumed to be present initially: but the results do not depend on the choice of the initial 

condition.
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Table 1

The four classes of first-order reactions considered in the stochastic model

Label Type of reaction Reaction Rate

I Production from a source ϕ ℳi ki
S

II Degradation ℳi ϕ ki
dni

III Conversion ℳ j ℳi ki j
conn j

IV Catalytic production from source ϕ →
ℳ j

ℳi
ki j

catn j
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Table 2

Mean and variance for a 2-component feedback network with either conversion or catalytic reactions

Species Meanconversion Meancatalytic Vanancecataiytic

ℳ1
ptk1

S k12
con + k2

d

k12
con + k2

d k21
con + k1

d − k21
conk12

con

ptk1
Sk2

d

k1
dk2

d − k21
catk12

cat

ptk1
dk2

d k1
d + k2

d − k21
catk12

cat k1
d − k12

cat

k1
dk2

d − k21
catk12

cat k1
d + k2

d × M1

ℳ2
ptk1

Sk21
con

k12
con + k2

d k21
con + k1

d − k21
conk12

con

ptk1
Sk21

cat

k1
dk2

d − k21
catk12

cat

ptk1
dk2

d k1
d + k2

d + k21
catk2

d k1
d − k12

cat

k1
dk2

d − k21
catk12

cat k1
d + k2

d × M2
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