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Abstract

BACKGROUND: Previous studies showed reduction of brain cannabinoid CB1 receptors in 

adults with cannabis and alcohol use disorders. Preclinical data suggest that these receptors also 

contribute to nicotine reward and dependence. Tobacco smoking may confound clinical studies of 

psychiatric disorders because many patients with such disorders smoke tobacco. Whether human 

subjects who smoke tobacco but are otherwise healthy have altered CB1 receptor binding in brain 

is unknown.

METHODS: We measured CB1 receptors in brains of 18 healthy men who smoke tobacco 

(frequent chronic cigarette smokers), and 28 healthy men who do not smoke tobacco, using 

positron emission tomography and [18F]FMPEP-d2, a radioligand for CB1 receptors. We collected 

arterial blood samples during scanning to calculate the distribution volume (VT), which is nearly 

proportional to CB1 receptor density. Repeated-measures analysis of variance compared VT 

between groups in various brain regions.

RESULTS: Brain CB1 receptor VT was about 20% lower in subjects who smoke tobacco than in 

subjects who do not. Decreased VT was found in all brain regions, but reduction did not correlate 

with years of smoking, number of cigarettes smoked per day, or measures of nicotine dependence.

CONCLUSIONS: Tobacco-smoking healthy men have a widespread reduction of CB1 receptor 

density in brain. Reduction of CB1 receptors appears to be a common feature of substance use 

disorders. Future clinical studies on the CB1 receptor should control for tobacco smoking.

Keywords

Addiction; Brain imaging; Cannabinoid CB1 receptor; Positron emission tomography; Smoking; 
Tobacco

The brain cannabinoid system is involved in the addictive properties of a variety of 

substances of abuse (1). CB1 cannabinoid receptors are located presynaptically in multiple 

brain regions, including the ventral tegmental area in the midbrain, where release of gamma-

aminobutyric acid (2) and glutamate are inhibited and dopamine release is modulated in 

response to many substances of abuse (3,4). We previously used positron emission 

tomography (PET) and an inverse agonist radioligand for CB1 receptors, [18F]FMPEP-d2 

(5,6), to examine CB1 receptor binding in human brain in two substance use disorders: 

cannabis and alcohol. In chronic daily cannabis smokers, we found regionally selective and 
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reversible downregulation of CB1 receptors; receptor binding was decreased in cortical 

regions but not in subcortical regions, and it returned to normal levels after about 4 weeks of 

monitored cannabis abstinence (7). In alcohol dependence, we found widespread and 

irreversible downregulation; receptor binding was decreased in both cortical and subcortical 

brain regions, and it remained similarly decreased after 2 to 4 weeks of monitored 

abstinence (8).

Tobacco is the most prevalent substance of abuse, with high addictive potential. Whether 

tobacco smoking affects CB1 receptor binding in human brain is unknown but is of 

importance for two reasons. First, preclinical and clinical observations suggest that CB1 

receptors are involved in nicotine addiction. In animal studies, blockade of CB1 receptors 

reduced nicotine-seeking behaviors and nicotine-induced midbrain dopamine release (9). In 

humans, rimonabant, a CB1 receptor inverse agonist, was effective in smoking cessation 

(10,11). Second, many patients with psychiatric disorders smoke tobacco, which can be a 

significant confound in clinical studies examining CB1 receptor binding in such disorders. In 

the current study, we evaluated CB1 receptor binding in healthy men who smoke tobacco 

cigarettes, in comparison with men who do not smoke, using PET and [18F]FMPEP-d2.

METHODS AND MATERIALS

The National Institutes of Health Combined NeuroScience Institutional Review Board 

approved the protocol and the consent forms. Written informed consent was obtained from 

all subjects.

Subjects

Healthy men (n = 46) were free of somatic and psychiatric illness as confirmed by history, 

physical examination, structured diagnostic interviews (Structured Clinical Interview for 

DSM-IV, full version), electrocardiogram, and blood and urine tests. Subjects did not have 

current or lifetime history of substance use disorders (except for tobacco use disorder in the 

tobacco smokers) and had urine samples negative for cannabinoids, opiates, amphetamines, 

cocaine metabolites, and benzodiazepines during screening. We did not test for these urine 

markers on the day of the PET scan. Subjects had <10 lifetime exposures to cannabis and no 

use in the preceding 3 months. Recent heavy alcohol use was excluded by Alcohol Use 

Disorder Identification Test scores of ≤9 and no alcohol use during the 3 days prior to the 

PET scan. We did not systematically record caffeine consumption. In total, 18 subjects 

smoked cigarettes and 28 did not (Table 1). None of the nonsmokers was an ex-smoker. We 

recorded average number of cigarettes per day, age at onset of smoking, duration of 

smoking, and Fagerström Test for Nicotine Dependence scores. On average, smokers 

consumed 12 cigarettes per day (data available from 16 subjects) and had a Fagerström Test 

for Nicotine Dependence score of 4 (data available from 16 subjects), consistent with mild to 

moderate tobacco use disorder. Data from 32 (70%) of the subjects were published 

previously. We previously found that carriers of the C allele of a common single-nucleotide 

polymorphism, rs2023239, in the gene coding for the CB1 receptor (CNR1), have higher 

[18F]FMPEP-d2 binding than noncarriers. (8). We had these data available for 43 subjects 

(16 smokers and 27 nonsmokers). Genotyping was done as described previously (8).
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PET and Measurement of Parent Radioligand in Arterial Plasma

[18F]FMPEP-d2 was prepared as described previously (6) and in detail in our investigational 

new drug application (No. 105,198) submitted to the U.S. Food and Drug Administration 

(available at https://pdsp.unc.edu/databases/snidd/). The radioligand was obtained in high 

radiochemical purity (>99%) and had a molar activity of 107 ± 46 MBq/nmol at time of 

injection. The actual injected amount of [18F]FMPEP-d2 was somewhat higher in smokers 

than in nonsmokers (Table 1). However, the maximum mass dose (2 μg) was still within 

tracer dose limits with no significant expected CB1 receptor occupancy. With this maximum 

dose, we estimate the occupancy to be 0.1% using calculations and assumptions published 

previously (5).

After intravenous injection of [18F]FMPEP-d2 (Table 1), images were acquired for 120 

minutes using an Advance camera (GE Healthcare, Milwaukee, WI) as described previously 

(5). We did not use motion correction during PET imaging. PET scans were performed at 

least 4 hours after last tobacco use. We did not record time of last tobacco exposure. Arterial 

blood samples were drawn as described previously (7). The plasma time-activity curve was 

corrected for the fraction of unchanged radioligand by radio-high-performance liquid 

chromatography separation (12), and the plasma-free fraction was measured by 

ultrafiltration (13).

For anatomical reference, 3D T1-weighted magnetic resonance images were acquired at 3T 

using either the GE Signa scanner (GE Healthcare) or the Philips Achieva scanner (Philips 

Healthcare, Andover, MA). These high-resolution anatomical images had a voxel size of 

0.86 mm × 0.86 mm × 1.2 mm (transaxial acquisition; GE Healthcare) or 1 mm × 0.94 mm 

× 0.94 mm (sagittal acquisition; Philips Healthcare). Time of repetition, echo time length, 

and flip angle were 7.3 ms, 2.8 ms, and 6° for GE Healthcare and 8.1 ms, 3.7 ms, and 8° for 

Philips Healthcare, respectively. PET images were analyzed by applying a template of 

volumes of interest (14) as implemented in PMOD (version 3.0; PMOD Technologies, 

Zurich, Switzerland) (15) in the standard stereotactic space (16) as described previously (7). 

Distribution volume (VT) was estimated according to the two-tissue compartmental model 

(17) with concentration of parent radioligand in plasma as input function using PMOD as 

described previously (5). Statistical parametric mapping of VT values at voxel level was 

done using SPM8 as described previously (7), with body mass index (BMI) as a covariate. 

VT can also be conceptualized as ratio of area under the time-activity curve extrapolated into 

infinity of brain to plasma. To ensure that groups had similar input functions, plasma time-

activity curve of the parent radioligand was normalized for injected dose and body weight, 

expressed as standardized uptake values, and extrapolated into infinity using rate constants 

from triexponential fitting. Area under this curve was then calculated and compared between 

groups.

Statistical Analysis

Data were analyzed using IBM SPSS Statistics 23.0 for Mac (version 24.0.0; IBM Corp., 

Armonk, NY). Variance was homogeneous across groups according to Levene’s test. 

Baseline characteristics of participants (Table 1) were compared using two-tailed t tests. To 

test whether CB1 receptors were decreased in subjects who smoke tobacco, we used a 
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mixed-model two-way analysis of variance (ANOVA) with group status (smoker vs. 

nonsmoker) as between-subject factor and brain region as within-subject factor. BMI entered 

the model as a covariate because it affects VT (7). Correlations with clinical variables were 

assessed with Pearson’s correlation coefficients. Nominal data were compared using 

Pearson’s χ2 test. Any p values less than .05 were considered statistically significant in the 

ANOVA. In the presence of significant main effects and interactions, regional contrasts were 

examined using post hoc t tests of marginal means from the ANOVA, and effect sizes were 

calculated as absolute difference between group means divided by pooled estimate of 

standard deviation, which was calculated assuming that pooled estimate of variance is the 

sample size-weighted average of sample variances. Because these regional contrasts were 

assessed only after significant ANOVA findings, they were not corrected for multiple 

comparisons.

Because many patients with psychiatric and substance use disorders also smoke tobacco, we 

wondered whether tobacco smoking confounded our previous findings of CB1 receptor 

downregulation in individuals with cannabis or alcohol use disorder. To examine this, we 

combined all data from these three datasets (46 healthy subjects [18 tobacco smokers and 28 

tobacco nonsmokers], 30 cannabis smokers [24 tobacco smokers and 6 tobacco 

nonsmokers], and 18 patients with alcohol dependence [11 tobacco smokers and 7 tobacco 

nonsmokers]) in an overall ANOVA model to assess the main effect of cigarette smoking 

across all subject groups. In this model, we looked at main effects of tobacco smoking, BMI, 

group status, and rs2023239 C allele carrier status.

RESULTS

The VT of [18F]FMPEP-d2 was lower in tobacco smokers than in nonsmokers (main effect 

of group: F = 8.30, p = .006). VT was lower in smokers in all brain regions, and the 

magnitude of this decrease differed significantly among brain regions (group × region 

interaction: F = 3.03, p = .029) (Figures 1 and 2 and Table 2). Decrease in BMI-adjusted VT 

ranged from 15% in the parietal cortex to 34% in white matter. The main effect of smoking 

was also significant when analyzed without correcting for BMI (F = 8.43, p = .006). 

Decreased VT in smokers was confirmed with an independent voxel-based whole-brain 

analysis (Figure 3). Among subjects who had available rs2023239 genotype data (n = 43 

subjects), 8 of 27 non-smokers (29%) and 2 of 16 smokers (13%) carried the C allele (χ2 = 

1.7, p = .199). When genotype entered the model, the main effect of smoking persisted (F = 

5.26, p = .026), although the main effect of genotype did not reach statistical significance (F 
= 1.44, p = .238).

Decreased VT was not caused by higher plasma protein binding in smokers given that 

fraction of free radioligand in plasma was not significantly different between groups (Table 

1). Area under the plasma time-activity curve of the parent radioligand extrapolated into 

infinity was similar between smokers (172 ± 53 standardized uptake values × minutes) and 

nonsmokers (167 ± 60 standardized uptake values × minutes) (mean ± SD; p = .789, t test), 

confirming similar input function. Although this measure was similar between groups, VT 

measurement is independent of the form of the input function and does not require it to be 

the same between groups to accurately quantify receptor availability.
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Among smokers, whole brain VT did not correlate with number of cigarettes smoked per day 

(R = −.27, p = .319), score on the Fagerström Test for Nicotine Dependence (R = −.14, p = .

611), lifetime duration of tobacco smoking (R =.21, p = .479), or age at onset of tobacco 

smoking (R = .18, p = .544).

In the combined analysis of 94 subjects (46 healthy subjects, 30 cannabis smokers, and 18 

patients with alcohol dependence), we found a significant main effect of tobacco smoking on 

CB1 receptor VT (smaller VT in tobacco smokers; F = 4.10, p = .046) and the expected 

significant main effects of BMI (F = 8.90, p = .004) and substance use disorder status (F = 

6.38, p = .003). When genotype entered the model (n = 91 subjects), the main effect of 

tobacco smoking diminished somewhat (F = 2.66, p = .106) and the main effect of genotype 

was significant (F = 4.45, p = .038). Tobacco smoking had no effect among cannabis 

smokers (F = 0.02, p = .894) or individuals with alcohol dependence (F = 0.40, p = .537) as 

also reported previously. Thus, tobacco smoking produced no additive CB1 receptor 

downregulation in individuals with cannabis or alcohol use disorder (Supplemental Figure 

S1). However, this post hoc cross-sectional comparison should be interpreted with caution 

because the original studies were not specifically designed to examine effects of tobacco 

smoking. Therefore, we cannot definitively rule out the possibility that tobacco smoking 

affected comparisons between healthy subjects and cannabis smokers or patients with 

alcohol dependence.

DISCUSSION

We found about 20% lower VT of [18F]FMPEP-d2 in tobacco-smoking healthy subjects 

compared with nonsmoking subjects, consistent with CB1 receptor downregulation. This 

reduction was significant in all brain regions, although some regions had larger reduction 

than others. Together with our previous data from individuals with cannabis or alcohol use 

disorder, these data support a role for brain CB1 receptors in various substance use disorders.

Previous animal studies on the effects of chronic nicotine exposure on CB1 receptor density 

produced inconsistent findings. Some studies on juvenile or adolescent rats have shown 

decreased hippocampal CB1 receptor messenger RNA (18), decreased cingulate cortex CB1 

receptor density (19), and decreased striatal CB1 receptor density as well as increased 

hippocampal CB1 receptor density (20). One study found increased CB1 receptor binding 

after adolescent exposure but unchanged binding after adult exposure (21). In contrast to 

juvenile or adolescent rodents, adult rodents generally were not found to have significant 

changes in CB1 receptors after chronic nicotine exposure (22,23). A previous micro-PET 

study with [18F]MK-9470, another radioligand for CB1 receptors, did not find significant 

changes in binding in rat brain after chronic nicotine exposure (24). These discrepancies in 

previous preclinical studies may be explained by differences in measuring techniques and 

age at nicotine exposure. With regard to adolescent versus adult exposure, we found no 

correlations between CB1 receptor binding and age at onset of tobacco smoking. That is, we 

found no evidence that CB1 receptor downregulation was more pronounced in subjects who 

started smoking at a younger age (<18 years; n = 6 subjects), although all subjects had adult 

exposure whether or not they were already exposed during adolescence.
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Lower CB1 receptor binding may be a common imaging biomarker for several substances of 

abuse (25). These receptors are found throughout the brain, and the changes are often seen in 

widespread areas such as those found in tobacco smokers in the current study and in alcohol-

dependent individuals previously (8). Such widespread downregulation may reflect 

increased overall tone of endogenous cannabinoids, which could be viewed as a 

neuroprotective compensatory mechanism. Chronic nicotine administration may 

downregulate CB1 receptors by chronic overstimulation by endogenous cannabinoids (9), 

similar to what is hypothesized to occur with chronic alcohol consumption (8,26). In 

contrast, cannabis smokers have CB1 receptor downregulation only in neocortical brain 

regions but not in the basal ganglia, midbrain, or cerebellum (7). This regional dissimilarity 

between substance use disorders may be partly explained by different mechanisms of action 

of these drugs; the psychoactive ingredient of cannabis, Δ9-tetrahydrocannabinol, binds to 

CB1 receptors directly, whereas nicotine and alcohol affect CB1 receptors indirectly via 

endogenous cannabinoids (1).

In contrast to our finding in healthy subjects, a recent PET study found higher brain CB1 

receptor binding in patients with schizophrenia who smoked tobacco compared with patients 

who did not smoke, although both patient cohorts had lower CB1 receptor binding than 

healthy nonsmoking control subjects (27). Together with our previous findings of no effects 

of tobacco smoking in subjects with cannabis use disorder (7) or alcohol use disorder (8), 

this pattern of results suggests that tobacco smoking has different effects on brain CB1 

receptors in healthy subjects than in subjects with neuropsychiatric illness.

A potential site for a functional connection between nicotine and endocannabinoid 

neurotransmission is the midbrain dopamine neurons projecting to ventral parts of the 

striatum, including the nucleus accumbens, considered to be a critical part of the brain 

reward circuit (4). Nicotinic acetylcholine receptor subtype α4β2 on gamma-aminobutyric 

acidergic and dopaminergic neurons and receptor subtype α7 on glutamatergic terminals are 

targets for mediating rewarding actions of nicotine (28). Acute nicotine exposure increases 

dopamine concentration in the nucleus accumbens, an effect that can be reduced by blocking 

CB1 receptors (29). In the midbrain ventral tegmental area, acute nicotine exposure increases 

endo-cannabinoid levels (30), providing further evidence of endo-cannabinoid modulation of 

nicotine reward. In the midbrain, CB1 receptors are located in presynaptic terminals of both 

excitatory and inhibitory neurons, so functional responses to increased endocannabinoids 

may be complex (28). In addition, non-cannabinoid receptor targets are likely affected by 

endogenous cannabinoids (28).

Clinical trials showed the efficacy of rimonabant, a CB1 receptor inverse agonist, in 

promoting smoking cessation (10,11), supporting the role of CB1 receptors in nicotine 

dependence. However, clinical use of this drug is limited by psychiatric side effects. 

Although CB1 blockade may acutely reduce nicotine-induced mesolimbic dopamine release 

(29), it might not reverse all cannabinoid effects of nicotine because CB1 receptors are 

downregulated. Enhancing endogenous cannabinoid function in withdrawal and chronic 

abstinence might intuitively seem to be a way to compensate for such downregulation, 

although we do not yet know whether CB1 receptors return to normal levels after abstinence 

from nicotine. Preclinical studies investigating the impact of blocking the enzyme that 
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breaks down some endocannabinoids (fatty acid amide hydrolase) do not fully agree on the 

utility of this approach (9), which may reflect the complexity of endo-cannabinoid 

modulation of drug action.

We did not find correlations between amount of tobacco exposure and CB1 receptor 

downregulation. A potential limitation of this study is that we did not measure 

concentrations of nicotine or any of its metabolites, such as cotinine, which would give more 

accurate estimates of prior tobacco exposure than retrospective self-reports of years of 

smoking and number of cigarettes per day.

Decreased VT of [18F]FMPEP-d2 likely represents decreased number of CB1 receptors 

rather than occupancy of receptors by endocannabinoids. As we argued previously (7,8), 

about 90% of VT represents specific binding in monkey brain (5). In rodent brain, binding of 

[11C]MePPEP, a close radioligand analog of [18F]FMPEP-d2, could not be displaced by 

endogenous cannabinoids (31), suggesting that decreased VT of [18F]FMPEP-d2 observed in 

the current study is not due to increased levels of endocannabinoids. Finally, the outcome 

measure VT corrects for possible group differences in peripheral distribution and metabolism 

of the radioligand.

The current study has several limitations. First, we studied only male subjects, as we had 

done previously in studies on cannabis use (7) and alcohol dependence (8); therefore, 

whether these results are generalizable to women remains to be determined. Studying only 

male subjects limits our understanding of endocannabinoid function in substance use 

disorders. Second, altered nondisplaceable binding may have confounded our measurements 

because VT is a composite measure of specific and nondisplaceable binding. However, the 

contribution of nondisplaceable binding is rather small (~10%) (5) and does not vary 

substantially among brain regions, such that it is unlikely to fully explain the 20% to 30% 

lower VT in tobacco smokers than in non-smokers. Third, although we excluded significant 

cannabis or alcohol exposure, we did not systematically assess caffeine consumption. 

Caffeine may influence CB1 receptors via adenosine receptors (32).

In summary, we showed that tobacco smoking is associated with widespread downregulation 

of CB1 receptors in human brain. This finding adds to the growing evidence for CB1 

receptor abnormalities in substance use disorders and suggests that future clinical studies on 

this receptor target should carefully control for tobacco smoking.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution volume (VT) of [18F]FMPEP-d2 (a measure of cannabinoid CB1 receptor 

density) is lower in male tobacco smokers (black bars, n = 18) than in nonsmokers (gray 

bars, n = 28) in both cortical and subcortical regions. Values are estimated marginal means 

from the repeated-measures analysis of variance and are adjusted to an average body mass 

index of 26.8 kg/m2. Error bars are standard error of the mean. *p < .05; **p < .005; post 

hoc contrasts of marginal means from analysis of variance. ACC, anterior cingulate cortex; 

AMY, amygdala; CAU, caudate nucleus; CER, cerebellum; HIPP, hippocampus; INS, insula; 

MIDBR, midbrain; OCC, occipital cortex; PAR, parietal cortex; PCC, posterior cingulate 

cortex; PFC, prefrontal cortex; PHIPP, parahippocampal gyrus; PUT, putamen; TEMP, 

lateral temporal cortex; THA, thalamus; VST, ventral striatum; WM, white matter.
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Figure 2. 
Individual body mass index–adjusted [18F]FMPEP-d2 distribution volume (VT) values in 

average cortical, subcortical, and white matter regions in nonsmokers (open circles) and 

smokers (closed circles).
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Figure 3. 
Whole-brain statistical parametric mapping analysis shows lower cannabinoid CB1 receptor 

density (distribution volume [VT]) in male tobacco smokers (n = 18) than in nonsmokers (n 
= 28) as a large single cluster. This cluster comprised 132,291 voxels with a maximum t 
value of 6.0 at [22, 10, 46] and a cluster-level familywise error corrected p value of <.001. 

Color bar represents t value in each voxel within the significant cluster. (A) Transaxial 

section. (B) Coronal section. (C) Sagittal section.
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Table 2.

Group Comparisons of Regional [18F]FMPEP-d2 Unadjusted VT Values

Brain Region % Difference Effect Size p Value

Anterior Cingulate Cortex −23 0.81 .012

Amygdala −23 0.77 .016

Caudate Nucleus −22 0.77 .017

Cerebellum −19 0.83 .009

Hippocampus −19 0.70 .029

Insula −25 0.92 .004

Midbrain −28 1.12 .001

Occipital Cortex −17 0.74 .019

Parietal Cortex −15 0.62 .050

Pons −24 1.04 .001

Posterior Cingulate Cortex −24 0.92 .005

Prefrontal Cortex −17 0.71 .028

Parahippocampal Gyrus −21 0.75 .019

Putamen −25 0.85 .008

Lateral Temporal Cortex −20 0.79 .014

Thalamus −20 0.81 .011

Ventral Striatum −20 0.73 .002

White Matter −34 1.02 .002

Effect sizes were calculated as absolute difference of group mean values divided by a pooled estimate of standard deviation, which was calculated 
assuming that pooled estimate of variance is the sample size-weighted average of sample variances. The p values are from post hoc comparisons of 
estimated marginal means from the repeated-measures analysis of variance model (including body mass index as a covariate).

VT, distribution volume.
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