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Abstract Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis

(ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that

broad expression within the nervous system of wild-type or either of two ALS-linked mutants of

human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-

like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates

endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved

by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-

dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not

observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy

inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS

autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and

RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-

mediated toxicity.

DOI: https://doi.org/10.7554/eLife.40811.001
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Introduction
Two seemingly different adult-onset neurodegenerative diseases, amyotrophic lateral sclerosis (ALS)

and frontotemporal degeneration (FTD), share overlapping clinical and pathological characteristics

(reviewed in Ling et al., 2013; Robberecht and Philips, 2013; Gao et al., 2017). The landmark dis-

covery of TAR-DNA binding protein (TDP-43) as a major component of ubiquitinated aggregates in

ALS and FTLD (frontotemporal lobar degeneration, a term used to stress the pathological classifica-

tion of FTD) patients (Neumann et al., 2006; Arai et al., 2006) led to the identification of ALS and

FTD-causing mutations in the genes encoding two nucleic acid-binding proteins, TDP-43

(Sreedharan et al., 2008; Kabashi et al., 2008; Van Deerlin et al., 2008) and fused in sarcoma/

translocated in liposarcoma (FUS/TLS) (hereafter referred to as FUS) (Kwiatkowski et al., 2009;

Vance et al., 2009). In the past decade, mutations in several additional genes, including GGGGCC

hexanucleotide-repeat expansion in the C9ORF72 gene (DeJesus-Hernandez et al., 2011;

Renton et al., 2011; Gijselinck et al., 2012) and point mutations in UBQLN2 (Deng et al., 2011),

VCP (Johnson et al., 2010), CHMP2B (Momeni et al., 2006; Parkinson et al., 2006), and TBK1

(Cirulli et al., 2015; Freischmidt et al., 2015; Pottier et al., 2015) were also identified as genetic

causes for both ALS and FTD. These genetic discoveries, coupled with pathological inclusions of

TDP-43 (Neumann et al., 2006; Arai et al., 2006) or FUS (Neumann et al., 2009) that are found

both in ALS and FTD, have supported common molecular mechanisms, in particular, disruption in

RNA and protein homeostasis, to underlie both diseases (reviewed in Ling et al., 2013;

Lattante et al., 2015; Taylor et al., 2016).

Molecularly, FUS is a 526 amino acid protein containing a prion-like low-complexity domain

(Kato et al., 2012; Cushman et al., 2010), followed by a nuclear export signal, a RNA recognition

motif (RRM) domain, arginine/glycine (R/G)-rich domains, a zinc-finger motif and nuclear localization

signal. FUS binds to single- and double-stranded DNA as well as RNA and participates in multiple

cellular functions (Ling et al., 2013; Tan and Manley, 2009; Lagier-Tourenne et al., 2010;

Schwartz et al., 2015; Ling, 2018), in particular in transcription-splicing coupling (Lagier-

Tourenne et al., 2012; Yu and Reed, 2015), alternative splicing and polyadenylation (Lagier-

Tourenne et al., 2012; Ishigaki et al., 2012; Rogelj et al., 2012; Sun et al., 2015; Masuda et al.,

2015; Reber et al., 2016), and the localization and translation of RNA (Kanai et al., 2004; Fujii and

Takumi, 2005; Yasuda et al., 2013). A preponderance of the ALS/FTD causing mutations (48 out of

60) is clustered in the FUS extreme C-terminus that contains its non-canonical nuclear localization

signal (known as PY-NLS) (Dormann et al., 2010; Lattante et al., 2013). Correspondingly, such FUS

mutants have been shown to result in increased cytosolic accumulation which correlates with disease

severity (Dormann et al., 2010; Bosco et al., 2010; Gal et al., 2011; Vance et al., 2013). Neuronal

cytoplasmic inclusions of FUS are found in ALS patients with mutations in FUS (Kwiatkowski et al.,

2009; Vance et al., 2009; Dormann et al., 2010), suggesting that (i) disturbing the nuclear-cytosolic

distribution can lead to FUS proteinopathy, and (ii) loss of nuclear RNA processing functions may

contribute to ALS pathogenesis. Intriguingly, mutations in the 3’-UTR of FUS leading to elevated

FUS accumulation are known to be causal for ALS (Sabatelli et al., 2013). This is reminiscent of

increased copy number of the APP gene (which encodes amyloid precursor protein and is causal for

Alzheimer’s disease [Sleegers et al., 2006]) and of the SNCA gene (which encodes a-synuclein and

is causal for Parkinson’s disease [Singleton et al., 2003]). Therefore, the evidence suggests elevated

expression levels of genes encoding these pathological hallmarks are sufficient to drive

neurodegeneration.

The pathological hallmark of FUS inclusions in ALS and FTD is characterized by the loss of nuclear

FUS immunoreactivity with concomitant cytosolic accumulation, suggesting that both loss of nuclear

FUS function and gain of additional toxic properties may be involved. However, Kino and colleagues

used outbred FUS knockout mice to show that these FUS knockout mice do not develop ALS disease

phenotypes (Kino et al., 2015). In contrast, mice expressing disease-causing FUS mutations or FUS

with NLS-deletions developed motor neuron degeneration, favoring a ‘gain-of-toxic properties’

model (Scekic-Zahirovic et al., 2016; Sharma et al., 2016; Shiihashi et al., 2016; Devoy et al.,

2017; López-Erauskin et al., 2018). Indeed, ALS-linked mutations in FUS have been suggested to

affect diverse functions, including gain and loss of RNA processing (Sun et al., 2015; Reber et al.,
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2016), deregulation of SMN function (Sun et al., 2015; Yamazaki et al., 2012; Groen et al., 2013;

Tsuiji et al., 2013), biogenesis of circular RNA (Errichelli et al., 2017), DNA damage response

(Qiu et al., 2014; Wang et al., 2013), axonal transport (Groen et al., 2013; Guo et al., 2017), activ-

ity-dependent translation (Sephton et al., 2014), and intra axonal protein synthesis (López-

Erauskin et al., 2018). Although all of these defects may contribute to ALS and FTD pathogenesis,

how any of these proposed dysfunctions contributes to neurodegeneration remains to be

determined.

Autophagy, a tightly regulated catabolic process, degrades long-lived proteins, membrane pro-

teins, and organelles via the lysosome (Mizushima and Komatsu, 2011; Shen and Mizushima,

2014). Not surprisingly, autophagy dysfunction has been implicated in various neurodegenerative

diseases, including ALS (Wong and Cuervo, 2010; Nixon and Yang, 2012). The notion that autoph-

agy dysfunction contributes to ALS-FTD pathogenesis is strongly supported by the identification of

numerous ALS-FTD genes involved in autophagy regulation, including SQSTM1 (Fecto et al., 2011),

OPTN (Maruyama et al., 2010; Wong and Holzbaur, 2014), TBK1 (Cirulli et al., 2015;

Freischmidt et al., 2015; Pottier et al., 2015), and VCP (Johnson et al., 2010). Intriguingly, recent

work has shown that loss of TDP-43 inhibits autophagy by blocking the fusion of autophagosomes

with lysosomes (Xia et al., 2016), and that enhancing autophagy may be beneficial for mice model-

ing TDP-43 proteinopathies (Wang et al., 2012). Stress granules are cleared by autophagy

(Buchan et al., 2013), further supporting the link between RNA-containing ribonucleoprotein com-

plexes and autophagy.

Here we report that widespread expression of wild type FUS or ALS-linked mutations (R514G and

R521C) in FUS within the central nervous system of mice can cause progressive motor deficits

accompanied by ALS-like lower motor neuron pathology. An increase in expression of wild type FUS

sharply accelerates disease phenotype and triggers early mortality accompanied by disturbances in

both protein homeostasis and RNA processing, likely by saturating FUS autoregulation. Further-

more, we report that increased expression of wild type or disease-linked mutant FUS inhibits

autophagy, suggestive of a potential gain-of-function proteotoxicity stress mechanism contributing

to FUS-mediated neurodegeneration.

Results

Generation of ‘floxed’ FUS transgenic mice with broad expression in
the central nervous system
Transgenic mice were produced to express either wild-type or either of two ALS-linked mutant

human FUS broadly throughout the central nervous system (CNS) using the murine prion promoter

(Arnold et al., 2013) previously reported to drive transgene expression most abundantly in the

CNS, including neurons, astrocytes and oligodendrocytes (see below). cDNAs for human wild type

(hereafter referred as FUSWT) and either of two ALS-linked mutants of FUS, R514G (arginine to gly-

cine substitution at amino acid 514, hereafter referred as FUSR514G) and R521C (arginine to cysteine

substitution at amino acid 521, hereafter referred as FUSR521C) were fused to a N-terminal hemag-

glutinin (HA) tag and placed under the control of the murine prion promoter (Figure 1A). Each trans-

gene was flanked with loxP sites to permit deletion in the presence of Cre recombinase activity.

Twelve lines were established from 34 founders (three wild type lines from seven founders, 5

R514G lines from 13 founders, and 4 R521C lines from 14 founders). The human FUS transgene

(detected with an antibody to the HA-tag) was mostly confined to the CNS [with little or no expres-

sion in other tissues (Figure 1—figure supplement 1)], in a pattern mimicking endogenous FUS in

nuclei of NeuN-positive neurons (Figure 1B–C), GFAP-positive astrocytes (Figure 1—figure supple-

ment 2A), and CC1-positive oligodendrocytes of spinal cords (Figure 1—figure supplement 2B) as

well as in most regions of the brain (Figure 1—figure supplement 3). The three FUS transgenes

(FUSWT, FUSR514G and FUSR521C) accumulated to 0.5 to 1.5-fold the level of mouse FUS (Figure 1—

figure supplement 1A–B) (as determined by immunoblotting brain extracts using an antibody that

recognizes human and mouse FUS protein with comparable affinity [López-Erauskin et al., 2018]).

Endogenous mouse FUS was reduced both at the protein (Figure 1—figure supplement 1A–B) and

mRNA levels to 30–60% of non-transgenic level (Figure 1—figure supplement 1B and D) in all six

established transgenic lines, consistent with an autoregulatory mechanism acting at the FUS RNA
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Figure 1. Autoregulation of FUS level in adult mouse nervous system. (A) Schematic representation of transgene constructs for wild type and mutant

FUS using the murine prion promoter. Human cDNAs encoding wild type or R514G or R521C mutants of FUS were N-terminally fused to an HA tag and

inserted between non-coding exons 2 and 3 of mouse prion gene. The mutations used in this study are within the nuclear localization signal as

indicated. The constructs were flanked by the loxP sites of the same orientation. (B) Schematic of spinal cord sections indicates the ventral horn regions

that were shown in (C) and (G). (C) Double immunostaining of spinal cord ventral horns of 2-month-old animals with an anti-FUS (red) or anti-HA

antibody (red) and antibodies for markers of neurons (NeuN, green). Both endogenous mouse FUS and human FUS proteins are localized to the

neuronal nucleus. (D) Immunoblots of total brain homogenates from the selected mouse lines expressing wild type and mutant FUS. Blue arrows

denote the human FUS and the red arrows denote the endogenous mouse FUS. Total proteins stained with Ponceau S were used to show equal

loading. (E) Relative mRNA levels of the endogenous FUS mRNA measured by RT-qPCR. Consistent with protein level, mRNA showed ~50% reduction

of endogenous FUS. The data represent the average value from three animals per line ±SEM. (F) Immunoblots of species-specific antibodies for either

human- or mouse-specific FUS. Cell lysates from human (HeLa) and mouse (Neuro2A) cell lines and purified recombinant human and mouse FUS were

probed with either human or mouse-specific FUS antibodies. (G) Double immunostaining of spinal cord ventral horns of 2-month-old prnp-FUSR514G

animals with an anti-HA antibody (green, transgene) and anti-mouse FUS (red, endogenous) antibody showed that the human transgenes were able to

down-regulate the endogenous mouse FUS level.

DOI: https://doi.org/10.7554/eLife.40811.002

The following figure supplements are available for figure 1:

Figure supplement 1. Tissue expression pattern of endogenous FUS and human transgene in mice.

DOI: https://doi.org/10.7554/eLife.40811.003

Figure supplement 2. Expression pattern of FUS in mouse spinal cord.

DOI: https://doi.org/10.7554/eLife.40811.004

Figure 1 continued on next page
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levels. Lines with most comparable levels of wild type (line 101 for FUSWT) and mutant (line 124 for

FUSR514G and line 135 for FUSR521C) human and mouse FUS proteins (Figure 1D,E) were selected for

further characterization.

To further confirm the autoregulatory pathway at a single cell level, we exploited antibodies we

have generated that are specific to either human or mouse FUS (Figure 1F) to distinguish either pro-

tein using confocal microscopy. Spinal cord motor neurons expressing higher levels of human FUS

(cells labeled as 1, 2, 3, 4, five in Figure 1G) had near complete elimination of mouse FUS, while the

subset of neurons without detectable human FUS retained a level of mouse FUS indistinguishable

from that in mouse neurons of non-transgenic animals (cells labeled as 6, 7, eight in Figure 1G). Col-

lectively, we conclude that an auto-regulatory mechanism regulating FUS mRNA stability or matura-

tion to maintain FUS level within individual cells of the mouse central nervous system (CNS).

Age-dependent lower motor deficits in FUS transgenic mice
Although transgenic mice from all three genotypes appeared normal at birth and developed normal

weight into adulthood, all FUS transgenic animals expressing wild type or ALS-linked mutations in

which human FUS accumulated to at least half the FUS level in normal mice developed age-depen-

dent abnormal posture, with lower stance and hunched back, an abnormal clasping response,

reduced hind limb spread (upper panel of Figure 2A), and a progressively abnormal gait (lower

panel of Figure 2A). While all genotypes displayed normal stride-length at two-months of age,

shorter front and hind-limb stride-length developed by 12 months of age (Figure 2B) in all FUS

transgenic lines.

To further examine whether the age-dependent motor deficits in the FUS transgenic mice were

accompanied by neuromuscular abnormalities similar to those clinically observed in human ALS, elec-

tromyograms (EMG) were recorded from the gastrocnemius muscle in the absence of any neuro-

genic stimulus (in isoflurane-anesthetized animals) (Figure 2C). Consistent with our previous findings

(Arnold et al., 2013), high-frequency spontaneous firings of the motor units (i.e., fibrillations) were

recorded in symptomatic SOD1G93A transgenic mice that will ultimately develop fatal paralytic ALS-

like disease. Similar fibrillations, albeit less frequent, were observed in all 12-month-old FUS trans-

genic mice, which were absent in non-transgenic littermates (Figure 2C), indicating widespread

denervation of neuromuscular junctions (NMJs) and motor unit degeneration and regeneration.

The degree of denervation of the gastrocnemius muscle was further evaluated by colocalization

of markers to both presynaptic terminals and postsynaptic densities with synaptophysin and a-Bun-

garotoxin, respectively. While muscles were fully innervated at 2 months of age in all FUS transgenic

mice, up to ~30% of the NMJs were lost by 12 months of age (Figure 2D), consistent with the abnor-

malities detected by EMG. This was accompanied by an age-dependent loss of large (>8.5 mm) cali-

ber motor axons in 12-month-old FUSWT and FUSR514G mice compared to non-transgenic littermates

(Figure 2E; Figure 2—figure supplement 1), although no significant loss of motor axons was

observed in aged FUSR521C mice. Sensory axons of the L5 root were lost in an age-dependent man-

ner in all three transgenic FUS lines (18 ~ 26% reduction by 12 months of age) compared to non-

transgenic controls (Figure 2F; Figure 2—figure supplement 2). Finally, immunofluorescence analy-

sis of the mouse lumbar spinal cords revealed age-dependent loss of motor neurons (Figure 2G;

Figure 2—figure supplement 3A) and increased astrogliosis (Figure 2—figure supplement 3B) in

12-month-old transgenic FUSR514G, FUSR521C and FUSWT mice, compared to non-transgenic litter-

mates. Taken together, expression of human FUS at levels between 0.7 and 1.2 of the normal mouse

FUS level produces age-dependent, selective denervation and degeneration of lower motor axons.

Figure 1 continued

Figure supplement 3. Human FUS transgenes are expressed in most regions of the brain including the cerebellum, cortex, hippocampus and striatum

of transgenic mice at 2 months of age.

DOI: https://doi.org/10.7554/eLife.40811.005
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Figure 2. Age-dependent, mutant-enhanced toxicity in prnp-FUS transgenic mice. (A) Representative images of an 8-month-old FUSR514G transgenic

mice and a littermate control revealing reduced hindlimb spread and clasping in the mutant mouse. Representative trace of footprint analysis for

testing gait abnormality is shown in the lower panel. The front and hind paws were coated with yellow and black paint, respectively. (B) Statistical

analysis of front and hind-limb stride length in FUS transgenic mice. The data represent an average of at least four animals ± SEM (***: p<0.001, **:

p<0.01). (C) Resting EMG recording from the gastrocnemius muscle in isoflurane-anesthetized animals in the absence of any stimulus. (D) Double

staining of neuromuscular junctions in the gastrocnemius of 12-month-old animals using anti-synaptophysin (red), Fluoromyelin red (red) and a-

Bungarotoxin Alexa 488 (green) (top panel). Quantification of the percentage of innervated neuromuscular junctions in the gastrocnemius of FUS

transgenic animals and their control littermates (see counting criteria in Materials and methods). The data represent the average of at least three

animals ± SEM. (**: p<0.01, *: p<0.05). (E) Distributions of axonal diameters in motor axons of the L5 lumbar motor root in 1- (top panel) or 12- (lower

panel) month-old animals. Data points represent the averaged distribution of axon diameters from the entire root of at least three mice for each

genotype and age group. (F) Quantification of the average number of sensory axons: total, below or above 5 mm caliber diameter, in 12-month-old

animals. The data represent the average of at least three animals ± SEM. (G) Quantification of the number of ChAT positive neurons in the ventral horn

of spinal cords from FUS transgenic animals and their control littermates (n � 3).

DOI: https://doi.org/10.7554/eLife.40811.006

The following source data and figure supplements are available for figure 2:

Source data 1. Characterization of lower motor neuron system in prnp-FUS mice.

DOI: https://doi.org/10.7554/eLife.40811.007

Figure supplement 1. Progressive degeneration of L5 motor roots in prnp-FUS mice.

DOI: https://doi.org/10.7554/eLife.40811.008

Figure supplement 2. Progressive loss of L5 sensory roots in prnp-FUS mice.

Figure 2 continued on next page
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Acute sensitivity to the level of FUS: elevated level of human wild-type
FUS accelerates motor neuron disease signs and causes early lethality
To test if higher levels of FUS could be achieved by overriding the underlying autoregulatory mecha-

nism through increased expression of the FUS transgene, we next generated homozygotes (line 101)

or double hemizygotes (line 101 crossed with line 136) of FUSWT mice which were obtained at a nor-

mal Mendelian ratio. No homozygous animals were obtained for FUSR521C (despite production of

multiple litters), suggesting that ALS-linked mutation in FUS may be more toxic than the wild type

FUS. To rule out potential deleterious effects caused by insertion of the FUS transgene in the coding

region of a critical gene, the integration sites were identified for two FUSWT and two FUSR521C lines

(see Supplemental information for experimental details). In line 136 of FUSWT, the transgene inte-

grated between protein-coding exon 12 and 13 of the Mkl1 gene, while in line 101 expressing

FUSWT the transgene integrated between the noncoding exon 1 and 2 of Inpp4b, encoding type II

inositol-3,4-bisphosphate 4-phosphatase. For line 136 FUSR521C, the transgene landed in an inter-

genic region on chromosome 17, while for line 135 FUSR521C the transgene inserted at the 3’-UTR of

an uncharacterized protein (Naaladl2 gene).

As predicted, a dose-dependent down-regulation of endogenous FUS and increased accumula-

tion of total FUS exceeding twice the protein level that found in non-transgenic spinal cord homoge-

nates was achieved in the viable doubly hemizygous (line 101 crossed with line 136), and

homozygous (line 101) FUSWT animals compared to singly hemizygous (line 101 and 136) FUSWT

transgenic littermates (Figure 3A). The dose-dependent down-regulation of mouse FUS was further

confirmed at the mRNA level (Figure 3B).

While the doubly hemizygous (line 101 crossed with line 136), and homozygous (line 101) FUSWT

transgenic mice appeared normal at birth, they rapidly developed neurological disease as early as 2

weeks of age, including abnormal clasping (upper panel of Figure 3C) and abnormal gait (lower

panel of Figure 3C). A marked reduced stride length of the front and hind limbs of both doubly

hemizygous and homozygous FUSWT mice was detected by 3 weeks of age (Figure 3D), which was

accompanied by progressive worsened clasping, lowered posture and increased tremor when com-

pared with the age-matched non-transgenic littermates and singly hemizygous FUSWT mice

(Figure 3E). These doubly hemizygous and homozygous FUSWT mice eventually developed paralysis.

None survived beyond 40 days of age (Figure 3F). Despite transgene integration between the non-

coding exon 1 and 2 of Inpp4b gene in line 101 of FUSWT mice, INPP4B immunoblotting revealed

unaltered levels of INPP4B in comparing non-transgenic, hemizygous and homozygous FUSWT mice

(Figure 3—figure supplement 1), ruling out the possibility that any aspect of the phenotype in

homozygotes of this line was caused by reduction in INPP4B.

Doubly hemizygous and homozygous FUSWT mice developed by 30 day of age drastic (~92%)

denervation of neuromuscular junctions (NMJs) of the gastrocnemius muscle when compared with

the age-matched non-transgenic littermates and singly hemizygous FUSWT mice (Figure 4A–B). This

severe denervation was accompanied by significant degeneration and loss of motor axons

(Figure 4C–D) and spinal cord motor neurons in 30-day-old doubly hemizygotes (29% and 35%,

respectively) and homozygotes of FUSWT mice (19% and 23%, respectively) compared to non-trans-

genic littermates or singly hemizygous FUSWT mice (Figure 4E). Sensory axons of the L5 root were

also lost (~30% reduction) in doubly hemizygous and homozygous FUSWT mice (Figure 4—figure

supplement 1). Despite near absence of both endogenous mouse and human FUS accumulation in

microglia (<5% of cells are co-labeled with Iba-1 staining) (Figure 5D), a significant increase in micro-

gliosis and astrogliosis (scored with Iba-I and GFAP immunoreactivity, respectively) in the lumbar spi-

nal cords of doubly hemizygous and homozygous FUSWT mice (Figure 5; Figure 5—figure

supplement 1) was observed. Altogether, increased accumulation of FUS to 2-fold above its normal

level is sufficient to produce age-dependent, fatal motor neuron disease.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.40811.009

Figure supplement 3. Expression of hFUS causes astrogliosis and a reduction in the number of ChAT neurons in the ventral horn of lumbar spinal cord.

DOI: https://doi.org/10.7554/eLife.40811.010

Ling et al. eLife 2019;8:e40811. DOI: https://doi.org/10.7554/eLife.40811 7 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.40811.009
https://doi.org/10.7554/eLife.40811.010
https://doi.org/10.7554/eLife.40811


-FUS

A C D

nontg

101x101

101x136

0 20 40 60 80
0

20

40

60

80

100

Age (days)
P

e
rc

e
n

t 
S

u
rv

iv
a

l

Survival Curve

non-tg hemizygote homozygote

s
tr

id
e

 l
e

n
g

th
 (

c
m

)

Front Hind

E

fr
o

n
t 
p

a
w

s
: 
y
e

llo
w

h
in

d
 p

a
w

s
: 
b

la
c
k

0

2

4

6

n
o

n
tg

1
0

1
-h

e
m

i

1
0

1
-h

o
m

o

1
3

6
-h

e
m

i

1
0

1
x
1

3
6

16 18 20 22 24 26 28 30

nontg

101-homo

101x136

0

2

4

6

8

10

16 18 20 22 24 26 28 30

16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30
0

1

2

3

4

0

1

2

3

0

1

2

3i. Hindlimb clasping

ii. Lower posture

iii. Tremor

vi. Neuological Index

s
c
o

re

age (days) age (days)

s
c
o

re

s
c
o

re
s
c
o

re

age (days) age (days)

Phenotypic score

0 = no

1 = mild

2 = clear

3 = severe

4 = extreme

B

F

nontg

-tubulin

1
0

1
-h

e
m

i

1
0

1
-h

o
m

o

1
3

6
-h

e
m

i

1
0

1
x
1

3
6

0.5x 0.75x 1x

total protein

n
o

n
tg

1
0

1
-h

e
m

i

1
0

1
-h

o
m

o

1
3

6
-h

e
m

i

1
0

1
x
1

3
6

total spinal cord homogenate

*** *** ***
***

no
nt

g

10
1-

he
m

i

10
1-

ho
m

o

13
6-

he
m

i

10
1x

13
6

0.0

0.5

1.0

re
la

ti
v
e

 m
o

u
s
e

 

F
U

S
 m

R
N

A
 l
e

v
e

l

qRT-PCR

80

101-hemi

136-hemi

101-hemi

136-hemi

Figure 3. Acute sensitivity to FUS level. (A) Immunoblots of total whole spinal cord homogenate from non-transgenic, singly transgenic (line 101 or line

136), doubly transgenic (line 101 and line 136), and homozygous (line 101) of FUSWT mice. Dilutions of homogenates from non-transgenic animals were

used to assess the reduction of endogenous FUS. Both tubulin immunoblot and Coomassie blue staining of total proteins were examined to ensure

equal loading. (B) Relative mRNA levels of the endogenous FUS mRNA measured by RT-qPCR. Consistent with protein level, mRNA showed inverse

reduction of endogenous FUS with increasing human FUS transgene. The data represent the average value from three animals per line ±SEM. (C)

Hindlimb clasping phenotypes (upper panel) and footprint-gait analysis (lower panel) of littermates from non-transgenic, transgene hemizygote (line

101), and transgene homozygote (line 101) of FUSWT mice. (D) Quantifications of footprint analysis showed significant reduction in the stride length in

doubly transgenic (line 101 and line 136) and transgene homozygote (line 101), but not in non-transgenic and singly transgenic animals. (E) Progressive

neurological phenotype in FUS over-expressing mice. Hindlimb clasping, lower posture and tremor phenotypes were scored based on the severity of

the phenotype from postnatal day 16 onward (n > 5 per data point). Additions of all three measurements were plotted as neurological index. Only FUS

overexpressing (doubly transgenic and transgene homozygote) mice develop progressive phenotypes. (F) Survival curve of non-transgenic, singly

transgenic (line 101 or line 136), doubly transgenic (line 101 and line 136), and homozygous (line 101) of FUSWT mice. None of the FUS-overexpressing

mice survived more than 40 days.

DOI: https://doi.org/10.7554/eLife.40811.011

The following source data and figure supplement are available for figure 3:

Source data 1. Gait analysis for FUS transgenic mice.

DOI: https://doi.org/10.7554/eLife.40811.012

Figure supplement 1. Dose-dependent down-regulation of FUS expression.

DOI: https://doi.org/10.7554/eLife.40811.013
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Altered RNA processing functions with elevated FUS expression
To identify how increased levels of FUS affect RNA maturation or stability, we performed transcrip-

tomic analysis using total RNA isolated from 30-day-old spinal cords of non-transgenic mice as well

as mice hemizygous and homozygous for the FUSWT transgene (n = 3 per condition) at the 30 day

old time point. Although RNAs in non-transgenic and hemizygous FUSWT mice were almost indistin-

guishable at this age (only 7 RNA changes in comparing heterozygous FUSWT and non-transgenic

mice) (Figure 6—figure supplement 1), principal component analysis (PCA) and unsupervised
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Figure 4. Acute sensitivity to FUS level in lower motor neuron circuit. (A) These representative images of the fluorescent staining of neuromuscular

junctions (NMJs) in the gastrocnemius of 30-day-old animals with anti-synaptophysin (red), Fluoromyelin red (red) and a-Bungarotoxin Alexa 488

(green). (B) Quantification of NMJ innervation. The data represent the average of at least three animals ± SEM. (***: p<0.001, **: p<0.01, *: p<0.05). (C)

Toluidine blue staining of lumbar 5 (L5) motor roots in 30-day-old animals. (D) Quantification of L5 motor roots in illustrated in (C). The data represent

the average of at least three animals ± SEM. (**: p<0.01, *: p<0.05). (E) Quantification of ventral ChAT positive motor neurons in spinal cords of 30-day-

old animals. The data represent the average of at least three animals ± SEM. (**: p<0.01, *: p<0.05).

DOI: https://doi.org/10.7554/eLife.40811.014

The following source data and figure supplement are available for figure 4:

Source data 1. Lower motor neuron system in FUS over-expressing mice.

DOI: https://doi.org/10.7554/eLife.40811.015

Figure supplement 1. Sensory root degeneration in prnp-FUS mice.

DOI: https://doi.org/10.7554/eLife.40811.016
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hierarchical clustering revealed that homozygous FUSWT animals had a highly distinct RNA profile

(Figure 6A–B). Comparison of RNAs from 30 day-old non-transgenic and homozygous FUSWT mice

revealed 4081 expression changes (FDR corrected p<0.1, effect size > H2), with 2228 up- and 1853

down-regulated genes. Based on the known FUS-binding sites (Lagier-Tourenne et al., 2012),

15.1% of up-regulated genes (337 out of 2228 genes) and 26.1% of down-regulated genes (483 out

of 1853 genes) are bound by FUS. Unbiased gene ontology (GO) biological process analyses of

these differentially expressed genes (DEGs) showed distinct themes of up and down-regulated

genes. The top up-regulated GO categories are involved in defense response, innate immune
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Figure 5. Prominent glial activation in prnp-FUS transgenic mice. (A) Representative images of lumbar spinal cord sections from non-transgenic, FUSWT

hemizygote and homozygote transgenic animals stained with Iba-I for microglia (green), GFAP for astrocyte (magenta) and HA for the transgene (red).

(B) and (C) are the quantification of relative intensity of Iba-I and GFAP immunofluorescence signals. Signals of homozygote mice were set at 100%. (D)

Double labeling of transgene FUSWT (HA) and microglia (Iba-I). (D) Double labeling of transgene (HA) and microglia (Iba-I) in the spinal cords of

homozygote FUSWT transgenic mice showed that microglia do not express FUS.

DOI: https://doi.org/10.7554/eLife.40811.017

The following source data and figure supplement are available for figure 5:

Source data 1. Quantification of microgliosis and astrogliosis.

DOI: https://doi.org/10.7554/eLife.40811.018

Figure supplement 1. Elevated astrogliosis and microgliosis in prnp-FUS mice.

DOI: https://doi.org/10.7554/eLife.40811.019
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Figure 6. Altered RNA processing function in mice overexpression FUS. (A) Principal Component Analysis (PCA) of differentially expressed genes in

spinal cords from 30-day-old non-transgenic, hemizygous and homozygous FUSWT mice. PCA of count data across all three conditions shows a clear

separation of homozygous FUS mice separately from both non-transgenic and hemizygous FUS mice across the first two principal components. (B)

Hierarchical clustering of gene-centered count data cleanly categorizes the data, clustering homozygous FUS mice separately from both non-transgenic

Figure 6 continued on next page
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response and regulation of immune system process, whereas top down-regulated GO categories are

primarily metabolic, including steroid biosynthesis, cellular nitrogen compound metabolism process

and cholesterol biosynthesis (Figure 6—figure supplement 1, Supplementary file 1a-1b). To better

understand the biological processes and pathways affected by increased FUS level, these DEGs

were further classified using KEGG (Kyoto Encyclopedia of Genes and Genomes) database. This

analysis showed that the KEGG pathways of the most up-regulated genes are involved in lysosomes,

antigen processing and presentation, cytokine-cytokine receptor interactions, the MAPK or p53 sig-

naling pathways, and ECM-receptor interactions (Supplementary file 1c), whereas KEGG pathways

of the most down-regulated genes were involved in steroid biosynthesis and terpenoid backbone

biosynthesis (Supplementary file 1d). The top six most up-regulated RNAs (Ifit1, Irf7, Lcn2, Ifit3,

Gbp2, and Oasl2) with a > 20 fold change and the six most down-regulated RNAs (Chodl, Ugt8a,

Tesc, Serpinb1a, Btdb17 and Gjc2) were validated by RT-qPCR in both doubly hemizygous and

homozygous (line 101) FUSWT spinal cords (Figure 6C,D). Similarly, up-regulated RNA levels of lyso-

somal genes (including Ctss, Lamptm5, Ctsc, Slc11a1, and Ctsh - Figure 6E) and genes involved in

the MAPK kinase pathway (Cd14, Dusp5, Flnc, Myc and Rac2 - Figure 6F) were also confirmed by

qRT-PCR in both doubly hemizygous and homozygous (line 101) FUSWT mice.

We have previously shown that genes with exceptionally long introns (>100 kb per average intron

length), which encode proteins that are essential for neuronal functional and integrity, depend on

both TDP-43 and FUS, with reduction in either protein reducing accumulation of the corresponding

RNAs (Lagier-Tourenne et al., 2012; Polymenidou et al., 2011). Accumulation of the RNAs from

these very long genes (including Kcnip4, Nkain2, Park2, Nrxn3, Pcdh9, Grm and Hs2st3) was also

reduced in both doubly hemizygous (line 101 and line 136) and homozygous (line 101) FUSWT mice

(Figure 6E). Additionally, all four genes encoding subunits of neuronal intermediate filaments (Nefl,

Nefm, Nefh, and Prph), together with the motor neuron-specific gene Chat, were down-regulated in

spinal cords of doubly hemizygous and homozygous (line 101) FUSWT mice, compared to age-

matched non-transgenic and either hemizygous mouse lines (Figure 6F). Taken together, the data

suggest that neurons are more susceptible to the increasing wild type human FUS levels, and

increasing FUS levels by as little as 2-fold produces a counterintuitive, apparent loss of FUS function

for maturation of the pre-mRNAs encoded by genes with exceptionally long introns.

Of note, the majority of mRNAs showed comparable expression levels with those of control mice,

when qRT-PCR were performed for the P14 mice (Figure 6—figure supplement 3). At this age, the

mice overexpressing FUS showed no apparent phenotype (Figure 3), suggesting that the massive

transcription changes at late stage are dominated by the effects of neurodegeneration. Therefore,

FUS over-expression does not induce widespread transcription changes at P14, but does lead to tox-

icity, and at late stages, this involves alterations in RNA metabolism (Figure 6E) and autophagy (see

below).

Figure 6 continued

and hemizygous FUS mice. (C–H) qRT-PCR validation of selective genes identified by RNA-seq: most up-regulated genes (C), most down-regulated

genes (D), genes involved in lysosome function (E), genes involved in MAPK kinase pathway (F), genes with exceptional long introns (G), motor neurons

genes (H). The data represent the average of at least three animals per genotype ±SEM. The changes are specific to doubly transgenics and transgene

homozygotes, but not other genotypes.

DOI: https://doi.org/10.7554/eLife.40811.020

The following source data and figure supplements are available for figure 6:

Source data 1. qRT-PCR validation for differentially expressed genes (DEGs).

DOI: https://doi.org/10.7554/eLife.40811.021

Figure supplement 1. Distinct expression profiles in mice overexpression FUS.

DOI: https://doi.org/10.7554/eLife.40811.022

Figure supplement 2. Gene ontology enrichment (Biological process) of differentially expressed genes in FUS overexpressing mice.

DOI: https://doi.org/10.7554/eLife.40811.023

Figure supplement 3. No apparent gene expression changes in pre-symptomatic FUS over-expressing mice.

DOI: https://doi.org/10.7554/eLife.40811.024
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Transcriptome perturbations from FUS overexpression are distinct from
endogenous FUS knockdown
Because of the autoregulatory mechanism for FUS expression, the drastic expression changes

observed in the both doubly hemizygous and homozygous (line 101) FUSWT mice may be due to the

reduction of endogenous mouse FUS protein, or the over-expression of functional human wild-type

FUS protein, or both (Figures 1, 3 and 7A). To determine whether the expression changes were pri-

marily caused by the loss of endogenous FUS function and/or the dose-increased levels of FUS lead-

ing to gain-of-toxicity(ies), we compared the transcriptomic changes found in our 30 day old

homozygous overexpressing FUSWT mice (OE) with those reported in mice with reduced FUS levels

upon anti-sense oligonucleotide (ASO)-mediated knock-down (KD) (Lagier-Tourenne et al., 2012).

In addition to the qualitative separation and clustering of the various groups observed in the PCA

and clustered heatmaps (Figure 7B–D), we tested the divergence of transcriptome changes from

wild type in both overexpression and knockdown models. We make the following assumption: to the

extent that the observed phenotype in the overexpression samples stems primarily from the loss of

endogenous FUS, transcriptome changes in both models should be reflected in a shared set of

genes, with shared direction of expression changes. Conversely, if the observed overexpression phe-

notype was the result of FUS overexpression, genes perturbed in both conditions would be

expected to display expression changes in opposite directions.

Differentially expressed genes are thus classified into two main categories: Similarly perturbed, in

which the directions of expression change are the same in both conditions, and conversely per-

turbed, in which expression changes are in opposing directions. The bias of the proportional distri-

bution of similarly and conversely perturbed genes is then used to identify the primary factor. If the

distribution is opposite-dominant, with more conversely perturbed genes, FUS overexpression is

likely the factor of interest, that is, the over-expression of FUS could drive the observed phenotype.

If the distribution is instead similar-dominant, we infer that FUS reduction is the key factor. A sche-

matic overview is shown in Figure 7—figure supplement 1A.

To determine the significance of this proportional shift, we can perform a binomial test of the

proportion against the null model. The null model represents a case in which the genes are not dif-

ferentially expressed. As such, we expect gene fold changes to be normally distributed around a

mean of 0. Thus, P(conversely perturbed)=P(similarly perturbed)=0.5, resulting in a 50–50 distribu-

tion of genes in each category. Genes passing our significance cutoff (FDR < 0.1) demonstrated a

marked opposite-dominant pattern, with a conversely perturbed proportion of 0.629 ± 0.017 (95%

confidence interval) (Figure 7D). In contrast, proportional analysis on genes above our significance

cutoff showed proportions close to the Null Model, with a conversely perturbed proportion of

0.533 ± 0.014 (95% Confidence interval) (Figure 7—figure supplement 1B). While this ‘insignificant’

gene set remained conversely perturbed, we note that the FDR cutoff is an arbitrary value, and that

the gene set still contains genes with low p-values. This is clearly shown when the analysis is

repeated across various cutoff values, in which the proportion of the ‘insignificant’ set approaches

the Null Model (Figure 7—figure supplement 1C). Taken together, the lower motor neuron disease

associated with dose-dependent increased accumulation of human FUSWT, is primarily driven by

gain-of-toxicity rather than loss of function of endogenous FUS.

Based on the known FUS-binding sites (Lagier-Tourenne et al., 2012), 23% of oppositely-regu-

lated mRNAs (conversely perturbed category: expression changes are in opposing directions in FUS

over-expression and knockdown conditions, 199 out of 862 genes) and 31% of co-regulated mRNAs

(similarly perturbed category: the directions of expression change are the same in both FUS over-

expression and knockdown conditions, 158 out of 507 genes) are bound by FUS. In the conversely

perturbed category, FUS binds to 27% and 17% of mRNAs that are either down- or up-regulated in

FUS-overexpression conditions, whereas FUS binds to 31% of the down-regulated mRNAs (69 out of

222) and 31% up-regulated mRNAs (89 out of 285) in the similarly perturbed category (Figure 7D).

Intriguingly, unbiased gene ontology (GO) analyses of these four categories of DEGs revealed

that distinct biological processes are affected in each group. In the category i OE-down/KD-up

group, mitochondrial respiratory chain and ribose phosphate metabolic process are affected; in the

category ii OE-down/KD-up group, stem cell population maintenance and cytokine-mediated signal-

ing pathway; in the category iii OE down/KD down group, central nervous system myelination, and

regulation of synaptic plasticity are affected; in the category iv OE up/KD up group, innate immune
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Figure 7. Distinct expression profile between FUS over-expression and knockdown conditions

Figure 7. Distinct expression profiles between FUS over-expression and knockdown within the CNS of mice. (A) FUS overexpression (OE) in the CNS of

mice results in a dose-dependent reduction in endogenous FUS. The reduction was noted to be of a lower extent when compared to samples with

antisense-oligonucleotide (ASO) knockdown (KD) against mouse FUS. The relative RNA expression data were based on RNA-seq results. (B) Batch-

corrected Principal Components (PCs) Analysis. (C) Cumulative explained variance across the first 10 principal components. The two PCs for the PCA

Figure 7 continued on next page
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response and inflammatory response are affected (Figure 7E). The genes in each group

are summarized in Supplementary file 2a-d. These findings suggest that (1) similar biological pro-

cess, such as synaptic functions and immune response, can be affected in the similar fashion by FUS-

OE and FUS-KD, and conversely, (2) FUS-OE and FUS-KD can have opposite effects on other biolog-

ical pathways, such as mitochondrial functions.

Rescue of FUS-null lethality by CNS-expression of wild type human FUS
The apparent loss of RNA processing function despite increased overall FUS levels from expression

of human wild type or mutant FUS (and autoregulated reduction in mouse FUS) raised the possibility

that the human FUS cannot functionally replace mouse FUS, even though there is a 95.1% homology

(at protein level) between the two proteins. To rule out this possibility, we produced FUSWT mice (in

a pure C57BL/6 background) in which both endogenous FUS alleles were disrupted (Hicks et al.,

2000) (Figure 8A). While endogenous FUS-null mice in this background die shortly after birth, the

FUSWT transgene complemented the essential FUS functions throughout early development albeit

with lower Mendelian ratio (Figure 8A–B). Levels of RNAs from the long intron-containing genes, as

well as the FUS-dependent up-regulated genes, lysosomal genes and MAPK pathway genes were

assayed by qRT-PCR in RNAs extracted from spinal cords of aged-matched (40 day-old) prnp-

FUSWT::Fus-/- and Fus+/+ mice (Figure 8C–D). Most were nearly fully restored to their levels in non-

transgenic mice, confirming the functional rescue of FUS function, albeit the most-down regulated

genes were only partially rescued (Figure 8C), suggesting that maturation of these RNAs is very sen-

sitive to FUS level. Altogether the near complete rescue of RNA expression changes in the FUSWT

transgenic mice with both endogenous mouse alleles disrupted indicates that wild type human FUS

protein complements the loss of the endogenous mouse FUS protein. Taken together, these genetic

and genomic data suggest that even a slight imbalance of FUS level is critical for its proper function

in the CNS and increasing FUS level exerts gain-of-toxic effects.

Protein homeostasis defects via inhibiting autophagy in mice
expressing increased levels of wild type FUS
Upregulation of lysosomal genes in the homozygous FUSWT mice suggests changes in the status of

protein homeostasis. We first examined whether the human transgenes form any aggregation. The

majority of FUS was nuclear, with only a small portion in the cytosol in the neurons of homozygous

FUSWT mice (Figure 9A). Although ubiquitin-positive aggregates were not observed (data not

shown), accumulation of p62/SQSTM1 (sequestosome 1) accumulated found in the motor neurons of

homozygotes FUSWT mice, but not the non-transgenic and hemizygote FUSWT mice nor neighboring

non-motor neurons (Figure 9A), suggesting a potential autophagic deficit in these motor neurons.

To determine whether FUS regulates autophagy, we exploited a dual fluorescence mCherry-GFP-

LC3 system, whose expression leads to formation of puncta upon its incorporation into autophago-

somes (Mizushima et al., 2010) during nutrient deprivation media (NLM)-induced autophagy in neu-

ronal like cells (Neuro2A) (Young et al., 2009). As GFP fluorescence is sensitive to pH, yellow puncta

(red +green) are indicative of autophagosomes (neutral pH), while red puncta mark autophagosomes

Figure 7 continued

and the five PCs for the heatmap are highlighted in green and blue, respectively. (D) Biclustered heatmap of log-scaled gene TPM values shows a clear

separation of the OE and KD samples. (E) Proportional expression plot of genes below the 0.1 FDR cutoff shows a clear opposite dominant pattern with

an OE proportion of 0.629 ± 0.017 (95% confidence interval). Blue, pink and purple represent the line-101 homozygote, FUS-ASO-KD, and similar

expression overlap regions respectively. (F) Gene ontology enrichment (biological process) of DEGs in FUS overexpressing (OE) and knockdown (KD)

conditions. Total of four categories of gene expression patterns are classified: (i) OE-down/KD-up, (ii) OE-down/KD-up, (iii) OE down/KD down, and (iv)

OE up/KD up. Enriched GO terms are: (i) in the OE-down/KD-up group, mitochondrial respiratory chain and ribose phosphate metabolic process are

affected; (ii) in the OE-down/KD-up group, stem cell population maintenance and cytokine-mediated signaling pathway are affected; (iii) in the OE

down/KD down group, central nervous system myelination, regulation of synaptic plasticity are affected; and (iv) in the OE up/KD up, innate immune

response and inflammatory response are affected. The X-axis represents the log-scaled FDR-corrected p-value.

DOI: https://doi.org/10.7554/eLife.40811.025

The following figure supplement is available for figure 7:

Figure supplement 1. Transcriptomic perturbations from FUS over-expression are distinct from endogenous FUS knockdown.

DOI: https://doi.org/10.7554/eLife.40811.026
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Figure 8. Rescue of FUS-null lethality by FUS expression in the CNS. (A) Breeding scheme to generate prnp-FUSWT:: Fus-/- mice. Fus-/- is generated

through a gene-trap strategy. (B) Immunoblots of FUS in various genotypes: Fus+/+, Fus+/-, prnp-FUSWT:: Fus+/+, prnp-FUSWT:: Fus+/-, prnp-FUSWT::

Fus-/-. Blue and red arrowheads indicate human FUS transgene and endogenous FUS, respectively. (C–D) qRT-PCR analysis of validated genes in 40-

day-old non-transgenic and prnp-FUSWT:: Fus-/- mice. The data represent the average of 3 animals ± SEM. (**: p<0.01, *: p<0.05). qRT-PCR analysis of

Figure 8 continued on next page
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that have fused with lysosomes to create autolysosomes (acidic pH) (Figure 9B). As expected, after

8 hr of NLM treatment of Neuro2A cells transiently expressing mCherry-GFP-LC3 and the blue fluo-

rescence protein (BFP) as a control, robust autophagy (setting >7 puncta for autophagy activation)

was induced as revealed by the accumulation of LC3 puncta in 45% of the cells (Figure 9C,D). How-

ever, increased expression of BFP-tagged wild-type FUS, FUSR514C, or FUSR521C almost completely

inhibited nutrient deprivation driven autophagic activation (Figure 9E–F), with a significant reduction

in the fraction of red puncta that correspond to autolysosomes and an increase in the number of

autophagosomes (yellow puncta) (Figure 9C,E). Immunofluorescence of p62 is used as an indirect

measure of the autophagic flux (Larsen et al., 2010), as association of p62 with autophagosomes

drives its degradation after fusion with autolysosomes. As anticipated, p62 puncta accumulation was

reduced in Neuro2A cells expressing BFP upon NLM addition (Figure 9C, two right top and middle

panels). However, increased levels of FUSWT did not suppress the NLM-mediated p62 puncta accu-

mulation, but rather increased the percentage of cells with p62 puncta (Figure 9C,F), indicative of

the compromised autophagic flux pathway. These findings indicate that increased expression of

wild-type or either of these ALS-linked FUS mutants inhibits autophagy.

Discussion
Here we report the generation and characterization of transgenic mice that express wild type or

either of two ALS-linked mutants of human FUS (R514G and R521C) broadly in the CNS, with trans-

gene expression levels and patterns to that of endogenous mouse FUS. These mice developed pro-

gressive and mutant-enhanced motor deficits accompanied by ALS-like lower motor neuron

pathology. Furthermore, FUS autoregulates its own protein expression level in the CNS. An increase

in expression of wild type FUS can saturate this autoregulation and thereby sharply accelerates dis-

ease phenotypes and triggers early mortality accompanied by disturbances in both protein homeo-

stasis and RNA processing (Figure 10). In particular, our data reveal a role for FUS in regulating

autophagy. Furthermore, increasing FUS levels could affect neuronal and synaptic functions by caus-

ing a loss of RNA processing for particularly long genes. Thus, disruption of FUS homeostasis incurs

gain-of-function toxicity directed against autophagy and loss-of RNA processing function, thereby

providing an explanation for how FUS can promote disease pathogenesis in the absence of mutation

(Figure 10).

FUS auto-regulation is known to maintain normal FUS levels and the underlying mechanisms have

been previously described in cultured cells (Zhou et al., 2013; Dini Modigliani et al., 2014) and in a

recent humanized FUS mouse model (López-Erauskin et al., 2018). One striking feature of all 7 FUS

transgenic mouse lines we produced here is FUS autoregulation in the adult mouse CNS, which leads

to mice with transgene levels that are close to mouse FUS in non-transgenic animals While all trans-

genic animals (FUSWT, FUSR514G and FUSR521C) initially appeared normal, with typical development

and weight gain into adult life, by 12 months of age wild-type and mutant FUS mice develop abnor-

mal motor phenotypes, including clasping, lower posture and reduced hind limb spread, decreased

stride-length, increased EMG activity, a reduction in the number of spinal cord motor neurons and

their axons and a significant loss of hind limb neuromuscular innervation. In addition, FUSWT mice

are less affected compared with FUSR514G mice, suggesting a mutant-enhanced toxicity. These

abnormalities are all found in ALS pathogenesis in mutant SOD1 mouse models and patients

(Bruijn et al., 2004). Despite continued mutant accumulation, however, disease is at best very slowly

progressive and does not lead to lower limb paralysis by ages up to 24 months. Furthermore,

Figure 8 continued

validated genes in Figure 6 showed that expression levels of genes with exceptionally long introns, motor neurons genes, lysosomal gens and MAPK

pathway genes and the majority of most up-regulated genes could be rescued to the levels of non-transgenic animals. The majority of most down-

regulated genes were not able to be rescued, suggesting that these genes may be extremely sensitive to FUS level.

DOI: https://doi.org/10.7554/eLife.40811.027

The following source data is available for figure 8:

Source data 1. qRT-PCR of DEGs in prnp-FUS mice under FUS-null background.

DOI: https://doi.org/10.7554/eLife.40811.028
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although R521C mutation is one of the most frequent FUS mutations in ALS, expression of R521C in

mice did not produce motor axon loss, but rather sensory axon loss, which differs from the FUS-

related ALS in human. By contrast, wild-type and R514G transgene produce both the motor and sen-

sory axon degeneration. Thus, it is possible that the observed sensory deficits may be caused by

transgene expression driven by the murine prion promoter. However, GEM bodies in the spinal cord

motor neurons of FUSR521C mice were significantly reduced (Sun et al., 2015), an indication of

reduced SMN (survival motor neuron) function. This is reminiscent of the notion that altered circuit

function could underlie the neurodegeneration as in spinal muscular atrophy (SMA) (Mentis et al.,

2011), in which dysfunction of cholinergic sensory neurons and interneurons could lead to
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Figure 9. Gain of protein toxicity via autophagy inhibition in prnp-FUS transgenic mice. (A) Representative images of lumbar spinal cord sections from

hemizygote and transgene homozygote FUSWT transgenic animals stained with p62 (SQSTM1) (green) and HA for human FUS transgene (grey). Scale

bar is 20 mm. Cytoplasmic accumulations of p62 were visible in the ventral horn motor neurons of the spinal cord in transgene homozygous mice, but

not other genotypes. (B) Schematics of autophagy induction and progression (flux) assay. Double-tagged LC3 (mCherry-GFP-LC3) were used to

visualize the induction and progression of autophagy. Upon autophagy induction, LC3 is post-translationally modified with a lipid group and localize to

autophagosome. Autophagosomes progress to autolysosomes by fusing with lysosome. Fluorescent signal of GFP is pH-sensitive and is quenched in

autolysosome. (C) Representative images of Neuro2A cells co-transfected with BFP (blue fluorescent protein) or BFP-tagged wild type FUS with

mCherry-GFP-LC3 (left panel) or immuno-stained with p62 (right panel). Nutrient-limiting medium was used to induce autophagy. (D) Quantification of

autophagy induction under nutrient-limiting medium conditions. Over-expression of wild type and ALS-linked mutants (R514G and R521C) in FUS

inhibit autophagy induction. (E) Quantification of autophagy flux based on the numbers of autophagosome and autolysosome. Overexpression of FUS

inhibits autophagy flux. (F) Quantification of p62 accumulation in cells transfected with BFP or BFP-tagged FUS.

DOI: https://doi.org/10.7554/eLife.40811.029

The following source data is available for figure 9:

Source data 1. Quantification of autophagy assays.

DOI: https://doi.org/10.7554/eLife.40811.030
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motoneuron degeneration (Imlach et al., 2012; Lotti et al., 2012). Further studies are required to

investigate the possibilities of altered motor-sensory circuit in FUS pathogenesis.

More importantly, we uncovered that the homeostatic levels of FUS are essential for proper neu-

ron function, as a 2-fold increase in FUS levels accelerated the disease at least 5-fold (Figure 3). Ele-

vated expression levels of genes encoding the pathological hallmarks are not without precedent in

other neurodegenerative diseases, such as duplication of the APP gene (amyloid precursor protein,

causal for Alzheimer’s disease) (Sleegers et al., 2006), and locus triplication of a-synuclein (causal

for Parkinson’s disease) (Singleton et al., 2003). Furthermore, ALS-causing mutations in the 3’-UTR

of FUS gene leading to elevated FUS levels have been identified (Sabatelli et al., 2013). Similar find-

ings, that variants within the 3’-UTR of TARDBP gene can lead to increased TDP-43 expression, have

also been reported for FTD (Gitcho et al., 2009). Collectively, the evidence suggests that beside

the disease-linked mutations in the coding regions, the factors leading to elevated expression of

these key disease genes could contribute to disease pathogenesis.

CNS-expression of wild type human FUS rescues the FUS-null lethality in mice, suggesting that

human FUS protein can functionally replace the mouse FUS gene (López-Erauskin et al., 2018). Fur-

thermore, genome-wide expression profiling reveals gene changes that are largely distinct with FUS-

knockdown using antisense oligonucleotides. Indeed, work by Kino and colleagues showed that the

behavior and pathological phenotypes caused by FUS deletion are largely distinct from those

observed in ALS (Kino et al., 2015), thereby supporting the notion that it is unlikely that FUS-medi-

ated ALS is initiated by the loss-of-FUS-function. Nevertheless, varying FUS levels, that is, FUS over-

expression (OE) and FUS knockdown (KD) conditions, could affect distinct and similar biological pro-

cesses. For example, similar biological processes, such as synaptic functions, myelination, and

immune response, can be affected by either increased or lowered levels of FUS. Conversely, FUS-OE

and FUS-KD may have opposite effects on mitochondrial function. Interestingly, dysfunctions of

these processes, for example, synaptic deficits (López-Erauskin et al., 2018; Sephton et al., 2014)

and mitochondria damage (Deng et al., 2015), have been proposed as potential FUS-mediated

pathologies. As (i) FUS pathology is associated with loss of nuclear FUS and concomitant cytosolic

FUS accumulation (Neumann et al., 2009; Dormann et al., 2010), and (ii) the strong phenotype pro-

duced by over-expression of wild type FUS did not correlate with FUS aggregation as the majority

of FUS remains in the nucleus, a likely scenario is that the toxic cascade is initiated at the nucleus

with dysregulation of RNA processing being one of the potential mechanisms, and subsequently, is

exacerbated by the loss of nuclear FUS.

Autophagy dysfunction has been implicated in various neurodegenerative diseases, including ALS

(Wong and Cuervo, 2010; Nixon and Yang, 2012). We showed here that increased FUS expression

(wild type or disease-linked mutants) is sufficient to inhibit autophagy induction and flux using both

LC3 and p62 as markers (Figure 9). Interestingly, the majority of FUS protein remained in the

nucleus of motor neurons, but not in other cells, in the spinal cord and co-localized with p62 (Fig-

ure 9), suggesting perturbed protein homeostasis in motor neurons and that motor neurons may be

more susceptible to elevated FUS levels. Furthermore, recent discoveries of many ALS-FTD genes,

including SQSTM1 (Fecto et al., 2011), OPTN (Maruyama et al., 2010; Wong and Holzbaur,

2014), TBK1 (Cirulli et al., 2015; Freischmidt et al., 2015; Pottier et al., 2015), and VCP

(Johnson et al., 2010), that are involved in autophagy, indicates that autophagy dysfunction plays a

pivotal role in ALS-FTD pathogenesis. Further studies investigating the molecular mechanisms of

how overexpression of FUS inhibits autophagy will be urgently needed.

Activation of astrocytes (astrogliosis) is one hallmark of ALS pathology (Schiffer et al., 1996).

Reactive astrocytes become apparent in lumbar spinal cord sections of in all three genotypes in

aged (10 ~ 12 month-old) animals. Similar to the endogenous protein, human FUS transgenes are

expressed in both neurons and astrocytes. Since pathological aggregation of FUS can be found in

neurons and non-neurons, including astrocytes (Neumann et al., 2009), the signal initiating astro-

gliosis could come either from motor neurons, from astrocytes, or from both. This is reminiscent of

the non-cell autonomous toxicity mediated by mutant SOD1 in ALS pathogenesis (Ilieva et al.,

2009) and can be tested in this set of transgenic mice by using tissue-specific Cre recombinase-

mediated excision of the transgene in neurons or astrocytes (Lobsiger et al., 2009;

Yamanaka et al., 2008; Boillée et al., 2006). However, in contrast to SOD1-mediated toxicity, it

appears that neither endogenous nor transgenic FUS is expressed in microglia (Figure 5, see also
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(Qiu et al., 2014)), suggesting that disease pathogenesis is not driven by FUS-mediated toxicity

within the microglia.

In conclusion, our FUS mouse models resemble the endogenous FUS expression pattern and lev-

els and developed age-dependent and mutant-enhanced phenotypes. We provide evidence that

elevated FUS levels produce gain-of-toxic properties by overriding FUS autoregulation, disrupting

protein and RNA homeostasis. These disruptions are, at least in part, due to autophagy inhibition

causing proteotoxic stress and a loss of normal RNA processing function, in which genes with long

transcripts and involved in synaptic function are selectively affected. Together, these abnormalities

promote neural and synaptic dysfunction, culminating in neuron death. Thus, maintaining FUS

homeostasis, which in turn is required for proper protein and RNA homeostasis, is essential for nor-

mal neuron function (Figure 10).

Materials and methods

Key resources table

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Gene
(Homo
sapines)

FUS NA Gene ID: 2521

Strain,
strain
background
(Mus musculus)

Mouse/B6N.
Cg-Tg(Prnp-
FUS-wt) line 101

this study murine prion
promoter driven
FUS cDNA
(human wild
type FUS)

C3H and C57BL/6
hybrid backcross
to C57BL/6J for
more than five
generations

Strain,
strain
background
(Mus musculus)

Mouse/B6N.
Cg-Tg(Prnp-
FUS-wt) line 136

this study murine prion
promoter driven
FUS cDNA
(human wild
type FUS)

C3H and C57BL/6
hybrid backcross
to C57BL/6J for
more than five
generations

Strain,
strain
background
(Mus musculus)

Mouse/B6N.
Cg-Tg(Prnp-
FUS-R514G)
line 124

this study murine prion
promoter driven
FUS cDNA
(human R514G
FUS)

C3H and C57BL/6
hybrid backcross
to C57BL/6J for
more than five
generations

Strain,
strain
background
(Mus musculus)

Mouse/B6N.
Cg-Tg(Prnp-
FUS-R521C)
line 135

this study murine prion
promoter driven
FUS cDNA
(human R521C
FUS)

C3H and C57BL/6
hybrid backcross
to C57BL/6J for
more than five
generations

Strain,
strain
background
(Mus musculus)

C57BL/6
mFUS-/-

Hicks et al., 2000 C57BL/6J
background

Cell line
(Mus musculus)

Neuro2A ATCC Cat# CCL-131,
RRID:CVCL_
0470

Free of mycoplasma
contamination.
Species confirmed
and authenticated
by the Cytochrome
oxidase 1 (CO1)
barcode assay.

Transfected
construct

pEBFP2-Nuc Addgene 14893,
RRID:Addgene_
14893

Transfected
construct
(Homo sapines)

BFP-wt-FUS this study

Transfected
construct (Homo
sapines)

BFP-R514G-
FUS

this study

Continued on next page
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Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Transfected
construct (Homo
sapines)

BFP-R521C-
FUS

this study

Transfected
construct (Homo
sapines)

pDest-mCherry-
EGFP-hLC3b

Addgene 22418,
RRID:Addgene_
22418

Antibody FUS Santa Cruz clone 4H11,
sc-47711,
RRID:AB_
2105208

1:500 (WB),
1:100 (IF)

Antibody human FUS,
#14080, affinity
purified

this study,
Lopez-Erauskin
et al., Neuron
2018

peptide
sequences
for immunization,
CKKKGSYSQQPSYGGQQ

0.1 ug/ml
(WB), 1 ug/ml (IF)

Antibody mouse FUS,
#14082, affinity
purified

this study,
Lopez-Erauskin
et al., Neuron
2018

peptide
sequences for
immunization,
CKKKGGYGQQSGYGGQQ

0.1 ug/ml
(WB), 1 ug/ml (IF)

Antibody HA Bethyl Laboratories,
Inc.

A190-238A,
RRID:AB_
2631898

1:5000 (WB),
1:1000 (IF)

Antibody HA Covance mms-101P,
RRID:AB_
2314672

1:1000 (WB),
1:500 (IF)

Antibody NeuN Merck
Millipore

MAB377,
RRID:AB_
2298772

1:1000 (IF)

Antibody NeuN, Alexa-
488 conjugate

Merck Millipore MAB377X,
RRID:AB_
2149209

1:1000 (IF)

Antibody GFAP Protien Tech 16825–1-AP,
RRID:AB_
2109646

1:1000 (IF)

Antibody APC/CC1 Merck Millipore OP80,
RRID:AB_
2057371

1:1000 (IF)

Antibody ChAT Merck Millipore AB144P,
RID:AB_
2079751

1:100 (IF)

Antibody INPP4B Cell Signaling
Technology

#4039,
RRID:AB_
2126015

1:1000 (WB)

Antibody KHC Abcam ab62104,
RRID:AB_
2249625

1:1000 (WB)

Antibody HSP-90 Enzo Life
Sciences

ADI-SPA-846-D,
RRID:AB_
2039287

1:1000 (WB)

Antibody Iba-I Wako 019–19741,
RRID:AB_
839504

1:1000 (IF)

Antibody TDP-43 ProteinTech 10782–2-AP,
RRID:AB_
615042

1:1000 (IF)

Antibody p62/sequestosome Enzo Life
Sciences

BML-PW9860,
RRID:AB_
2196009

1:500 (IF)

Continued on next page
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Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Antibody BFP abcam ab32791,
RRID:AB_8
73781

1:400 (IF)

Antibody synaptophysin Thermo
Fisher
Scientific

PA1-1043,
RRID:AB_
2199026

1:50 (IF)

Antibody Goat anti
mouse alexa
350

Thermo
Fisher
Scientific

A21049,
RRID:AB_
141456

1:100 (IF)

Antibody Goat anti
rabbit alexa
594

Thermo
Fisher
Scientific

A11037,
RRID:AB_
2534095

1:100 (IF)

Antibody Donkey
anti Rabbit
FITC

Jacksons
Immunol

711-095-152,
RRID:AB_
2315776

1:500 (IF)

Antibody Donkey
anti Rabbit
Cy3

Jacksons
Immunol

711-165-152,
RRID:AB_
2307443

1:500 (IF)

Antibody Donkey
anti Rabbit
Cy5

Jacksons
Immunol

711-175-152,
RRID:AB_
2340607

1:500 (IF)

Antibody Donkey
anti Mouse
FITC

Jacksons
Immunol

715-095-151,
RRID:AB_
2335588

1:500 (IF)

Antibody Donkey
anti Mouse
Cy3

Jacksons
Immunol

715-165-151,
RRID:AB_
2315777

1:500 (IF)

Antibody Donkey
anti Mouse
Cy5

Jacksons
Immunol

715-175-151,
RRID:AB_
2619678

1:500 (IF)

Antibody Donkey
anti Goat
FITC

Jacksons
Immunol

705-095-147,
RRID:AB_
2340401

1:500 (IF)

Antibody Donkey
anti Goat
Cy3

Jacksons
Immunol

705-165-147,
RRID:AB_
2307351

1:500 (IF)

Antibody Donkey
anti Goat
Cy5

Jacksons
Immunol

705-175-147,
RRID:AB_
2340415

1:500 (IF)

Recombinant
DNA reagent

pcDNA5-
FRT-TO-
GFP-wt-FUS

Sun et al., 2015

Recombinant
DNA reagent

pcDNA5-
FRT-TO-GFP-
R514G-FUS

Sun et al., 2015

Recombinant
DNA reagent

pcDNA5-FRT-
TO-GFP-R521C-
FUS

Sun et al., 2015

Sequence-
based reagent

qRT-PCR
primers,
mouse Chodl

IDT forward, 5’-
CCAGATGTTGCATAA
AAGTAAAGGA-3’,
reverse, 5’-
TCCAGAACAATGCCAGTTCA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Ugt8a

IDT forward, 5’-
CGAAGGACGCGCTATGAAG-3’,
reverse, 5’-
CAAGGCCGATGCTAGTGTCT-3’

Continued on next page
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Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Sequence-
based reagent

qRT-PCR
primers,
mouse Tesc

IDT forward, 5’-
TTGAAAAGGAGTCGGCTCGG-3’,
reverse, 5’-
CACCTGGTCCGGTTCCATC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse
Serpinb1a

IDT forward, 5’-
TGACTTTTGGCAT
GGGTATGTC-3’,
reverse, 5’-
GTCATGCAAAAGCCGAGGAG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse
Btbd17

IDT forward, 5’-
GGGACTGTGCTGCTGTCTTT-3’,
reverse, 5’-
CTCACCACAGTAC
AAATACCTGATG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Gjc2

IDT forward, 5’-
GCCTGGAGAAGGTCCCAC-3’,
reverse, 5’-
GTCAGCACAATGCGGAAGAC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse
Kcnip4

IDT forward, 5’-
TTCATTGAAAGT
TGCCAAAAA-3’,
reverse, 5’-
CTACAAGTGGG
GGCTTCAAC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Nkain2

IDT forward, 5’-
GGGCTTCATCT
ATGCCTGTT-3’,
reverse, 5’-
GATGTCTTCTG
AGGCCCTTG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Park2

IDT forward, 5’-
CAGACAAGGAC
ACGTCGGTA-3’,
reverse, 5’-
GGGATCCCAG
GAAGTCTTGT-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Nrxn3

IDT forward, 5’-
TTTCACCTGTG
ACTGCTCCA-3’,
reverse, 5’-
TTGCTGGCCAG
GTATAGAGG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Pcdh9

IDT forward, 5’-
GACAAGAGGAC
CGAAGCAGA-3’,
reverse, 5’-
GGTGTTGGTAT
GGACCCAAG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Grm7

IDT forward, 5’-
GACTCGGGGTG
TACCAGAGA-3’,
reverse, 5’-
TGGAGATTGTA
AGCGTGGTG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Hs2st3

IDT forward, 5’-
GGACGAGGACT
GGACTGGTA-3’,
reverse, 5’-
GGGCTTCTTGA
GTGACGAAA-3’

Continued on next page
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Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Sequence-
based reagent

qRT-PCR
primers,
mouse Chat

IDT forward, 5’-
TCCGCTTCCGA
GATGTTTCC-3’,
reverse, 5’-
AACATAGGGCC
GGTTCCTTC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Nefl

IDT forward, 5’-
TGAGCCCTATTCC
CAACTATTCC-3’,
reverse, 5’-
GGTTGACCTGAT
TGGGGAGA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Nefm

IDT forward, 5’-
CCATCCAGCAGT
TGGAAAAT-3’,
reverse, 5’-
CGGTGATGCTT
CCTGAAAAT-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Mefh

IDT forward, 5’-
CAGCTGGACAGT
GAGCTGAG-3’,
reverse, 5’-
CAAAGCCAATCCG
ACACTCT-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Prph

IDT forward, 5’-
TGTGCCATTGTC
AGGAGTCAG-3’,
reverse, 5’-
CTGTCTGGTGTT
CCTCTCTGG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Chga

IDT forward, 5’-
GGTGCTGGACTT
GGGATAGG-3’,
reverse, 5’-
CAGAGACAATGC
CCCCACTC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Iift1

IDT forward, 5’-
GCATCACCTTC
CTCTGGCTAC-3’,
reverse, 5’-
GAATGGCCTGTTG
TGCCAAT-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Irf7

IDT forward, 5’-
ACCCAAGGGG
CCTTATTTGC-3’,
reverse, 5’-
TCTACACAGGCA
GTCTGGGA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Lcn2

IDT forward, 5’-
AGCCACCATAC
CAAGGAGCA-3’,
reverse, 5’-
GGGGAGTGCTG
GCCAAATA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Iift3

IDT forward, 5’-
TGAGGACAACC
GGAAGTGTG-3’,
reverse, 5’-
TTTTCAGCACATT
CTCCCCA-3’

Continued on next page
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Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Sequence-
based reagent

qRT-PCR
primers,
mouse Gbp2

IDT forward, 5’-
GACCAGAGTG
GGGTAGACGA-3’,
reverse, 5’-
AAGGTTGGAAAG
AAGCCCACA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Osal2

IDT forward, 5’-
TCCTGACGAC
CTCGTTTTGG-3’,
reverse, 5’-
TCCTGACGAC
CTCGTTTTGG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Ctss

IDT forward, 5’-
ATCACTGCGGAAT
TGCTAGTT-3’,
reverse, 5’-
ACGACACACTT
GGTTCCTCT-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Laptm5

IDT forward, 5’-
TCTCTGCCCCC
TAAGACTCC-3’,
reverse, 5’-
CCTGGTGGGG
ATCACACTTC-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Ctsc

IDT forward, 5’-
CTGCTTTCCCT
ACACAGCCA-3’,
reverse, 5’-
ACGGAGGCAA
TTCTCCCTTG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Slc11a1

IDT forward, 5’-
CATCCAGCAA
GCAAAGAGGC-3’,
reverse, 5’-
TCCAGAAAGC
CAGTAGGGGA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Ctsh

IDT forward, 5’-
AGACCAAGGGA
GGAACTGGT-3’,
reverse, 5’-
GGTGGGCTTG
TCGCTATTCA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Cd14

IDT forward, 5’-
GAATTGGGCGAG
AGAGGACT-3’,
reverse, 5’-
TCCTGACGACCTCCGCTA
AAACTTGGAGGGTCG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Dusp5

IDT forward, 5’-
ACTTCAGACCAT
CCCCAAGG-3’,
reverse, 5’-
TGAGGTGCAA
GGACTAGGTG-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Flnc

IDT forward, 5’-
AAAGAGCAAT
GGAAGACGGC-3’,
reverse, 5’-
CCACACATCA
CATGCTGCTT-3’

Continued on next page

Ling et al. eLife 2019;8:e40811. DOI: https://doi.org/10.7554/eLife.40811 26 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.40811


Continued

Reagent type
(species) or
recourse Designation

Source or
reference Identifier

Additional
information

Sequence-
based reagent

qRT-PCR
primers,
mouse Myc

IDT forward, 5’-
TCAGACACGG
AGGAAAACGA-3’,
reverse, 5’-
GTTCCTCCTC
TGACGTTCCA-3’

Sequence-
based reagent

qRT-PCR
primers,
mouse Rac2

IDT forward, 5’-
CTTCCTGCCT
GTTTTGGGTC-3’,
reverse, 5’-
ACCTGAACTTG
ACCTCGGAG-3’

Commercial
assay or kit

SuperScript
First-Strand
Synthesis
System

Thermo Fisher
Scientific

1800051

Commercial
assay or kit

iQSYBR
Green
Supermix

Bio-Rad 1708880

Commercial
assay or kit

Illumina
TruSeq
RNA Sample
Prep Kit

Illumina RS-122–2001

Chemical
compound,
drug

a-Bugarotoxin,
Alexa Fluor
488 conjugate

Thermo
Fisher
Scientific

B13422

Chemical
compound,
drug

Fluoromyelin
Red Fluorescent
Myelin stain

Thermo
Fisher
Scientific

F34652

Software,
algorithm

GraphPad
Prism 7.0

GraphPad
Software

RRID:SCR_
002798

Software,
algorithm

ComBat Leek et
al., 2012

RRID:SCR_
010974

Software,
algorithm

Kallisto-
Sleuth

Pachter lab,
https://pachterlab.
github.io/kallisto/ and
https://pachterlab.
github.io/sleuth/
about

Kallisto:
RRID:SCR_
016582
sleuth:
RRID:SCR_
016883

Software,
algorithm

Cytoscape Smoot et
al., 2011

RRID:SCR_
003032

Software,
algorithm

ClueGO Bindea et
al., 2009

RRID:SCR_
005748

Software,
algorithm

Bioquant
Software

BIOQUANT
Life Science

RRID:SCR_
016423

Generation of transgenic mice expressing floxed wild type and ALS-
linked mutations in FUS
cDNA encoding human FUS and its ALS-linked mutations (R514G and R521C) were amplified by

PCR with a N-terminal hemagglutinin (HA) tag and cloned into Xho-I site of the MoPrp.Xho plasmid

(ATCC#JHU-2). Open reading frames of the resulting plasmids were sequenced and confirmed. To

generate ‘floxed’ transgene constructs, Not-I was used to liberate the transgene fragments and

subcloned into vector containing two flanking loxP sites. ‘Floxed’ transgene constructs were excised

with Cla-I and injected into the pronuclei of fertilized eggs to generate FUS transgenic mice (in

C57Bl6/C3H hybrid background). Multiple founder lines with varying expression level of the trans-

genes were obtained. Lines of comparable wild type or mutant human FUS accumulation were

selected for subsequent analysis. Mice were backcrossed to C57Bl6 for more than five generations
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and used for analysis in this paper. Genotype primers used in this study are: 5’-GAG GAT TTC CCA

GTG GAG GT-3’ and 5’-CTC CAT CAA AGG GAC CTG AA-3’.

All studies were carried out under protocols approved by the Institutional Animal Care and Use

Committee of the University of California, San Diego (UCSD) and the National University of Singa-

pore (NUS), and were in compliance with Association for Assessment of Laboratory Animal Care

guidelines for animal use. All studies were performed in such a manner as to minimize group size

and animal suffering. The approved NUS protocol numbers are BR17-0928 and R16-0954.

RT-QPCR
Total RNA from half a mouse cortex was isolated in Trizol (Invitrogen) and prepared for reverse tran-

scription according to manufacturer’s instructions. Real time quantitative PCR was performed on 40

ng of total cDNA using the iQSYBR Green supermix (Bio-Rad) with the iCycler iQ detection system

according to manufacturer’s instructions. Mus musculus ribosomal protein S9 (Rps9, NM_029767)

and actin gamma subunit protein (Actg1, NM_009609) genes were also measured as endogenous

references across all experimental conditions.

Immunohistochemistry, motor neuron and axon quantification
Tissue preparation for immunohistochemistry was described previously (Arnold et al., 2013). In

brief, anesthetized mice were transcardialy perfused with phosphate buffered saline (PBS), followed

by 4% paraformaldehyde (PFA) in phosphate buffer for fixation. L5 roots of 3 ~ 5 animals per geno-

type and age point were collected and incubated in 2% osmium tetroxide in 0.05 M cacodylate

buffer. The roots were subsequently washed, dehydrated and embedded in Epon (Electron Micros-

copy Sciences) for sectioning. 1 mm-thick cross sections were stained with 1% toluidine blue for 30 s.

Both motor and sensory axons from L5 roots were quantified as described (Arnold et al., 2013).

Brains and spinal cords were post-fixed in 4% PFA for 2 hr, cryoprotected in 30% sucrose for over

24 hr and embedded in Tissue-Tek. For immunohistochemistry cryosections (30 mm) of fixed spinal

cord and brain were rinsed in PBS, incubated in a blocking solution containing PBS, 0.5% Tween-20,

1.5% BSA for 1 hr at room temperature and transferred for an overnight incubation at room temper-

ature in PBS, 0.3% Triton-X100 supplemented with the following primary antibodies: mouse anti-HA

(Covance) at 1:5,000, anti-p62/SQSTMQ (Enzo) at 1:500, goat anti-ChAT (Chemicon) at 1:300, rabbit

anti-GFAP (Dako) at 1:1000 and mouse anti-Iba1 at 1:1000. Primary antibodies were washed with

PBS and then detected using donkey anti-rabbit Cy3, anti-mouse Cy3, anti-goat Cy3 (1:500) coupled

secondary antibodies (Jackson ImmunoResearch). The secondary antibodies were washed with PBS

and the spinal cord sections were either directly mounted or further incubated with a monoclonal

antibody against neuronal nuclei marker, NeuN-Alexa488 (1:1,000, Chemicon) for 1.5 hr at room

temperature. The sections were washed with PBS and mounted. Analysis was performed on a Nikon

Eclipse laser scanning confocal microscope.

All lumbar spinal cord choline acetyl-transferase (ChAT) positive motor neurons were counted in

the ventral horn of at least 25 sections per animal (in three mice per genotype). The total number of

motor neurons counted was then divided by the number of sections.

Evaluation of muscle innervation at the neuromuscular junction (NMJ) was performed by immuno-

histochemistry on gastrocnemius. Floating sections (40 mm) were incubated in a blocking solution

containing PBS, 0.5% Tween-20, 1.5% BSA for 4 hr at room temperature and then in PBS, 0.3% Tri-

ton-X100 overnight at room temperature with the polyclonal rabbit anti-synaptophysin antibody at

1:50 (Invitrogen). The sections were washed with PBS and then incubated first with donkey anti-rab-

bit Cy3 (Jackson ImmunoResearch) and a-Bungarotoxin-Alexa488 (Invitrogen) at 1:500 for 1 hr at

room temperature and then with FluoroMyelin red (Invitrogen) at 1:300 for 30 min. The sections

were further washed with PBS and mounted. Analysis was performed on a Nikon Eclipse laser scan-

ning confocal microscope. A total of approximately 1000 neuromuscular junctions were counted

from at least 10 sections of gastrocnemius. Individual NMJs were considered as innervated when

colocalization between synaptophysin and a-Bungarotoxin staining was over 20%.
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RNA-seq library preparation and sequencing, and bioinformatics
analysis
Abundance quantification and differential expression calling
RNA quality was measured using the Agilent Bioanalyzer system. Samples with RIN (RNA integrity

numbers) larger than 8.0 were used for RNA library preparation. Multiplex strand specific RNA-seq

libraries were prepared from 30-day-old mouse spinal cord RNA and ASO-treated mouse spinal

cord RNA using Illumina TruSeq RNA Sample Prep Kit and libraries were sequenced using Illumina

HiSeq 4000 single-ended 50 bp sequencing. Read quantification was performed with Kallisto (0.44.0)

(Bray et al., 2016) with parameters -b 50 –single -l 200 s 20 using ENSEMBL cDNA transcripts

(release 91). Downstream differential gene expression calling was performed using Sleuth (0.28.1)

(Pimentel et al., 2017). Quantified genes from each sample were annotated with a condition tag

corresponding to the sample genotype. For each gene, Wald testing was performed on the condi-

tion parameter to obtain their respective FDR-corrected p-values. Significance for each gene was

then established under a cutoff of FDR < 0.1.

Diagnostic plot generation
Diagnostic plots (MA, Principal Components Analysis) were generated using the R statistical lan-

guage’s ggplot2 package. Expression data matrices were log-scaled before treatment with ComBat

(Leek et al., 2012), to correct batch effect stemming from the different sequencing experiments.

Principal Components analysis was then performed on the batch-corrected gene Transcripts Per Mil-

lion (TPM) values generated from Kallisto-sleuth gene expression quantifications. The expression

data matrices from the PCA where also used for hierarchical clustering and heatmap generation.

From this, a subset corresponding to the top 2500 genes by ordered by PCA loading values across

the first five principal components was derived. This sub-matrix was then Z-scaled and centered

before biclustering and rendering with the superheat R library (Barter and Yu, 2018).

Visualization of read coverage
Raw read data were mapped against the ENSEMBL mouse genome and associated annotations

(release 91) using the STAR aligner package (2.4.2a) with parameters: sjdbOverhang = 49. Read cov-

erage of the various datasets was calculated using bedtools genomecov (2.17.0, -bg -split) using the

GViz genomic data visualization toolkit (Harmston et al., 2015) (1.20.0).

Gene ontology analysis
Selected FDR ordered gene sets were isolated from the Cnp- heterozygous FUSWT vs homozygous

FUSWT dataset. The genes were then subjected to gene ontology enrichment using the Cytoscape

package ClueGO (Bindea et al., 2009) (2.3.0) with parameters ontology = Biological Process

(GO_BiologicalProcess-GOA_23.02.2017_10h01), GO term fusion = True, GOLevels=(Gao et al.,

2017; Van Deerlin et al., 2008). The resultant network was visualized in Cytoscape (Smoot et al.,

2011) (3.5.0) under a Benjamini-Hochberg FDR corrected p<0.05 cutoff using the included organic

layout. Clusters of interest for downstream analysis were then identified from the network manually.

Cluster Gene Pathway Projection
Pathway projection of the GO-term cluster associated genes was performed as follows: For each

selected cluster, we derived the set of all genes associated with all GO terms contained by the clus-

ter. We then filtered this cluster gene set, removing all genes which were not differentially expressed

in the non-transgenic vs heterozygous FUSWT analysis. The resultant gene list was then annotated

with their respective foldchanges and submitted to the Reactome analyzer service for pathway

enrichment. The resultant projection was then visualized using the Reactome pathway browser.

Proportional expression analysis
OE and KD gene datasets were joined on their associated Ensembl gene ID. The resultant combined

table was then subset into two subtables: The ‘insignificant’ subset was filtered for genes with FDR

values above our specified cutoff (FDR > 0.01) in either OE or KD datasets. The other ‘significant’

table was created similarly but was instead constrained to genes with FDRs below the cutoff value in
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both datasets. For each table, oppositely and similarly expressed genes were enumerated and the

proportional distribution derived. A binomial test to determine a proportional shift was then per-

formed, comparing the data against the null model (p(Opp)=0.5; p(Sim)=0.5).

RNA-seq data have been deposited in NCBI’s Gene Expression Omnibus with the GEO series

accession number GSE125125.

Animal behavior and electrophysiology
Resting electromyographic (EMG) recording
Animals were anesthetized with 2.5% isoflurane and the left hind limb shaved. To record EMG, two

30G platinum transcutaneous needle electrodes (Grass Technologies, An Astro-Med, Inc., West War-

wick, Ri) were placed into the gastrocnemius muscle (distance between recording electrodes ~ 1

cm). Electrodes were connected to an active headstage (3110W Headstage, Warner Instruments

LLS), recorded signal amplified using DP-311 differential amplifier (Warner Instruments LLS) and digi-

talized by the PowerLab 8/30 data acquisition system (AD Instruments, Inc., Colorado Springs, CO).

Recorded signal was sampled at 20 kHz and stored in PC for analysis.

Gait analysis
The footprint test was used to analyze the gait of the transgenic mice. The front and hind paws were

coated with yellow and black non-toxic paints, respectively. The animals were then placed onto a 60

cm long, 10 cm wide runway with a fresh sheet of paper placed on the floor of the runway for each

run. Each mouse had three runs and the runs were averaged. The center of each paw print was iden-

tified manually and the distances were measured as described.

Autophagy assay
Expression constructs
The constructs used in this study were PCR-cloned into the pEBFP2 expressing vector (addgene

#14893), at the Nhe I and Age I sites using the following primers: 5’ forward: ctaggctagcgccac-

catggcctcaaacgattatac; 3’ reverse: ctagaccggtggatacggcctctccctgcgat. The BFP was fused in frame

to the C-terminus of the respective FUS wild type construct or its mutants (R514G and R521C). The

pDest-mCherry-EGFP-hLC3b (Addgene# 22418) construct was supplied Dr. Paul Taylor, and the

mCherry-GFP-LC3 vector was obtained from Dr. Terje Johansen.

Cell culture studies
Neuro2a mouse neuroblastoma cell line was purchased from ATCC (ATCC CCL-131). Cells are fully

tested for sterility from mycoplasma contamination prior to distribution by ATCC. Mycoplasma was

tested quarterly and was negative. The species is also confirmed and authenticated by the Cyto-

chrome oxidase 1 (CO1) barcode assay. Neuro2a cells were plated in a 24 well dish in DMEM media

in the presence of 10% FBS, and transfected following the manufacturer’s protocol. The media was

changed to media without antibiotics, and 10 hr later the transfected cells were cultured in either

complete media (CM) or nutrient limited media (NLM) for 8 hr. For autophagic induction studies,

Neuro2A cells were fixed with 4% paraformaldehyde (PFA) for 21 min on ice, washed with PBS, and

then mounted on Fluoromount G (Electron Microscopy Sciences). For p62 studies, transfected and

treated cells were fixed with 4% PFA as described above, permeabilized with 0.20% Triton X-100 for

5 min on ice, and them immediately blocked with 5% BSA and goat serum for 1 hr. Cells were then

incubated overnight in BFP (Abcam #32791, diluted to 1:400 in blocking serum) and p62 antibody

(Enzo # BML-PW9860, diluted to 1:500 in blocking serum). The next day the primary antibody was

removed and the cells were washed with PBS followed by 45 min incubation with goat anti-mouse

Alexa 350 (Invitrogen, Cat#A21049, diluted to 1:100 in blocking serum) and goat anti-rabbit Alexa

594 (Invitrogen, A11037, diluted to 1:100 in blocking serum). Then the cells were stained with

Syto13, washed in PBS, and mounted on Fluoromount G on glass slides.

Autophagy assay and imaging
Cell counting was performed on a Nikon eclipse 80i microscope and >100 cells were counted for

each experiment. Cells were scored as positive for autophagy induction when more than seven

puncta were present. To determine the autophagic flux, Neuro2A cells co-transfected with mCherry-
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GFP-LC3 and BFP or FUS-BFP and imaged using a Zeiss 780 confocal microscope, and >40 cells

were imaged per experiment. Autophagosomes (yellow/yellow green puncta) and autolysosomes

(red puncta) were counted for each cell, and the percentage of autophagosomes or autolysosomes

calculated out of total puncta/cell. For p62 analysis, 10–30 images were obtained to visualize at least

60 transfected cells/experiment on a Ziess 780 confocal microscope. Cells with more than seven p62

puncta were scored as positive.

Statistical analysis
We performed unpaired two-tailed t-test (non-parametric, Student’s t test) or one-way ANOVA

(using Bonferroni’s multiple comparison test). All experiments were repeated at least three times.

Supplementary information
Transgene insertion sites: nucleotide number 84,017,962 of chromosome 8 for line 101 of FUSWT,

nucleotide number 80,844,996 of chromosome 15 for line 136 of FUSWT, nucleotide number

23,703,369 of chromosome 3 for line 135 of FUSR521C, nucleotide number 40,067,721 of chromo-

some 17 for line 136 of FUSR521C (nucleotide number refers to NCBI137/mm9 mouse assembly in

the UCSC genome browser, http://genome.ucsc.edu).
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