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Abstract

Changes in gene regulation have long been thought to play an important role in primate evolution. However,
although a number of studies have compared genome-wide gene expression patterns across primate species, fewer
have investigated the gene regulatory mechanisms that underlie such patterns, or the relative contribution of drift
versus selection. Here, we profiled genome-scale DNA methylation levels in blood samples from five of the six extant
species of the baboon genus Papio (4–14 individuals per species). This radiation presents the opportunity to inves-
tigate DNA methylation divergence at both shallow and deeper timescales (0.380–1.4 My). In contrast to studies in
human populations, but similar to studies in great apes, DNA methylation profiles clearly mirror genetic and geo-
graphic structure. Divergence in DNA methylation proceeds fastest in unannotated regions of the genome and
slowest in regions of the genome that are likely more constrained at the sequence level (e.g., gene exons). Both
heuristic approaches and Ornstein–Uhlenbeck models suggest that DNA methylation levels at a small set of sites have
been affected by positive selection, and that this class is enriched in functionally relevant contexts, including
promoters, enhancers, and CpG islands. Our results thus indicate that the rate and distribution of DNA methylation
changes across the genome largely mirror genetic structure. However, at some CpG sites, DNA methylation levels
themselves may have been a target of positive selection, pointing to loci that could be important in connecting
sequence variation to fitness-related traits.
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Introduction
Changes in gene regulation have long been hypothesized to
play an important role in trait evolution (Britten and
Davidson 1971; King and Wilson 1975; Jacob 1977; Wray
2007; Stern and Orgogozo 2008). Regulatory changes have
the potential to be more modular, and hence more specific
to the individual tissues, environmental conditions, or devel-
opmental time points targeted by selection, than protein-
coding changes (Stern 2000). In addition, regulatory regions
are believed to have larger mutational target sizes, increasing
the rate at which they may evolve (Landry et al. 2007). In
support of the importance of regulatory evolution, a number
of studies have identified regulatory changes that contribute

to species-specific adaptations. For example, noncoding var-
iants that regulate the ectodysplasin and pitx1 genes underlie
morphological changes that separate saltwater threespine
sticklebacks (Gasterosteus aculeatus) from their close freshwa-
ter relatives (Colosimo et al. 2004, 2005; Shapiro et al. 2004).
Similarly, wing pattern mimicry in Heliconius butterflies has
been repeatedly shaped by regulatory evolution near the optix
gene, in which convergent changes at different cis-regulatory
variants have produced similar patterns of wing coloration
(Reed et al. 2011; Heliconius Genome Consortium 2012).
Together, these and other case studies (e.g., Abzhanov et al.
2004; Prud’Homme et al. 2006; Manceau et al. 2011; Jones
et al. 2012; Poelstra et al. 2014) provide compelling examples
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of the importance of regulatory sequence changes to adaptive
evolution.

However, evaluating the role of gene regulation in adaptive
trait evolution also requires understanding the genome-wide
distribution of selectively relevant regulatory variants. To ad-
dress this question, two approaches have commonly been
employed: sequence-based tests for selection and compara-
tive analyses of gene expression phenotypes themselves. The
first approach has identified signatures of natural selection in
regulatory regions both within and between species (e.g.,
Pollard et al. 2006; Prabhakar et al. 2006; Kosiol et al. 2008).
In primates, for example, genes associated with developmen-
tal or neuronal functions have been argued to contain more
signatures of positive selection in noncoding regions than in
their coding sequences (Haygood et al. 2010). Relative to
other genetic variants, loci that affect gene expression in
humans also have larger integrated haplotype scores, provid-
ing evidence for recent positive selection (N�ed�elec et al. 2016;
Kim-Hellmuth et al. 2017). Consistent with these findings,
variants associated with disease risk, fecundity, and other se-
lectively relevant traits are often found within noncoding
regions, and likely affect gene expression levels (Nicolae
et al. 2010; Wray 2013).

The second approach investigates patterns of gene expres-
sion across species to search for cases consistent with adap-
tive evolution. Several patterns have emerged from this work.
First, overall differences in gene expression accumulate over
evolutionary time, such that more closely related species have
more similar gene expression profiles. Global clustering
approaches from the same tissue thus tend to faithfully re-
produce the species phylogeny (Brawand et al. 2011; Sudmant
et al. 2015), and exceptions to this pattern suggest possible
cases of natural selection. For example, gene expression levels
in testis, but not in other tissues, group humans and gorillas
to the exclusion of chimpanzees and bonobos (Brawand et al.
2011). This pattern is consistent with elevated sexual selection
on male reproductive physiology in chimpanzees and bono-
bos, which are characterized by unusually large testis to body
size ratios relative to other primates (Schultz 1938). Second,
stabilizing selection appears to constrain most gene expres-
sion levels. Comparative analyses of gene expression have
found that most genes are characterized by low levels of
intra- and interspecific divergence, a pattern consistent
with stabilizing selection (Rifkin et al. 2003; Gilad,
Oshlack, Smyth, et al. 2006; Khaitovich et al. 2006;
Blekhman et al. 2008; Coolon et al. 2014; Hodgins-Davis
et al. 2015). Furthermore, within species, regulatory variants
of large effect tend to have low allele frequencies, suggesting
that they are typically selected against (Battle et al. 2014;
Hernandez et al. 2017; Schoech et al. 2017). In support of
this argument, experimental mutation accumulation lines
exhibit an excess of gene expression variation compared
with that observed in natural populations. They also accu-
mulate differences in gene expression at a faster rate than
observed in between-species comparisons (Denver et al.
2005; Rifkin et al. 2005).

Thus, both sequence-based studies and comparative stud-
ies of gene expression support a central role for selection on

gene expression evolution, dominated by stabilizing selection
but with an additional contribution made by positive selec-
tion (Signor and Nuzhdin 2018). However, gene expression
patterns themselves are a product of multiple underlying
regulatory mechanisms, which govern chromatin accessibility,
transcription factor binding, and mRNA processing, splicing,
and stability. These mechanisms link genetic variation in DNA
sequence to selectively relevant gene expression phenotypes
(Gallego Romero et al. 2012; Pai and Gilad 2014). For example,
in humans, genetic variants associated with chromatin acces-
sibility and DNA methylation are often also associated with
gene expression, suggesting that these mechanisms function-
ally link DNA sequence variation to gene expression (Degner
et al. 2012; Banovich et al. 2014; Gate et al. 2018). Between
species, however, we know considerably less about how gene
regulatory mechanisms evolve, including their relative contri-
butions to lineage-specific shifts in gene expression levels (Pai
and Gilad 2014).

Comparative studies to date have focused most inten-
sively on DNA methylation, an epigenetic regulatory mech-
anism that refers to the covalent addition of a methyl group
to a cytosine base and that can affect transcription factor
binding, chromatin accessibility, and gene expression (Klose
and Bird 2006; Weber et al. 2007; Jones 2012; but see also
Shibata et al. 2012; Zhou et al. 2014; Villar et al. 2015;
Berthelot et al. 2018 for work on other mechanisms). In
primates, comparisons between humans, chimpanzees,
and rhesus macaques suggest that divergence in DNA
methylation is associated with changes in gene expression
(Zeng et al. 2012; Heyn et al. 2013), explaining 15–21% of
expression differences between species (Pai et al. 2011). Like
gene expression, divergence in DNA methylation also
increases with genetic distance (Hernando-Herraez et al.
2013). However, comparisons among human populations
suggest that DNA methylation evolves in a more clock-like
fashion than gene expression, possibly because gene expres-
sion phenotypes evolve under greater functional constraint
(Carja et al. 2017). Unlike for gene expression levels (Rifkin
et al. 2003; Gilad, Oshlack, Smyth, et al. 2006; Khaitovich
et al. 2006; Whitehead and Crawford 2006; Blekhman et al.
2010; Brawand et al. 2011; Rohlfs and Nielsen 2014), the
relative contribution of genetic drift and natural selection
to DNA methylation evolution across species has not been
investigated.

Here, we address this gap by investigating the evolution of
genome-wide DNA methylation levels in the baboon genus
Papio. Baboons radiated in sub-Saharan Africa over the past
1.4 My to include six currently recognized extant species:
anubis baboons (P. anubis, also called the olive baboon),
hamadryas baboons (P. hamadryas), and Guinea baboons
(P. papio) in the northern half of Africa and the Arabian
peninsula; and yellow baboons (P. cynocephalus), chacma
baboons (P. ursinus), and Kinda baboons (P. kindae) in central
and southern Africa (fig. 1A: Jolly 1993; Rogers et al. forth-
coming). Studying DNA methylation divergence in this spe-
cies complex thus provides additional resolution on the rate
of DNA methylation evolution in primates, as previous stud-
ies have concentrated either on deeply diverged great apes
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(5–15 My of divergence) or on closely related human pop-
ulations (Pai et al. 2011; Hernando-Herraez et al. 2013, 2015;
Heyn et al. 2013; Mendizabal et al. 2016; Carja et al. 2017).
Genetic evidence indicates that branching events leading to
the extant baboon species occurred on an intermediate time-
scale, between 0.380 and 1.4–2.0 Ma (Zinner et al. 2013;
Rogers et al. forthcoming). Further, because baboon genetic
diversity is unusually well-characterized (Wall et al. 2016;
Leffler 2017), focusing on baboons also allowed us to investi-
gate the relationship between DNA methylation and patterns
of genetic variation across the genome.

To do so, we generated genome-scale bisulfite sequencing
data from blood samples obtained from 4 to 14 members of
each of five of the extant species (all but chacma baboons).
We asked: 1) to what degree does phylogenetic divergence
between baboon species predict evolutionary change in DNA
methylation levels? 2) how are clade- and species-specific
shifts in DNA methylation distributed across the baboon ge-
nome? and 3) what are the relative contributions of natural
selection and genetic drift to patterns of DNA methylation
across species? Our results show that divergence in DNA
methylation is closely linked to genetic divergence in
baboons. Additionally, heterogeneity in DNA methylation di-
vergence is explained by a combination of functional context,
mean methylation level, and differences in selective con-
straint. At a subset of sites, these differences are consistent
with spatially clustered, lineage-specific selective shifts, sug-
gesting candidate loci for which interspecific changes in gene
expression may be explained by selection on DNA
methylation.

Results

Genome-Wide Variation in DNA Methylation Reflects
Geography and Phylogenetic Structure
We generated DNA methylation profiles from blood samples
for 39 baboons and 5 rhesus macaques (Macaca mulatta)
(supplementary table S1, Supplementary Material online) us-
ing reduced representation bisulfite sequencing (RRBS: Gu
et al. 2011; Boyle et al. 2012). After filtering for CpG sites
where at least half of our study subjects were sequenced to
at least 5� coverage, the data set included DNA methylation
estimates for 2,450,153 CpG sites throughout the genome. As
expected for RRBS data, these sites were strongly enriched in
or near CpG dense regions of the genome, including CpG
islands, CpG shores, gene bodies, and promoters (supplemen-
tary fig. S1, Supplementary Material online). At least one CpG
site in the promoter or gene body was included for 75.2% of
Ensembl-annotated protein-coding genes in the reference
anubis baboon genome (Panu2.0; supplementary fig. S1,
Supplementary Material online). To investigate patterns of
DNA methylation variation across Papio, we subsequently
focused on the subset of 756,262 CpG sites that were not
constitutively hyper- or hypomethylated (mean methylation
level 2 ½10%; 90%� across all study subjects). Two of the
species we sampled (hamadryas baboons and anubis
baboons) included individuals from multiple source popula-
tions (supplementary table S1, Supplementary Material on-
line). However, because source population was not
significantly associated with variation in DNA methylation
within species (supplementary Methods, Supplementary

FIG. 1. Geographic and genetic structure in baboon DNA methylation patterns. (A) The first two principal components from a PCA of baboon
DNA methylation profiles (subsampled to n¼ 4 individuals per species) projected onto the geographic distribution of baboon species in Africa.
Northern clade (cool colors) and southern clade (warm colors) baboons separate along the first PC. The distribution of the six commonly
recognized baboon species in Africa and the Arabian peninsula is based on Zinner et al. (2013) and modified from a map created by Kenneth Chiou
(CC BY 3.0 license); note that points reflect coordinates for DNA methylation data in PC space, not sampling location. Phylogenetic relationships
between the five species included in this data set, with rhesus macaque as an outgroup, are shown in the inset (divergence dates within baboons
from Rogers et al. [forthcoming] and between baboons and macaques from Perelman et al. [2011]). (B) Procrustes transformation of PC1 and PC2
of the DNA methylation data (empty squares) conforms with PC1 and PC2 of genotype data (solid circles) from the same samples (Procrustes
t0¼ 0.89, P< 10�6). PVE values on the x- and y-axis are provided for the genotype data.
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Material online), we grouped all samples from the same spe-
cies together for subsequent analysis.

To investigate the relationship between DNA methylation
levels and genetic divergence, we first performed principal
component analysis (PCA) on the DNA methylation data.
With rhesus macaques included, the first principal compo-
nent explained 14% of the overall variance in the data and
separated all baboons from all rhesus macaques (supplemen-
tary fig. S2, Supplementary Material online). Subsequent PCs
captured variation within Papio and were highly correlated
with the top PCs when considering baboon samples only
(r2> 0.96 between PCs 2–5 including macaques and PCs
1–4 excluding macaques). To investigate species differences
within Papio, we subsampled the baboon data to four indi-
viduals for each species (based on the smallest sample size per
species, for Kinda baboons) and analyzed the baboon samples
alone. In most subsets (79.6%), PC1 and PC2 mirror the phy-
logenetic history of the baboon species we sampled (fig. 1A).
They first separated baboons from the northern clade from
baboons from the southern clade (PC1), and then separated
hamadryas baboons from all other taxa (PC2). To explicitly
compare structure in the DNA methylation data with baboon
genetic structure, we used Procrustes analyses on the DNA
methylation data set and genotype data collected from the
same RRBS data (n¼ 49,607 single nucleotide polymor-
phisms; supplementary Methods, Supplementary Material
online). The first two PCs of the genotype data were signifi-
cantly concordant with the first two PCs of the DNA meth-
ylation data (fig. 1B; Procrustes t0¼ 0.89, P< 10�6), indicating
that divergence in CpG methylation levels is closely tied to
genetic divergence (near-identical results were obtained
when including additional PCs, up to PC6).

Consistent with a close link between DNA methylation
and genetic divergence, pairwise genetic covariance between
samples strongly predicted pairwise covariance in DNA meth-
ylation levels. Across all CpG sites, a sample-wise covariance
matrix based on RRBS-derived genotype data was significantly
correlated with a sample-wise covariance matrix based on
DNA methylation levels (n¼ 756,262 CpG sites; Mantel test

r [95% CI]¼ 0.680 [0.651–0.721], P< 10�6), especially when
considering the baboon samples alone (r¼ 0.818 [0.794–
0.856], P< 10�6). However, the strength of the correlation
varied systematically across genomic contexts (lowest in CpG
islands and exons and highest in intergenic, unannotated
regions, controlling for mean methylation: fig. 2A and supple-
mentary Methods, Supplementary Material online) and
across mean methylation levels. Specifically, in all contexts,
the strongest relationship between genetic variation and
DNA methylation levels was observed for intermediately
methylated CpG sites, which also tend to exhibit the most
variation in DNA methylation across individuals (fig. 2A).
Notably, regions of the genome that support a nonconsensus
phylogeny (i.e., those most likely to be affected by incomplete
lineage sorting or admixture, which is common in baboons:
Zinner et al. 2009, 2013; Tung and Barreiro 2017; Rogers et al.
forthcoming; see Materials and Methods) exhibited a weaker
association between the DNA methylation and genotype ma-
trices than those that fit the consensus phylogeny (Mantel
test r¼ 0.716 [0.649–0.760], n¼ 211,852 sites compared with
0.815 [0.766–0.858] for regions that matched the consensus
phylogeny, n¼ 542,509 sites).

Thus, both the PCA results and the correlation between
DNA methylation and genetic structure indicate that spe-
cies differences in DNA methylation are associated with
genetic divergence. To investigate how this relationship
scales, we estimated the correlation between divergence
time (0.380–1.4 My within Papio, and 8.1 My between
baboons and macaques: Perelman et al. 2011; Rogers et al.
forthcoming) and DNA methylation divergence per site. For
this analysis, we limited the data set to CpG sites that were
measured in at least three individuals of each species
(n¼ 438,713 CpG sites). When both macaques and
baboons were included in the analysis, pairwise divergence
time was strongly positively correlated with pairwise DNA
methylation divergence (Mantel test r¼ 0.970, P¼ 0.011),
with an estimated rate of change for the average CpG site of
1.14% per million years. This estimate is similar to that
obtained from baboons alone (1.27% per million years),

FIG. 2. Concordance between DNA methylation variation and genetic variation depends on genomic context. (A) Correlation between pairwise
genetic covariance between species and pairwise covariance in DNA methylation levels, for CpG sites stratified by genomic context and mean DNA
methylation level. Each point represents n¼ 2,658–604,775 CpG sites. (B) Estimated mean rate of change in DNA methylation levels per million
years, stratified by genomic context. Error bars represent the standard error for each estimate.
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although the baboon results are noisier and not statistically
significant (Mantel test r¼ 0.377, P¼ 0.067). Divergence in
DNA methylation is fastest in functionally unannotated
regions of the genome and slowest in gene exons, CpG
islands, promoters, and enhancers (fig. 2B and supplemen-
tary fig. S3, Supplementary Material online).

Evolutionary Shifts in DNA Methylation Levels Within
Papio
We next investigated the frequency and distribution of CpG
sites that exhibit 1) genus-level differences in DNA methyla-
tion between baboons and macaques, 2) clade-level differ-
ences in DNA methylation between northern and southern
clade baboons, and/or 3) species-level shifts in DNA methyl-
ation levels that differentiate one baboon species from all
other baboons. To do so, we first used ANOVA to identify
130,358 (17.3% of those tested), 12,791 (1.70%), and 9,999
(1.33%) CpG sites for which genus, clade (within genus), or
species (within clade) membership explained significant var-
iance in DNA methylation levels, respectively (fig. 3A; 10%
false discovery rate [FDR] based on the q-value approach of
Storey and Tibshirani [2003], supplementary Methods,
Supplementary Material online). These sets of taxonomically
structured CpG sites overlapped more than expected by

chance (Fisher’s exact test log2(OR)> 0.95 and P< 10�16

for all three pairwise comparisons). CpG sites located in func-
tionally unannotated regions, gene introns, and untranslated
regions were more likely to exhibit taxonomically structured
variation in DNA methylation than CpG sites in other geno-
mic contexts (fig. 3B and supplementary table S2,
Supplementary Material online). Conversely, such variation
was depleted for CpG sites in gene exons. This dependency
on genomic context was generally consistent between sites
that exhibited significant genus-, clade-, or species-level vari-
ation. However, species-level changes were more strongly
enriched in unannotated regions and more clearly depleted
for other functional contexts (supplementary fig. S4 and table
S3, Supplementary Material online), consistent with faster
divergence in regions where genetic variation is more likely
to be selectively neutral. Taxonomically structured variation
was also more common for sites with more nearby (within
1 kb) CpG-disrupting genetic variants, even though the focal
CpG sites themselves were not disrupted (logistic regression:
b¼ 0.0246, P¼ 3.33 � 10�133; supplementary fig. S5 and
supplementary Methods, Supplementary Material online).
Therefore, changes in local CpG site density may contribute
to some taxonomically structured variation in DNA methyl-
ation (Fukuda et al. 2013).

FIG. 3. Interspecific differences in DNA methylation levels. (A) The number of CpG sites that exhibit significant taxonomic structure at successive
levels of the phylogeny. Sites significantly overlap between genus and N–S clade (log2(OR)¼ 0.990, P¼ 2.82 � 10�240), genus and species
(log2(OR)¼ 1.176, P¼ 2.760 � 10�276), and N–S clade and species (log2(OR)¼ 5.580, P< 100 � 10�300). (B) Enrichment by genomic context
for 1) CpG sites in which DNA methylation levels show significant taxonomic structure by clade or species (green dots; background set is the full set
of n¼ 756,262 CpG sites analyzed), and 2) CpG sites in which OU models and heuristic analyses (for clade-specific shifts) or heuristic analyses (for
species-specific shifts) indicate a likely history of positive selection (blue dots; background set is n¼ 20,360 taxonomically structured CpG sites).
Functional elements that are depleted for significant taxonomic structure overall are nevertheless enriched for a signature of selection among
those sites that do exhibit taxonomic structure. (C, D) Examples of large DMRs. Dashes along the x-axis show the location of each measured CpG
site in the region and lines show the smoothed mean DNA methylation level (BSmooth: Hansen et al. 2012). Thin dashed lines represent individual
samples, and bold lines represent mean methylation levels per species. A Guinea baboon-specific DMR associated with the Leucine Rich Repeat and
Ig Domain Containing 3 (LINGO3) gene is shown in (C) and a hamadryas baboon-specific DMR associated with the taperin (TPRN) and trans-
membrane protein 203 (TMEM203) genes is shown in (D).
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To identify shifts in DNA methylation associated with
specific baboon taxa, we focused on the set of 20,360 sites
that were taxonomically structured by clade or species mem-
bership. For these sites, we then applied a binomial mixed
effects model (Lea et al. 2015) to identify differential methyl-
ation 1) between each target species and all other baboons,
and 2) between clades (10% FDR threshold). We required a
minimum 10% difference in mean DNA methylation levels
between the focal species and all other baboon species to call
a species-specific shift, and a minimum 10% difference be-
tween all between-clade species pairs, as well as rhesus ma-
caque, to call a clade-level shift. Based on these criteria, we
identified 1,230–4,916 species-specific shifts per species
(13,098 unique sites in all). The number of shifts per species
was not a function of sample size or independent evolution-
ary time (linear model, P¼ 0.791 and P¼ 0.793, respectively)
and we observed no consistent bias toward increased or de-
creased methylation in any species (controlling for mean
methylation level: supplementary fig. S6, Supplementary
Material online). We also identified 6,098 CpG sites with ev-
idence for a clade-specific shift: 1,590 sites where DNA meth-
ylation in the northern clade was different from the southern
clade species and macaques, 3,196 sites where DNA methyl-
ation in the southern clade was different from the northern
clade species and macaques, and 1,315 sites where methyla-
tion differed between the two clades and both clades were
also different from macaques. Sites that exhibited species- or
clade-level shifts were more spatially clustered than expected
by chance (P< 10�6, z-score¼ 13.70 compared with a
permutation-based null; supplementary Methods,
Supplementary Material online). We subsequently defined
clusters of�3 such sites within a 2-kb window as differentially
methylated regions (DMRs) as clusters of this size are highly
unlikely to arise by chance (supplementary Methods,
Supplementary Material online).

Overall, we identified 724 DMRs, which as a whole were
enriched near genes involved in catabolic processes. DMRs
specific to the southern clade were enriched near genes
involved in the cellular response to stress, and DMRs specific
to Guinea, hamadryas, and yellow baboons were enriched
near genes involved in RNA processing, the response to
organic substances, and metabolism (10% FDR threshold).
We also identified nine large DMRs (�15 CpG sites: fig. 3C
and D). Four of these DMRs occur in the hamadryas lineage,
three in the Guinea lineage, one is specific to the northern
clade, and one is specific to the southern clade. Almost all
(eight of nine) of the large DMRs overlapped with a CpG
island and were within 10 kb of at least one gene. Large
DMR-associated genes included single immunoglobulin
domain-containing IL1R-related protein (SIGIRR), which is
involved in innate immune defense, regulation of inflamma-
tion, and natural killer cell maturation; taperin (TPRN),
which is implicated in hearing and sensory phenotypes;
and transmembrane protein 203 (TMEM203), which is re-
quired for spermatogenesis. These loci represent candidate
regions in which differences in DNA methylation may be
important in translating genetic variation to phenotypic
differences between baboon taxa.

Selection on DNA Methylation Patterns in Baboons
Our results indicate that DNA methylation in functionally
important regions of the genome evolves more slowly than
DNA methylation in unannotated regions, consistent with
stabilizing selection on gene regulation and neutral evolution
for functionally silent CpG sites. However, lineage-specific
shifts in DNA methylation point to a possible contribution
of positive selection. To investigate the relative contribution
of these different selective regimes, we performed site-specific
analyses using two complementary methods: 1) a heuristic
approach based on comparisons between intra- and inter-
specific variation (Rifkin et al. 2003; Nuzhdin et al. 2004; Gilad,
Oshlack, Smyth, et al. 2006; Whitehead and Crawford 2006;
Gallego Romero et al. 2012), and 2) Ornstein–Uhlenbeck
(OU) models of phenotypic evolution, which have recently
been extended to model gene expression phenotypes and to
incorporate intraspecific variation (Lande 1976; Butler and
King 2004; Bedford and Hartl 2009; Rohlfs and Nielsen 2014).

The heuristic approach is based on the logic that pheno-
types that evolve under positive selection will harbor less
intraspecific variation than phenotypes that evolve under
genetic drift (Gallego Romero et al. 2012). Therefore, CpG
sites where mean methylation differs between species but
variation is low within species are the most likely to have
experienced a history of positive selection. To identify such
sites, we focused on those in the lowest decile of within-
species variance (controlling for average methylation, see
Materials and Methods) that also displayed significant species
or clade-specific methylation. These criteria yielded a set of
875 and 2,625 CpG sites that are candidates for positive se-
lection to differentiate baboon clades or species, respectively.
We note that this approach is likely to retain false positives
(and also miss false negatives, which is common in tests for
selection): Thus, this set should be treated as enriched for a
likely history of positive selection, rather than as a definitive
list of positively selected sites.

In the second approach, we fit Brownian motion and OU
models of phenotypic evolution, which include explicit
parameters for the strength of selection toward a phenotypic
optimum or optima (Butler and King 2004). We used a mod-
ified approach that takes into account intraspecific pheno-
typic variance (following Bedford and Hartl 2009; Rohlfs and
Nielsen 2014), with modifications to accommodate our data
type. Simulations indicated that, in the baboon phylogeny,
these models are underpowered to identify species-specific
episodes of selection, but are reasonably well-powered to
detect positive selection on multispecies lineages (see supple-
mentary Methods, Supplementary Material online). As for the
heuristic approach, we treat our results as enriched for spe-
cific evolutionary histories, as opposed to definitive. For each
taxonomically structured site (n¼ 20,360 sites), we fit five
models, which captured i) genetic drift across the baboon
phylogeny, ii) stabilizing selection toward a single optimum,
iii) positive selection toward a different phenotypic optimum
in the southern baboon clade (yellow and Kinda), iv) positive
selection toward a different phenotypic optimum in the
northern baboon clade (anubis, Guinea, and hamadryas),
and v) positive selection toward a different phenotypic
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optimum in a northern baboon subclade, the anubis–Guinea
lineage. We defined the best model (for each site) as the one
with the lowest Akaike information criterion value (Akaike
1974). Models iii–v, which include positive selection some-
where in the tree, were chosen as the best model for
12,700 CpG sites (1.68% of the initial set of sites tested,
n¼ 756,262, and 62.4% of the 20,360 sites that exhibited sig-
nificant clade- or species-level shifts).

The heuristic approach and the OU model approach pro-
duced highly overlapping sets of putative positively selected
sites (Fisher’s exact test log2(OR)¼ 1.59, P¼ 1.06 � 10�41).
We detected 724 CpG sites with evidence for positive clade-
level selection in both methods (supplementary Methods,
Supplementary Material online), which we treat as our
highest-confidence set. Compared with the background set
of sites with taxonomic structure in DNA methylation, which
tend to occur most often in gene introns, untranslated
regions, and functionally unannotated regions, sites with ev-
idence for positive selection are strongly enriched for gene
exons and functional regulatory elements, including pro-
moters, enhancers, CpG islands, and CpG island shores (fig.
3B and supplementary table S2, Supplementary Material on-
line). This pattern is consistent for all sets of candidate pos-
itively selected sites (supplementary fig. S4 and table S4,
Supplementary Material online) and, similar to the larger
set of taxonomically structured sites, candidate positively se-
lected sites were more spatially clustered than expected by
chance (z-score> 11 against a permutation-based null,
P< 10�6). Seventy DMRs were associated with species-
specific selection (2–26 per species) and 25 with clade-
specific selection (11 assigned to the northern clade and 14
assigned to the southern clade). Consistent with our results
for species-specific shifts above, candidate positively selected
DMRs were enriched overall for association with genes in-
volved in metabolic processes (10% FDR threshold). However,
they were no more likely to be located near disrupted CpG
sites than other, taxonomically structured sites (logistic re-
gression: b¼ 1.93 � 10�3, P¼ 0.471; supplementary fig. S5,
Supplementary Material online).

If regulatory divergence in DNA methylation levels is a
consequence of genetic divergence, the genetic sequence
surrounding positively selected CpG sites should also show
signatures of positive selection, including reduced levels of
local genetic variation. To test this prediction, we calculated
nucleotide diversity (p: Nei and Li 1979) for the 1 kb centered
on each taxonomically structured CpG site for each baboon
species, based on data from the Baboon Genome Project
Diversity Panel (2–4 individuals sequenced at 30� coverage
per species; see supplementary Methods, Supplementary
Material online). Averaged across all baboon lineages, nucle-
otide diversity around CpG sites for which we inferred a his-
tory of positive selection somewhere in the tree (mean
p6 SD¼ 0.00233 6 0.00307) was slightly reduced relative
to nucleotide diversity around CpG sites with no evidence
for positive selection (0.00243 6 0.00214, Tukey’s Honestly
Significant Difference test P¼ 0.0.0441; fig. 4). More strikingly,
nucleotide diversity was significantly lower for site-lineage
combinations in which positive selection was specifically

inferred than for either other lineages at the same site
(0.00213 6 0.00341 vs. 0.00254 6 0.00264, P¼ 5.00 � 10�9)
or near sites with no evidence for positive selection
(0.00213 6 0.00341 vs. 0.00243 6 0.00214, P¼ 1.75 � 10�8).
For “nonselected” lineages, local nucleotide diversity did not
differ from nucleotide diversity at sites with no evidence for
positive selection (P¼ 0.138).

Discussion
Together, our findings provide novel insight into the rate and
determinants of DNA methylation divergence in primates. In
contrast to comparative studies of human populations
(Fraser et al. 2012; Heyn et al. 2013; Carja et al. 2017), but
like studies across the more deeply diverged great apes
(Hernando-Herraez et al. 2013, 2015), global divergence in
DNA methylation patterns in baboons is clearly apparent,
even among species that diverged relatively recently (e.g.,
anubis and Guinea baboons: diverged� 0.38 Ma). Roughly
speaking, our results suggest that primate taxa can become
clearly distinguishable based on DNA methylation data after
�35,000 generations (assuming a generation time for
baboons of 11 years: Swedell 2011; Rogers et al. forthcoming),

FIG. 4. Nucleotide diversity near CpG sites is lower in lineages where
positive selection has been inferred. Log10(p) (with an offset of 0.001
to avoid undefined values) for the 1-kb window surrounding CpG
sites where DNA methylation levels are taxonomically structured,
and 1) we inferred no evidence for positive selection (pink:
n¼ 16,907 sites) or 2) where positive selection was inferred on any
baboon lineage (dark blue: n¼ 3,043 sites, based on the intersection
set of the heuristic and OU approaches for multispecies lineages and
results from the heuristic approach for single lineages). Log10(p) for
sites in dark blue are replotted in gray for lineages unaffected by
putative positive selection and in light blue for lineages putatively
affected by positive selection. Lineage-site combinations linked to
positive selection (light blue) exhibit lower local nucleotide diversity
than all other classes (Tukey’s Honestly Significant Difference test:
P¼ 1.75 � 10�8 compared with sites with no evidence of positive
selection [pink]; P¼ 0.0160 against the same sites, but with p aver-
aged across all lineages [dark blue]; P¼ 5.00� 10�9 against the same
sites, but with p averaged across nonselected lineages only [gray]). p
was calculated separately for each species prior to averaging, and is log
transformed here for visualization purposes only. Box plots show
median (black bar) and interquartile range (whiskers).
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although this rate varies by genomic context. Notably, al-
though yellow baboons and Kinda baboons diverged earlier
than anubis and Guinea baboons (�0.6 Ma, closer to when
hamadryas baboons diverged from the anubis–Guinea line-
age), global patterns of DNA methylation separate these two
southern clade species less clearly than any of the northern
clade species. This difference may reflect recent admixture in
the southern part of the yellow baboon range (Zinner et al.
2009; Keller et al. 2010), or smaller long-term effective popu-
lation sizes in the northern clade species (Rogers et al. forth-
coming). Among the northern clade species, anubis baboons
fall closest to southern clade baboons, which may also be a
consequence of hybridization: anubis baboons and yellow
baboons hybridize in Kenya today, and have likely done so
in the past as well (Alberts and Altmann 2001; Charpentier
et al. 2012; Wall et al. 2016; Rogers et al. forthcoming).

Our results are in line with emerging evidence that, in
comparisons involving clearly divergent lineages, variation
in DNA methylation levels is largely tied to variation in nearby
genetic sequence (Hernando-Herraez et al. 2013, 2015).
Specifically, DNA methylation patterns in baboons recapitu-
late phylogenetic structure, and local genomic context pre-
dicts both the rate at which DNA methylation evolves and
the probability of a past history of selection. These observa-
tions are consistent with analyses in great apes, which
revealed that interspecific differences in DNA methylation
tend to occur at loci that also contain high levels of species-
specific mutations (Hernando-Herraez et al. 2015).
Similarly, in Arabidopsis lines, interaccession differences
can largely be explained by cis-acting methylation quanti-
tative trait loci (Dubin et al. 2015). Thus, while environmen-
tal variation may be important for explaining variation in
DNA methylation within populations (Jirtle and Skinner
2007; Feil and Fraga 2012), including baboons (Lea et al.
2016), genetic effects are likely to dominate in between-
population and between-species comparisons. Indeed, in
our data set, hamadryas baboon and anubis baboon sam-
ples were obtained from multiple populations, representing
both captive and natural settings. However, despite expo-
sure to different diets and housing conditions, population
differences explained very little variance in the overall data
set (supplementary Methods, Supplementary Material
online).

Our data set also facilitates initial comparisons of DNA
methylation evolution against gene expression data sets.
Although our findings resemble those of cross-species gene
expression analyses in that they globally reproduce the species
phylogeny, they also suggest that the evolution of DNA meth-
ylation is less constrained on average. While CpG sites are
enriched in gene bodies, promoters, and CpG islands, the
majority of CpG sites in primate genomes fall in functionally
unannotated regions. Our analyses show that DNA methyla-
tion levels in unannotated regions are both faster evolving,
and, compared with all rapidly evolving sites, underrepre-
sented for signatures of positive selection (fig. 3B). Thus, while
several lines of evidence indicate that gene expression levels
for most genes are constrained by stabilizing selection, the
same pattern probably does not hold for most CpG sites. This

difference may explain why the evolution of DNA methyla-
tion levels looks more clock-like than for gene expression
(Carja et al. 2017), a pattern now observed in human pop-
ulations, Arabidopsis accessions, and here, in baboons (Becker
et al. 2011; Schmitz et al. 2011; van der Graaf et al. 2015; Carja
et al. 2017). It is also consistent with experimental studies
showing that DNA methylation levels influence gene regula-
tion at only a subset of CpG sites (Maeder et al. 2013; Ford
et al. 2017; Lea et al. 2018).

Nevertheless, we do find support for positive selection on
DNA methylation levels for a small fraction of the CpG sites
we profiled. Tests for selection on phenotypic variation have
important limitations (e.g., unknown mutational variance,
the assumption of relatively simple evolutionary scenarios:
Butler and King 2004; Gilad, Oshlack, Rifkin, et al. 2006;
Rohlfs and Nielsen 2014). However, they are still likely to
enrich for true cases of positive selection (Blekhman et al.
2008; Rohlfs and Nielsen 2014). Here, the strong enrichment
of putatively selected sites within genes and gene regulatory
elements, the overlap between two different methods for
identifying selected sites, and the identification of coherent
DMRs associated with candidate selected sites all indicate
that we have captured a set of CpG sites of interest for ba-
boon evolutionary history. Additionally, we identified a loss of
local nucleotide diversity—a purely DNA sequence-based
analysis—specifically near sites and in lineages inferred to
be affected by positive selection, in an analysis based only
on DNA methylation phenotypes.

Recent evidence shows that changes in DNA methyla-
tion can play an important role in phenotypic evolution.
For example, loss of sight in cave-dwelling tetra fish
(Astyanax mexicanus) is due to DNA methylation-
mediated repression of genes involved in eye development
(Gore et al. 2018). Our results suggest that comparative
studies of DNA methylation in recent radiations can help
identify other loci of interest, and could potentially be com-
bined with outlier scans based on other types of data (e.g.,
Bergey et al. 2016 in baboons). Notably, in baboons, we
found several large DMRs linked to genes involved in im-
munity, sensory perception, and spermatogenesis, three
categories previously identified in sequence-based scans
for selection in primates (Kosiol et al. 2008). These examples
suggest that, at least in some instances, natural selection on
gene regulation has been directed toward changes in DNA
methylation phenotypes. If so, variation in DNA methyla-
tion at candidate selected sites should functionally affect
gene expression. To the best of our knowledge, no data sets
on expression variation across baboon species currently
exist to test this prediction. However, new data sets could
complement the types of analyses reported here, or exper-
imental approaches could be leveraged to connect DNA
methylation variation with gene expression in vitro (Liu
et al. 2016; Lea et al. 2018). We anticipate that such combi-
nations of comparative, genetic, and experimental
approaches will ultimately help resolve the much-debated
role of epigenetic marks in adaptive evolution (Laland et al.
2014; Verhoeven et al. 2016).
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Materials and Methods

RRBS Data Generation, Processing, and Quality
Control
DNA methylation data were generated for 39 baboons across
five of the six recognized extant species (9 anubis, 6 yellow, 14
hamadryas, 6 Guinea, and 4 Kinda baboons; supplementary
table S1, Supplementary Material online). We also generated
RRBS data for five rhesus macaques as an outgroup. For P.
anubis samples from the Washington National Primate
Research Center (WaNPRC), P. papio from the Brookfield
Zoo, and P. hamadryas from the North Carolina Zoo, we
extracted genomic DNA using the QIAGEN DNeasy Blood
& Tissue Kit, following the manufacturer’s recommendations.
Other samples were obtained as previously extracted DNA
(see supplementary table S1, Supplementary Material online).
All DNA samples were extracted from whole blood with the
exception of 2 P. cynocephalus, 1 P. anubis, 2 P. kindae, and 1 P.
hamadryas for whom samples were obtained from banked
white blood cells. Differences in source tissue (whole blood vs.
banked white blood cells) do not contribute to any of the first
ten principal components of variation in DNA methylation
within this sample (t-test, all P-values> 0.20). Differences in
cell type composition also appear unlikely to drive species-
specific methylation levels (supplementary Methods,
Supplementary Material online).

RRBS libraries for each sample were prepared following
Boyle et al. (2012). Briefly, Illumina TruSeq barcoded libraries
were constructed using 180 ng of genomic DNA per sample.
Libraries were pooled together in sets of 10–12 samples, sub-
jected to sodium bisulfite conversion using the EpiTect
Bisulfite Conversion kit (QIAGEN), and then polymerase
chain reaction amplified for 16 cycles prior to sequencing
on the Illumina HiSeq 2500 platform. Each pooled set of
libraries was sequenced in a single lane to 17.2 million reads
per sample (SD¼ 12.8 million reads: supplementary table S1,
Supplementary Material online). To assess the efficiency of
the bisulfite conversion, 1 ng of unmethylated lambda phage
DNA (Sigma Aldrich) was added to each sample prior to
library construction.

Sequences were trimmed for adapter contamination, RRBS
end repair, and base quality using Trim Galore! (Babraham
Bioinformatics) before being mapped to the anubis baboon
reference genome (Panu2.0) using BSMAP (Xi and Li 2009).
We removed sites that overlapped genetic variants in which
one allele abolishes a CpG site found in the reference genome.
Combined with BSMAP’s three-nucleotide mapping option,
this step eliminates most heterospecific mapping biases
within Papio (supplementary Methods and fig. S7,
Supplementary Material online). The DNA methylation level
at each CpG site was calculated as the proportion of reads
with unconverted (i.e., methylated) cytosine bases to total
reads covering that site. Based on reads mapped to the
lambda phage genome, all samples had a bisulfite conversion
efficiency >98.5%, with no significant contribution of species
identity to variance in conversion efficiency (ANOVA
F¼ 1.303, P¼ 0.27; supplementary table S1, Supplementary
Material online).

After excluding sites for which data were missing for�50%
of our study subjects or for which mean coverage was <5�,
we retained 2,450,153 CpG sites for downstream analysis. As
expected for RRBS data sets, these sites were enriched in
functionally important regions of the genome and displayed
typical mammalian patterns of CpG DNA methylation (sup-
plementary fig. S1, Supplementary Material online). To focus
on the sites most likely to exhibit biologically meaningful
variation, we further excluded constitutively hypermethy-
lated (mean DNA methylation level>0.90) and constitutively
hypomethylated (mean DNA methylation level <0.10) sites
and those that were near-invariant (SD< 0.05), resulting in a
final analysis set of 756,262 CpG sites.

Where possible, we modeled DNA methylation levels as
count data (the number of methylated reads and total reads
for each site), which retains information about the uncer-
tainty in each estimate due to variation in read coverage
(Dolzhenko and Smith 2014; Sun et al. 2014; Lea et al. 2015;
Lea et al. 2017). However, because some of our analyses (e.g.,
PCA, OU models) required continuous data, we also esti-
mated DNA methylation levels as the ratio of methylated
reads to total reads within each individual for each CpG
site. Because variation in sequencing coverage can systemat-
ically bias DNA methylation estimates, for these analyses we
used the residuals of the raw ratios after regressing out site-
specific total read coverage for each individual.

Functional Element Annotations and Enrichment
Analysis
We used gene body and CpG island annotations for Panu2.0
obtained from Ensembl (Cunningham et al. 2015) and the
UCSC Genome Browser (Karolchik et al. 2014), respectively.
Gene promoters were defined as the 2-kb region upstream of
the 50-most annotated gene transcription start site (following
Deng et al. 2009; Shulha et al. 2013; Lea et al. 2015), and CpG
island shores were defined as the 2-kb regions flanking either
side of a CpG island (Irizarry et al. 2009). Because baboon
enhancer annotations are not available, we defined putative
baboon enhancers by projecting coordinates from ENCODE
H3K4me1 ChIP-seq of human peripheral blood mononuclear
cells (Dunham et al. 2012) onto the Panu2.0 genome using
the UCSC Genome Browser liftover tool (Hinrichs et al. 2006).

Gene ontology (GO) enrichment analyses were performed
using the Cytoscape module ClueGO (Bindea et al. 2009). To
link differentially methylated sites to genes, we first identified
clusters of CpG sites with similar patterns of differential meth-
ylation (DMRs). We called DMRs when�3 CpG sites within a
2-kb window exhibited the same type of lineage-specific
change (e.g., hypomethylation in hamadryas baboons), and
bounded the DMR by the first and last CpG site that exhib-
ited lineage-specific methylation. We then collapsed overlap-
ping DMRs. We assigned a DMR to a gene when a CpG site
within the DMR fell within 10 kb of the gene body. To test for
gene set enrichment, we analyzed GO Biological Processes
that fell between levels 3 and 8 of the GO tree, included at
least four genes in our data set, and for which at least 5% of
genes assigned to the term were present in the test set. We
also collapsed GO parent–child terms with at least 50%
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overlap. Enrichment analyses were corrected for multiple hy-
pothesis testing using the Benjamini–Hochberg method
(Benjamini and Hochberg 1995). Gene set enrichment anal-
yses for DNA methylation data can be biased if some gene
sets are systematically associated with larger numbers of CpG
sites than others (Geeleher et al. 2013). However, in our data
set, genes associated with differentially methylated sites were
not associated with more tested sites than other genes (lo-
gistic regression: z¼ 0.032, P¼ 0.983).

Covariance between Genetic Structure and DNA
Methylation Patterns
To assess the relationship between phylogenetic structure
and DNA methylation patterns in our data set, we conducted
PCA in R (version 3.2.5; R Core Team 2016) on the scaled
variance–covariance matrix of the DNA methylation level
data. We ran the PCA both including and excluding the rhe-
sus macaque samples, and in baboons after subsampling to
the same number of individuals per species (n¼ 4; fig. 1A and
B, and supplementary fig. S2, Supplementary Material online).

To test the correlation between DNA methylation levels
and pairwise genetic distance between samples, we used
Mantel tests. We called genotypes from RRBS data for
49,607 biallelic single nucleotide polymorphisms (see supple-
mentary Methods, Supplementary Material online) and cal-
culated the pairwise genetic covariance. We then compared a
genotype-based covariance matrix with the pairwise covari-
ance of DNA methylation profiles using the R package vegan
(Oksanen et al. 2016), stratified by both functional compart-
ment (gene, enhancer, CpG island, CpG shore, promoter,
unannotated) and mean methylation level (fig. 2A). We
also tested whether windows of the genome where genetic
structure followed an alternate phylogeny (a consequence of
incomplete lineage sorting or admixture) exhibited a lower
correlation between genetic and DNA methylation covari-
ance (see supplementary Methods, Supplementary Material
online).

Finally, to investigate the relationship between DNA meth-
ylation divergence and genetic divergence between species,
we retained CpG sites for which each species was represented
by at least three individuals and a total (across individuals) of
at least ten reads (n¼ 438,713 CpG sites). We calculated the
mean DNA methylation level per species for each retained
CpG site and the difference in mean methylation between
each species pair. We then tested whether divergence time
(based on Rogers et al. forthcoming for baboons and
Perelman et al. 2011 for baboon–macaque) predicted the
Euclidean distance between species using a Mantel test.

Lineage-Specific Changes in DNA Methylation
For sites in which clade or species significantly contributed to
variance in DNA methylation levels (n¼ 20,360 taxonomi-
cally structured sites, identified using ANOVA and a 10% FDR
threshold), we tested for lineage-specific shifts using the beta-
binomial model implemented in the program MACAU (Lea
et al. 2015). We tested each species for differences in DNA
methylation level when compared with all other baboons and
we also tested whether southern clade baboons had different

methylation levels than northern clade baboons. For each
comparison and CpG site, we considered the model:

yi ¼ Binðri; piÞ; (1)

where ri is the total read count for ith individual, yi is the
methylated read count for that individual, and pi is an un-
known parameter that represents the true methylation level
for that individual at the site of interest. MACAU then uses a
logit link to model pi as a function of the predictor variable of
interest (here, species or clade membership):

log
pi

1� pi

� �
¼ xibþ wi

Taþ ei;

e ¼ ðe1; . . . ; enÞT � MVNð0; r2IÞ;
(2)

where wi is a vector of fixed effect covariates including an
intercept and the sample-specific bisulfite conversation rate;
a is a vector of coefficients for wi; xi represents species or clade
membership coded as 1 (for the taxon of interest) or 0 (for
any other taxa) and b is the coefficient for the effect of tax-
onomic membership; e is an n-vector of independent residual
error with variance r2; and I is an n-by-n identity matrix. We
did not model genetic nonindependence in this analysis; thus,
the K matrix input to MACAU was an identity matrix.

In addition to a 10% FDR threshold (q-value: Storey and
Tibshirani 2003, here based on a comparison to a
permutation-based empirical null), we required a minimum
difference of 10% in mean methylation between either 1) the
focal species compared with all other species, for species-level
shifts, or 2) for all pairwise comparisons between northern
clade and southern clade species, for clade-level shifts. We
assigned clade-level shifts to one of the two lineages based on
post hoc comparison to rhesus macaques. For example, we
assigned a shift to the northern clade when there was a mean
difference in DNA methylation of �10% between northern
clade baboons and macaques, but not between southern
clade baboons and macaques.

Identification of Candidate Directionally Selected Sites
To test for positive selection using the heuristic approach, we
first calculated the intraspecific variance for each of the
756,262 CpG sites in our primary data set, after mean-
centering DNA methylation levels for each species. We
then binned the CpG sites into 5% quantiles based on
mean methylation level, and retained sites with intraspecific
variance in the lowest 10% quantile for each bin. We inter-
sected these low-variance sites with the set of sites that
exhibited species- or clade-specific methylation, based on
the criteria outlined for identifying taxonomic structure
with ANOVA followed by binomial mixed modeling. This
intersection set is likely to be enriched for a history of positive
selection.

As an alternative approach, we fit OU models of the evo-
lutionary process, based on the phylogenetic tree for baboons
(Rogers et al. forthcoming). In OU models, trait evolution is
modeled as the sum of stochastic and deterministic forces,
with parameters for the strength of selection, the strength of
genetic drift, and the trait optimum. In addition, because
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these models assume that phenotypes have a continuous
distribution, we transformed DNA methylation levels using
a logit link function. A basic OU model has the form:

dx � aðh� xÞ þ rW; (3)

where dx captures the continuous rate of change in the trait
value x, a represents the pull toward the optimum trait value
h, r is the rate of neutral drift, and W is distributed normally
with variance corresponding to the amount of independent
evolutionary time, dt. For multiple species m, the OU process
can be written as a multivariate normal distribution:

X � MVN l;
r2

2a
R

�
;

�
(4)

where l is an m-by-1 vector of hj, the optimum trait values
for species j. R captures the covariance between species and is
determined by the phylogenetic covariance, Rphylo, and a
such that the covariance between species j and k, Rj;k, is given

by exp
�
�2að1� Rphyloj;k

Þ
�

. To incorporate intraspecific

variance into the OU process, which increases the power to
identify true instances of positive selection (Rohlfs and
Nielsen 2014), the vector l is expanded to an n-by-1 vector
where each element, hi, is equal to hj for the species j to
which individual i belongs. The covariance matrix R is
replaced by the n-by-n covariance matrix between individuals,
with a new parameter s2 added to the diagonal of the co-
variance matrix to take into account within-species variance.

Different evolutionary regimes correspond to different OU
process parameter values. Values of a at or near 0 correspond
to genetic drift (no pull toward an optimum trait value), while
nonzero values of a indicate a history of selection. If a > 0
and h is constant across lineages, the trait has evolved under
stabilizing selection. If a > 0 and h varies between lineages,
the trait has evolved under directional (positive) selection on
at least part of the phylogenetic tree. We therefore used
Akaike information criterion to compare five OU models
for each CpG site in which species or clade membership sig-
nificantly contributed to DNA methylation variation based
on ANOVA (see Results: Selection on DNA Methylation
Patterns in Baboons and supplementary Methods,
Supplementary Material online, for simulation results on
power to detect selective shifts).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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