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Dynamic network coding of working-memory
domains and working-memory processes
Eyal Soreq 1, Robert Leech 2 & Adam Hampshire1

The classic mapping of distinct aspects of working memory (WM) to mutually exclusive brain

areas is at odds with the distributed processing mechanisms proposed by contemporary

network science theory. Here, we use machine-learning to determine how aspects of WM are

dynamically coded in the human brain. Using cross-validation across independent fMRI

studies, we demonstrate that stimulus domains (spatial, number and fractal) and WM

processes (encode, maintain, probe) are classifiable with high accuracy from the patterns of

network activity and connectivity that they evoke. This is the case even when focusing on

‘multiple demands’ brain regions, which are active across all WM conditions. Contrary to

early neuropsychological perspectives, these aspects of WM do not map exclusively to brain

areas or processing streams; however, the mappings from that literature form salient features

within the corresponding multivariate connectivity patterns. Furthermore, connectivity pat-

terns provide the most precise basis for classification and become fine-tuned as maintenance

load increases. These results accord with a network-coding mechanism, where the same

brain regions support diverse WM demands by adopting different connectivity states.

https://doi.org/10.1038/s41467-019-08840-8 OPEN

1 The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, London W12 0NN, UK. 2 Centre
for Neuroimaging Sciences, Institute of Psychiatry, Kings College London, London SE5 8AF, UK. Correspondence and requests for materials should be
addressed to E.S. (email: e.soreq14@imperial.ac.uk)

NATURE COMMUNICATIONS |          (2019) 10:936 | https://doi.org/10.1038/s41467-019-08840-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4809-4889
http://orcid.org/0000-0003-4809-4889
http://orcid.org/0000-0003-4809-4889
http://orcid.org/0000-0003-4809-4889
http://orcid.org/0000-0003-4809-4889
http://orcid.org/0000-0002-5801-6318
http://orcid.org/0000-0002-5801-6318
http://orcid.org/0000-0002-5801-6318
http://orcid.org/0000-0002-5801-6318
http://orcid.org/0000-0002-5801-6318
mailto:e.soreq14@imperial.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


It is well-established that human working memory (WM) is
behaviourally complex, comprising dissociable systems for
temporarily maintaining different types of information in

mind1,2 and mechanisms for selectively attending and trans-
forming that information3,4. A major aim of early functional
imaging research was to map these distinct aspects of WM onto
the brain. Initially, a localist framework was applied, which
sought to understand WM in terms of discrete brain circuits,
where each neuroanatomical component was ascribed a specific
function5,6. WM stages, including encoding7, maintenance8 and
probe9, WM demands, including maintenance load10–13 and
mental manipulation7,14, and WM domains, including spatial,
object or numeric5,15,16, were attributed to dedicated brain
regions and processing streams17.

More recently, advances in connectivity methods have moti-
vated a paradigm shift towards a network-coding perspective,
where cognitive processes are considered emergent properties of
interactions that occur across different widespread coalitions
of brain regions18–24. From this perspective, the localist frame-
work is too simplistic because WM functions map to underlying
brain systems in a many-to-many as opposed to one-to-one
manner25,26. This notion of network coding has gained rapid
support26,27; however, it remains unclear how aspects of WM that
are known to be behaviourally distinct1–4 map within the mul-
tivariate network space. Furthermore, there is a need to reconcile
the network perspective with the robust evidence of mutually
exclusive localist mappings of WM functions, as provided by the
early-brain imagining literature5–17.

We addressed these issues by developing a multivariate
machine-learning pipeline to examine how patterns of brain
activity and connectivity dynamically changed during the per-
formance of two novel fMRI tasks that were designed to probe
distinct aspects of WM function9,28–31. We tested key predictions
of the network perspective while seeking to understand how
evidence of classic localist mappings can coexist with it. To avoid
bias all analyses were data driven and to ensure reproducibility
the results were robustly confirmed across datasets from inde-
pendent studies. We predicted that: (1) No brain region or con-
nection would be involved exclusively in one or other aspect of
WM. (2) WM stages (encode, maintain, or probe) and domains
(spatial, number or fractal) would be reliably classifiable from
the multivariate patterns of brain activity and connectivity
that they evoked. (3) Classification accuracies for these aspects of
WM would be significant even when focusing on ‘Multiple
Demand Cortex’, i.e., the set of brain regions that is most con-
sistently active across cognitive conditions32,33. (4) Classic localist
mappings such as dorsolateral and left lateralised frontal cortex
involvement in spatial and number WM would be evident as
non-exclusive features within these multivariate patterns. (e)
Conditions that affect WM difficulty, e.g., maintenance load,
would relate most closely to network dynamics11–13 as opposed
to regional brain activity34,35. Our results strongly support the
network-coding perspective, provide new insights into the
underlying mechanisms of WM and demonstrate how models of
the early localist literature may be reconciled.

Results
Task design and behavioural results. The behavioural task
designs are detailed in Fig. 1. In brief, during Study 1, participants
were presented with arrays containing numbers and fractals
displayed at a subset of spatial locations within a 4 × 4 grid. They
had 10 s to encode the items from one of these three-dimensions
and then maintained that information for a further 10 s delay.
Subsequently, a probe array was displayed that differed with
respect to one number, one fractal-pattern and one location.

Participants identified the non-matching item from the main-
tained domain. A 10 s inter-stimulus-interval (ITI) separated the
next trials. The number of items from each dimension (WM load)
was 3, 5 or 7.

Accuracies (Supplementary Tables 1, 2 and Supplementary
Figure 1) were examined in a 3 × 3 (load × domain) repeated-
measures ANOVA. Mean accuracy was 91.13% ± 6.31 SDs. There
was a significant main effect of load (F(2,36)= 11.85 p < 0.001) with
lower accuracy at high load (high < low t= 4.859, p < 0.001; high <
medium t=−3.03, p < 0.018). The main effect of domain and
load × domain interaction was non-significant. Reaction times (RT)
(Supplementary Tables 3, 4 and Supplementary Figure 2) were
examined in a model of the same structure. Median reaction times
(RT) (correct trials only) were 3.637 s ± 1.54 SDs. There were
significant main effects of load and domain (load F(2,36)= 168.59,
p < 0.0001; domain F(2,36)= 24.5, p < 0.0001), and a significant
load × domain interaction (F(4,72)= 4.508, p < 0.005). RTs increased
with load (t low <med=−10.7, p < 0.0001; t low < high=−16.3,
p < 0.0001). Fractal and number trials were slower than location
trials (t location < number=−5.38, p < 0.001; t location < fractal=
−5.88, p < 0.001).

Study 2 used the same task design, except that (1) only
numbers were displayed on the grid (2) there were two levels of
WM load (3 & 6) and (3) a retro-cue indicating either ‘maintain’
or ‘manipulate’ preceded the maintenance period. In the
manipulate condition, participants transformed the information
by spatially rotating the positions 90 degrees clockwise or
incrementing each number by 3. The retro cue was pseudo-
randomised to ensure that encoding demands matched across the
maintain and manipulate trials.

Accuracies (Supplementary Tables 5, 6 and Supplementary
Figure 3) were examined in a 2 × 2 × 2 (manipulation × domain ×
load) repeated-measures ANOVA. Mean accuracy was 84.24%± 8.5
SDs. There was a significant main effect of load (F(1,15)= 43.2,
p < 0.0001) and a significant load × domain interaction (F(1,15)= 5.29,
p < 0.04) with accuracy for number trials lower during high-load. RTs
(Supplementary Tables 7, 8 and Supplementary Figure 4) were
examined in a model of the same structure. Median reaction times
(RT) (correct trials only) were 3.937 s ± 1.26 SDs. There was a
significant main effect of load and a significant load × domain
interaction (F(1,15)= 74.26, p < 0.0001; F(1,15)= 17.05, p < 0.001). RTs
increased as a function of load (t= 8.60, p < 0.0001), and RTs for
number and location trials under low load were slower relative to
high load (t= 9.17, p < 0.001; t= 4.7, p < 0.001). There were no
significant effects of manipulation and no other significant interac-
tions. Together, these results show that participants were able to
perform both tasks with high accuracy and that there were the
expected costs of WM load on performance.

Mapping multiple demand brain regions. Single subject general
linear models capturing voxel-wise changes in activity were
constructed using a mini-block design (Fig. 1e), in which each
stage (e.g., cue, encode, maintain, probe) of each trial was cap-
tured by a separate predictor, alongside nuisance covariates.
Conjunction analyses36 (i.e. logical AND, Fig. 2a, d) were con-
ducted to identify regions that were consistently active across
different WM conditions (i.e. stimuli domains and processing
stages). To identity brain areas that were jointly active for all
domains (Domain General—DG) we performed a conjunction
between the number, fractal and location trials using parameter
estimates averaged across WM stages and loads. The resulting
activation pattern resembled the brain volume commonly refer-
red to as ‘Multiple Demand Cortex’32,33 (Fig. 2b). To identify the
subset of DG regions where activity was sustained during all three
stages (e.g., encode, maintain and probe) a second conjunction
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was performed using parameter estimates averaged across WM
domains and loads. We refer to the resultant map as Stage
General (SG) (Fig. 2c). This division of DG into SG and non-SG
produced a distinct separation between areas that were active for
specific processing stages, including primary, secondary, asso-
ciative visual cortex, motor areas and bilateral thalamus, and
areas that were active for all stages, which included, lateral frontal
and parietal cortices, anterior insula and thalamus. Finally, we
confirmed the reproducibility of the DG and SG conjunctions
across the two studies by calculating dice coefficients, which
provide a binary estimate of similarity between the patterns of

activation. High correspondences were evident: DG= 0.80 and
SG= 0.76.

Regions of interest analysis. To reduce computational load
voxels within the brain were combined as regions of interest. This
data-reduction step is important for network connectivity ana-
lyses which produce a high number of features per node37. Key
predictions pertained to Multiple Demand Cortex; therefore, we
used a custom three-dimensional variant on the watershed
algorithm38 to parcellate the SG and DG-conjunction maps from
Study 1 into discrete activation clusters comprising 20 and 33
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Fig. 1 Study and task design. Participants undertook three runs of the task consisting of contiguous sequences of WM trials presented in pseudo-randomised
order. a Each trial in Study 1 had four processing stages. (1) A pre-cue informed the participant to encode either numbers, fractals or spatial locations. (2) An
array was displayed containing numbers and fractal patterns co-located within a 4 × 4 grid. The participant had 10 s to encode the stimuli from the cued
domain. (3) The stimuli were replaced with a fixation cross that was displayed for 10 s. The participant maintained the encoded information in WM during
this delay. (4) The stimulus array reappeared with one item from each domain (number, fractal and location) changed. The participant tried to identify the
cell that contained the changed item from the maintained domain. b The trials differed according to cued stimulus domain and number of items (3, 5 or 7)
per domain (load) in a 3 × 3 factorial design. c Study 2 differed in three ways. (1) There were two stimulus domains—numbers and spatial locations. (2)
There were two levels of WM load (3 vs. 6). (3) A retro-cue was displayed at the start of the maintenance period. On 50% of trials this informed the
participants to maintain the encoded information. On the other 50% it instructed them to manipulate that information, i.e., by mentally rotating the encoded
spatial positions 90 degrees clockwise or adding 3 to encoded numbers. d The trials differed according to cued stimulus domain, number of items per
domain and requirement to manipulate in a 2 × 2 × 2 factorial design. e The trials were separated by a 10 s inter-trial-interval (ITI). Measures of activity and
connectivity were calculated separately for each trial, stage and participant; these data formed the input to the machine-learning pipeline
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ROIs respectively (Supplementary Tables 9, 10). For complete-
ness, we also conducted analyses with an established whole-brain
(WB) parcellation39 covering the entire brain with 268 ROIs
(Supplementary Table 11).

Unsupervised clustering based on ROI activity. Hierarchical
clustering40 was used to simultaneously group in a data-driven
manner the DG ROIs according to similarity of their activation
profiles across WM conditions, and the WM conditions accord-
ing to similarity of their associated patterns of activation across
the DG ROIs. This analysis demonstrated high dissociability of
WM stages (Fig. 2e, Total Purity= 94.01% see methods) relative

to WM domains. There was an interpretable fractionation of the
DG ROIs into five distinct clusters corresponding to (1) fronto-
parietal, (2) somatomotor, (3) associative visual, (4) primary
visual and (5) insula, putamen and thalamus (Fig. 2f). Activity
was generally lower during maintenance relative to encoding or
probe, and this effect was particularly pronounced for the visual
clusters41. To examine the dominant natural structure of the data
more holistically, t-Distributed Stochastic Neighbour Embed-
ding42 was used to group all mini-blocks in a data driven manner
based on the patterns of activation across the WB ROIs. This
analysis again demonstrated that the mini-blocks clustered most
strongly in both studies according to processing stage (Fig. 2g).
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This dominance of WM stage is expected given the task design,
because the stages differ according to the visual and motor
demands of the task.

Maintenance evokes a low-activity high-connectivity state. To
further investigate the lower activity observed during main-
tenance, ROI activations and functional connectivity (FC) esti-
mates from generalised psychophysiological interaction
models28,30 (PPI) were averaged across regions and connections
(Fig. 3a) for each ROI cluster during the encoding and main-
tenance stages of the task. The frontoparietal ROIs were con-
sistently active during both encoding and maintenance relative to
the inter-trial interval (ITI); whereas, the visual ROIs were more

active during encoding than the ITI but not during maintenance
(Fig. 3b & Supplementary Table 12). In contrast, intra-cluster
connectivity (i.e. averaged for all connections within each cluster),
as well as inter-cluster connectivity (i.e. averaged for all connec-
tions between clusters), were significantly increased for all clusters
(p < 0.001) during both encoding and maintenance relative to the
ITI; this was the case for the frontoparietal and the visual clusters
(Fig. 3c & Supplementary Tables 13, 14). Differences in the
strength of intra-cluster connectivity between encoding and
maintenance were small/negligible in the frontoparietal and the
visual areas, although the latter were somewhat variable across
studies (Supplementary Table 15). Inter-cluster connectivity was
substantially stronger during encoding than maintenance,
although it was significantly greater than resting baseline for both
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(Supplementary Table 16). Thus, WM maintenance is char-
acterised by heightened frontoparietal activity and a stable con-
nectivity state throughout the broader WM network.

Load-related effects during maintenance. If the maintenance of
WM information related to frontoparietal and visual functional
connectivity, then higher maintenance load should have primarily
affected inter- and intra-cluster FC during the maintenance
period. We tested this by comparing changes in mean activity, as
well as intra- and inter-cluster FC during the maintenance stage
relative to the ITI. In accordance with our prediction, mean
activity across the DG ROIs was insensitive to higher WM load
during the maintenance period (F2,3,6= 0.75, p > 0.43). Analysis
of individual ROIs (Bonferroni-Holm corrected) showed load-
related increases (p < 0.0001) during maintenance amongst a
limited subset of brain regions. These included the superior and
inferior parietal, precentral, insula and supramarginal cortex
ROIs (Supplementary Table 17). In contrast, there was a robust
global increase at higher load in intra-FC (F2,3,6= 22.55, p <
0.0001) (Fig. 3e, Supplementary Tables 18–26). Study 2 showed
the same effect (t15= 2.71, p < 0.0161).

To determine whether a specific subset of connections was
upregulated at higher load regardless of domain, a mass
univariate analysis was conducted, in which a general linear
model comprising domain and load main effects, and their
interaction was fitted to each connection. When analysing entire
trials (Fig. 4a), significant domain main effects (Fig. 4b) were
evident focused on the intra-connections of the frontoparietal
ROI cluster along with connections to associative visual and
motor ROIs. Load effects were primarily evident for the
connections between visual ROIs and their connections to the
frontoparietal and insula ROIs. Connections showing a significant
interaction between load and domain were more evenly
distributed throughout the network. Critically though, when
examining data from the maintenance (Fig. 4c) stage, i.e., when
there were no differences in the visual stimuli on screen, no main
effects of load were evident; instead, there were main effects of
domain, and domain by load interactions. These were focused on
connections within the frontoparietal ROIs and intra-connections
of frontoparietal and visual ROIs. These results accord with the
expected prominent role for frontoparietal connections in WM
maintenance. They also demonstrate that increased maintenance
load leads to selective upregulation of different combinations of
connections, i.e., dependent on the type of information that is
being maintained.

Decoding processing stages. As WM stages showed strong
separation in the hierarchical cluster analysis, we expected that
multivariate pattern analysis would categorise WM stages with
high-accuracy based on either activity or connectivity. A three-
way classifier was trained on data from Study 1. The accuracy of
the classifier model was determined by applying it to a cross-
validation holdout subset from Study 1 and data from Study 2, to
which it was naïve. This process was repeated for different ROI-
sets (i.e. a whole-brain parcellation of another group (WB)39, or
focused on the DG and SG ROIs). Classification of processing
stages based on multivariate activation (AccWB= 90.89;AccDG=
91.37;AccSG= 75.89) (Fig. 4e) and connectivity (AccWB= 81.18;
AccDG= 87.58;AccSG= 76.13) (Fig. 4f) patterns was of extreme
high accuracy compared to the null models. This was the case for
all ROI sets. Comparing models for different ROI-sets showed
that the SG ROIs provided a less accurate classification than
either the WB or DG sets (p < 0.001). This suggests, that while the
connectivity within the SG-volume is sufficient to decode stages
accurately, there is significant additional information within other

brain areas (e.g., visual and motor) of the DG volume (Supple-
mentary Tables 27–30).

Decoding visual domains. The hierarchical clustering showed
only weak dissociations between the WM domains; however, the
mass univariate analysis showed domain sensitivity of selected
connections, which could indicate multivariate coding of
domains. We tested whether the domains could be decoded based
on the activity or connectivity patterns from any of the ROI sets
(WB, DG and SG) during maintenance, i.e., where visual and
motor demands were carefully controlled in the task design. The
same process was applied as per analysis of the processing stages,
with classifiers trained on data from Study 1, then applied to
holdout data from Study 1 and data from Study 2, to which they
were naive. Remarkably, the classification accuracies for WM
domains were comparable to those for the WM stages for ROI
activation patterns (AccWB= 91.75;F1DG= 70.6;F1SG= 75.2)
(Fig. 4e) and connectivity patterns (AccWB= 87.9;F1DG= 85.8;
F1SG= 83.6) (Fig. 4f). Post-hoc comparisons showed that added
information contained in the WB ROI-set significantly (p < 0.001)
improved classification compared to both DG and SG sets
(Supplementary Tables 31, 32).

Increased accuracy of decoding at higher WM load. A key
prediction of the network perspective was that the connectivity
state of the WM network would become more synchronous at
higher load. To test whether this led to more discriminable
domains, the classifiers were applied to data stacks comprised of
single trial connectivity and activity measures, and accuracy was
compared across levels of load during the maintenance stage. The
results showed that even when applied to the single trial data,
regardless of ROI set or metric, the visual domains could be
classified with significant accuracy relative to the permutation null
distributions (mean accuracy= 68.2%). More importantly, classi-
fication was substantially more accurate for both medium and
high load compared to low load, regardless of measure (activity or
connectivity) and for both studies. Therefore, as maintenance load
increased, domain-related activation (Fig. 4g), and to a greater
degree connectivity patterns (Fig. 4h), became more discriminable
(both p < 0.001, Supplementary Tables 33–40). These results
accorded with the observation of domain*load interactions in the
above mass-univariate analysis.

Stage-general and stage-specific coding of WM domains. We
investigated the degree to which features of the domain-specific
patterns of activation and FC were sustained across processing
stages. We separated events by stage and estimated the domain
classification performance distribution for a global model trained
on a subset of data taken from all stages and tested against the
replication set. The results showed that the regional activity and
dFC patterns that encode WM domains classification generalised
across stages, i.e. across stages a similar pattern differentiates
domains (mean global accuracy= 76.34%, Fig. 4i. p < 0.0001, see
Supplementary Tables 41, 42). We then examined whether
domain states were ‘stage specific’, i.e., there are states that
expressed predominantly during a specific processing stage and
coded for the different domains. To test this, we trained domain
classification models on a subset of data from each individual stage
(i.e. Encode, Maintain and Probe) and tested these models on
events from all stages from the held-out and replications sets
(Fig. 4j).

Each stage-specific model has events that match the stage it
was trained on as well as mismatch events. Therefore, we
examined (for each set and metric) the averaged performance
for match and mismatch events. In general match events
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Fig. 4 Decoding domains across experimental factors. a Mean functional connectivity matrices for the WM domains and loads collapsed across stages in
Study 1. Visual inspection of these plots indicated upregulation of connectivity as a function of load. b Mass univariate analyses including data from both
studies and collapsed across WM stage showed connections with significant main effects of load and domain, and significant load × domain interactions.
Note, the significant effects of load centre on intra- and inter-connectivity of the visual ROIs. Repeating this analysis for the maintenance stage only
(c) showed significant main effects of domain and domain × load interactions. Critically, when the effects of visual input were controlled in this manner,
there were no main effects of load. Significant interactions centred on the intra and inter-connectivity of frontoparieal ROIs. (FDR corrected at p < 0.01).
d Machine-learning pipeline. Data from Study 1 were partitioned into ten different cross-validation subsets. Training data were bootstrapped with
replication 100 times to form training and validation sub-partitions. These data were used to form both true and null models across participants (i.e.,
scrambling the training labels). All data from Study 2 were assessed across studies. performance histograms for both activity (e) and connectivity (f) for
decoding domains, and stages showed high accuracy for real (yellow, green and orange) vs null (grey) models. g, h Classification of domains based on DG
ROI activation (g) and connectivity (h) was significantly better at high relative to low WM load. i, j Domain classification models trained using events from
all stages generalised well for both activity and functional connectivity. Notably though, training models using a specific stage a significant reduction in
classification accuracy when testing events from stages that mismatched the model for connectivity but not activity. This accorded with some stage-
specific coding of domains in the dynamic connectivity state of the network
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exhibited significantly (Supplementary Table 43) higher
accuracy (Accmatch= 74.16%) than the mismatch counterparts
(Accmismatch= 58.74%). Interestingly, activation-based models the
differences between match and mismatch (Accmatch= 70.1%,
Accmismatch= 61.76%) were less pronounced than for models
trained using connectivity (Accmatch= 78.2%, Accmismatch=
58.75). Importantly, in both the DG and SG sets, stage-specific
accuracy significantly out-performed global accuracy (tDG(18)=
6.14, tSG(18)= 7.02, p < 0.0001). These results demonstrate that
domain × stage interactions are coded in network connectivity
as opposed to activity. It also indicates a particularly prominent
role for frontoparietal-visual connections in the coding of
domain × stage conjunctions.

Contrasting manipulation vs. maintenance. Several studies
from the classic literature reported a dissociation between lateral
frontal lobe areas involved in the maintenance and manipulation
of WM items2,14. We tested the classifiability of maintenance and
manipulation events from Study 2 using a liberal within-study
cross-validation pipeline (i.e. leave three subjects out 10 times and
estimate classification accuracy based on the mean distribution of
this subset). Classification accuracy was not significantly higher
than the permutation null distribution for models trained on
activation patterns or FC patterns for the DG, SG or WB ROI
sets (Supplementary Tables 44, 45). Notably, repeating the same
within-study pipeline to WM stages and WM visual domains
generated highly significant results. This null-finding was unex-
pected; therefore, we conducted a timecourse analyses focusing at
finer temporal grain on the activation timecourses of four 5 mm
radius spherical ROIs placed at the peak dorsolateral frontopar-
ietal coordinates from a classic study of WM manipulation43.
Analysing the difference in activity at the end of the manipulation
vs. maintenance periods (where the haemodynamic response
should be close to peak) showed the expected manipulation-
related increase in activation (t= 3.93 p= 0.001) when averaged
across all four ROIs (Fig. 5a, b). Repeating this analysis for
individual ROIs showed the same effect in all cases (left parietal
t= 2.75 p= 0.015; right parietal t= 2.63 p= 0.019; left frontal
t= 3.15 p= 0.007; right frontal t= 2.17 p= 0.047). In contrast,

there were no significant effects at the end of the encoding period
(all p > 0.3), i.e., just prior to the retro-cue. Plotting the full FIR
timecourse for each condition showed that these effects of
manipulation were overshadowed by larger effects of load and
domain (Fig. 5c–e). This result accords with the view that the
brain regions that are most closely associated with manipulation
demands also have broader roles in WM43.

Characterising spatial topologies with sparse models. We
inspected the features that contributed most prominently to
classification of WM domains to compare them with predictions
from the classic localist literature. Regularised sparse models were
trained44 with whole-trial data from the DG and WB ROIs. This
approach estimates the limited set of connections required for
accurate classification of each domain along with a weighting
matrix for those connections and a bias term (Fig. 6a, d). Notably,
in both ROI sets the sparse models performed as well as the
dense models. Back projecting the feature weightings for number
WM rendered a left lateralised network, including connections
spanning visual, parietal, temporal and posterior frontal ROIs.
Spatial WM, included a dorsal network spanning inferior parietal
cortex, motor cortex and posterior/dorsal frontal cortex ROIs.
Fractal WM included right lateralised connections between the
ventral visual association areas and projecting between visual,
parietal and more ventral frontal cortex ROIs. The overall topo-
graphies of these projections were consistent across ROI sets
albeit comprised of different connections and critically, they were
comparable to those expected based on the classic literature.
Nonetheless, further inspection (Fig. 6c, f) of the effect of WM
maintenance relative to the ITI showed that none of the con-
nections were exclusively active for just one domain. Instead, they
were generally active for all domains relative to the resting ISI,
but most strongly for different domains. Thus, WM domains
mapped to densely overlapping patterns of connections as
opposed to mutually exclusive networks.

Discussion
Our results provide converging evidence to support the network-
coding perspective on human WM function (Fig. 7).
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Behaviourally distinct aspects of WM including stimulus domains
and processing stages evoked strongly dissociable multivariate
patterns of activity and connectivity across heavily overlapping
brain networks. These aspects of WM were classifiable with
remarkably high accuracy even when analysing the SG ROIs,
which had the broadest roles as they were active across all con-
ditions. Furthermore, the finer grained domain by stage con-
junctions were coded by connectivity but not activity patterns.
Moreover, the effects of maintenance load on network con-
nectivity were characterised by heightened classifiability of sti-
mulus domains, and at the mass-univariate level load by domain
interactions as opposed to load main effects. This accords with a
fine-tuning of the network towards a domain-optimised state
when the difficulty of the WM task increased. Critically, these
task-evoked brain states were consistent across participants and

independent studies. Therefore, they reflect on a fundamental
level how human brain networks are organised to flexibly support
diverse WM demands.

On the surface, the notion of a dynamic network coding
mechanism can seem incompatible with early localist models of
the brain-imaging and neuropsychological fields. This is proble-
matic because much of the neuroimaging field is dominated by
localist mappings; indeed, in some cases they have been replicated
across multiple studies and groups16. The central aim of our
study was to determine whether the localist and network fra-
meworks could be reconciled. Based on our results, we argue that
this is clearly achievable. More specifically, different conclusions
have been drawn from our and previous studies because of two
main factors. First, previous studies have typically used WM tasks
that are designed to contrast limited numbers of WM conditions.
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Fig. 6 Sparse model’s anatomical projection. Projections (a) and schemaballs (b) of weightings for the sparsified classification model of stimulus domain,
generated from whole-trial data of the DG ROI set. GLMnet identified the minimal subset of connections required for accurate classification of each
stimulus domain along with weightings and bias terms. Lines represent the weightings of connections for each WM domains as follows: orange= position,
green= number and purple= fractal. c Schemaball of t-values for maintenance of each domain relative to the ISI. Thresholded at p < 0.05 with FDR
correction for multiple comparisons. Note, none of these connections, which contributed the most information for classification of the stimulus domains,
was active for a single stimulus domain exclusively. d Repeating the sparsification analysis with the whole-brain ROI set generated comparable results in
terms of the gross topography of position, number and fractal connectivity patterns (e). f As per the DG ROI set, the connections within the whole-brain
that contributed the most information for classification of domains were generally active for multiple domains during maintenance
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For example, contrasting WM for object vs. spatial stimuli45,
encoding vs. maintenance46, maintenance vs. manipulation43, or
low vs. high load47. Such designs when applied in unconstrained
whole-brain analyses give the illusion of one-to-many functional-
anatomical mappings, i.e., where discrete circuits or processing
streams are dedicated to the WM function that is being studied.
When coupled with hypothesis driven analyses that focus on
limited volumes of the brain, for example, the lateral frontal
cortices, this problem is exacerbated because it leads to the illu-
sion of one-to-one mappings, where a single functional anato-
mical module is exclusively ascribed the function of interest (see
refs. 20,25,26 for reviews).

Here, we applied a more holistic analysis approach, designing
multifactorial tasks that enabled a broad range of behavioural
conditions to be contrasted25,48, and using data-driven analyses
that were not biased by assumptions regarding how those con-
ditions map onto the brain. Notably, in our dataset, conducting
simple subtractive contrasts between any given pair of conditions
in isolation would have produced the illusion of mutually
exclusive or modular brain systems; conversely, in the context of
the broader findings these mappings were shown to be many-to-
many as opposed to mutually exclusive. Given the broad cognitive
scope and lack of spatial constraints in our study, we find it
reassuring that the findings reported in the localist literature were
not exposed as incorrect per se; instead, in all cases they were

recast as salient features of the densely distributed heavily over-
lapping multivariate activation and connectivity patterns that
characterise different aspects of WM.

Prominent incongruences between localist models were also
reconciled when recast within the network framework. For
example, a debate of the early literature regarded whether dorsal
and ventral modules within the lateral frontal cortices had spe-
cialised roles in visual and spatial WM6, an extension of the
putative ‘what vs. where’ visual processing streams49, or instead
were responsible for applying-specific processes to information of
any type, e.g., maintaining/monitoring vs. manipulating infor-
mation in WM2,3,14,43. When taking a multivariate view, our
analyses show evidence for both mappings during the perfor-
mance of the same task. Trials where spatial locations were
encoded and maintained could be classified based on increased
connectivity through a dorsal network dominated by visual,
parietal and posterior frontal areas. Fractal trials were classified
based on increased connectivity throughout a ventral network
spanning visual processing streams and projecting to more
inferior frontal areas. Critically though, these connections were
not exclusively sensitive to either stimulus domain. Furthermore,
the set of frontal and parietal brain regions associated with
manipulation demands was confirmed to be more active during
manipulation vs. maintenance trials, yet, all four of those ROIs
were also sensitive to stimulus domain and the level of
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Fig. 7 Effects overview. a Voxelwise statistical parametric maps were calculated with general linear models for processing stages (in blue) and stimulus
domains (number, spatial and fractal pattern). b Conjunctions were calculated between the statistical maps to generate DG and SG maps. These accorded
with previously reported Multiple Demand Cortex. c Conjunction maps were sub-divided into discrete ROIs using a 3D watershed algorithm. d Hierarchical
clustering showed that the purest stratification of ROI activation patterns related to WM processing stages as opposed to stimulus domains. e Hierarchical
clustering also generated interpretable functional clusters of DG ROIs. f Effects of task conditions on ROI clusters showed heightened global activity and
connectivity during encoding, and heightened connectivity only during maintenance. g Mass univariate analyses showed increased maintenance load was
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patterns. j Stimulus domain classification was superior at heightened load. k Classification of domains generalised across WM stages but was superior
within stage when based on connectivity patterns, indicating coding of domain × stage conjunctions. I Heightened activation for WM manipulation was
evident within the expected ROI set; however, the same ROIs showed greater sensitivity to WM domains and stages. m Anatomical projections of sparse
classification models corresponded well with the mappings expected based on the classic localist literature
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maintenance WM load. Therefore, as opposed to there being
discrete systems for these WM demands, the same network of
brain regions dynamically reconfigures its detailed pattern of
activity and connectivity dependent on them.

One might argue that this general involvement of brain regions
in diverse WM demands favours globalist perspectives. which
based on the observation of common activation patterns across
diverse cognitive tasks proposed the existence of a central and
highly flexible cognitive resource in the brain, i.e., Multiple
Demand Cortex32,33. Again, the modular and globalist perspec-
tives can appear incompatible; however, they were reconciled
within the network-coding framework; the domain general per-
spective was correct insofar as brain regions corresponding to
Multiple Demand Cortex were commonly recruited across all
WM domains and stages. However, this volume was not com-
prised of functionally homogeneous brain regions or even a
simple binary sub-division into sub-networks48. Instead, the ROIs
had diverse profiles in terms of the combination of WM condi-
tions under which they were most active; this conforms to a
many-to-many mapping between function and anatomy. Indeed,
all the above aspects of WM were classifiable from the multi-
variate pattern of activation and connectivity even within the
most broadly active subset of brain region (SG). From this, we can
infer that Multiple Demand Cortex dynamically codes for dif-
ferent task demands in a multivariate manner not only at the
neuronal50 and voxelwise level as previously reported51,52, but
also at the macroscopic level through transient changes in its
internal network configuration53.

In summary, the network coding perspective provides an
overarching framework that can reconcile insights from diverse
studies of WM. We believe that the distributed coding of different
aspects of WM that is evident across macroscopic brain networks
is analogous to that which is observed in the coding mechanisms
of local populations of neurons54. Such coding likely is a scale-
free property of how networks efficiently and robustly support
diverse information types and processes50. Here, using multi-
variate analysis methods that align with these distributed coding
mechanisms provided remarkably high classification accuracies
with models that generalised across individuals and independent
studies. Tentatively, we posit that the capacity to transiently
express brain states that are optimal for performing-specific tasks
may underlie population differences in cognitive ability. Given
the reliability of our classification approach, we believe that
univariate measures summarising the strengths of expression of
the connectivity patterns for stimulus domains and processes
should be explored in studies of group and individual differences
in WM and as outcome measures in trials that seek to enhance
WM functions. The latter application is particularly promising
given recent studies showing that the functional connectivity of
the WM network is amenable to modulation by non-invasive
brain stimulation55 and augmentation by focused cognitive
training56,57. Future work should also focus on analysing directed
information flow using effective connectivity methods to deter-
mine how transitions between these task-evoked processing states
are orchestrated within the human brain29,58,59.

Methods
Experimental design and data collection. Participants— 19 right-handed healthy
adults (6 female, mean age 22.368, range 18–28 years of age) participated in Study 1
and 17 right-handed healthy adults (11 female, mean age 23.938, range 19–41 years
of age) participated in Study 2. All participants had normal hearing and corrected
to normal vision. Before commencing the study they read instructions regarding
the task and protocol, agreed to experimental procedures and underwent a short
training session to ensure that they could perform the task. The training session
consisted of approximately 15–20 min practicing the task on a laptop. They then
entered the MRI scanner and undertook the task. One participants in Study 2, was
excluded due to a technical error that resulted in corrupted behavioural recordings.

Sample sizes were selected to align with studies of WM in prior literature. The
studies were approved by the University of Western Ontario ethics committee.

Procedure— In both studies participants performed three runs of similar
cognitive experiments designed to manipulate WM domains and processing stages.
Each run was composed of pseudo-randomly allocated blocks, where each block
included a single trial with distinct encoding, maintenance and probe stages
(Fig. 1).

Study 1— Participants were required to encode and maintain a set of features
from an array of compound stimuli, composed of a pseudo-randomly selected
numbers and fractals placed at random spatial positions within a 4 × 4 grid. Each
trial began with a pre-encoding cue directing participants to focus on features from
one of these three stimulus domains (number, fractal or spatial). Then, three, five
or seven compound stimuli were presented within the 4 × 4 grid. After 10 s of
encoding, stimuli were removed, and participants were required to maintain the
features from the cued domain for 10 s. Subsequently, participants were presented
with a probe array where one each of the numbers, fractals and locations had been
shuffled. They were required to indicate within a 10 s timeframe the location of the
shuffled item that was within the currently maintained domain. The trial
terminated at the point in time when the participant responded and the next trial
began after a 10-s inter-trial-interval (ITI), during which a fixation cross was
displayed and they were instructed to rest. In the imaging analysis, this (ITI)
provided the baseline for comparing all other events, i.e., where no overt processing
of the WM task was required.

Study 2— Participants were again required to encode and maintain a set of
features from an array of compound stimuli in a similar to the first in design;
except for three major differences. (1) A second retro-cue was added to cue the
participants to either manipulate (add 3 or mentally rotate 90 clockwise the spatial
pattern) or maintain the encoded information. (2) Stimulus domains included
numbers and spatial locations only. This reduced complexity in the factorial design
to compensate for the addition of the manipulation condition. (3) Similarly, the
load condition were limited to two levels, these being three or six items per
stimulus domain.

Behavioural data collection— In both experiments, data were collected in three
runs of scanning acquisition. In the first experiment, each run contained 18 trials,
two each from nine possible combinations of stimulus domains (number, fractal
and spatial) and WM load (3, 5 and 7). In the second experiment, each run
contained 16 trials, two each from eight possible combinations of cognitive
processes (Maintenance and Manipulation), stimulus domains (number and
spatial) and WM load (3 and 6). Stimuli were presented on a back-projection
screen visible from the bore of the MRI scanner via a mirror mounted to the head-
coil. Responses were taken with a custom MRI-compatible trackball mouse. Both
WM paradigms were programmed using Adobe Flash Builder 4.5 and embedded in
a scanner interface programmed in Visual Basic.

MRI data collection— Brain images were collected using a 3 Tesla Trio TIM
SIEMENS Scanner. A T2 weighted echo planar image depicting blood oxygenation
level dependent (BOLD) contrast was acquired every 2000 ms. The first ten images
were discarded to account for equilibrium effects. Images consisted of 36 3 mm
slices, with an 80 × 80 matrix, 240 × 240 mm field of view, 30 ms TE, 2 s TR, 45° flip
angle, 2.65 ms echo spacing. A 1 mm resolution MPRAGE structural scan was also
collected for each with a 256 × 240 × 384 matrix, 900 ms TI, 2.98 ms TE and 9° flip
angle. Acquisition in Study 2 was almost identical except that the flip angle was 60°.

Imaging Quality control— Raw bold signal to noise ratio (SNR) metrics were
extracted across studies using an in-house implementation of the metrics proposed
by Friedman60. A multivariate outlier detection analysis was performed to identify
any low SNR values. No scans were omitted at this stage.

Exploratory analysis. Pre-processing— Before analysis, data were preprocessed
using a custom pipeline that included functions from SPM12 (Statistical Parametric
Mapping Welcome Department of Imaging Neuroscience), FSL (FMRIB Software
Library v5.0) and MATLAB 2017b. Specifically, data were slice-timing and motion
corrected, spatially warped onto the standard Montreal Neurological Institute
template using a custom DARTEL template generated from all the structural scans
(for each study independently), and spatially smoothed with an 8 mm3 full width at
half maximum Gaussian kernel. The data were high-pass filtered (cutoff period of
half of the scan length—approx. 300–400 s) to remove low-frequency drifts in the
MRI signal.

Whole-brain BOLD activity estimate— Nuisance experimental matrices were
formed using motion estimates (in an extended 24-parameter model) and motion
outlier (spikes) events based on Yan et al. recommendations61. Then a single
subject design matrix was constructed using the HRF convolved experimental
onsets and nuisance matrix. This was applied to the fMRI stack to estimate beta
coefficient fits using the classic mass-univariate GLM in SPM12. Finally, whole-
brain maps depicting statistical parametric estimates were generated using
predefined contrasts of interest. In the voxelwise analysis, this was followed by 2nd
level group contrasts against the null distribution, focusing on the following
experimental dimensions across conditions: (1) visual domains (numbers, fractal
and spatial), (2) WM stages (encode, maintain, probe), (3) load (high, medium,
low) & (4) and manipulation (on, off). In Study 1 there was no ‘manipulation’
condition. In Study 2, the visual domains comprised only numbers and spatial
stimuli and there was no medium load.
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Data structures— Single subject general linear models capturing regional
changes in activity were constructed using a mini-block design, in which each stage
(e.g., cue, encode, maintain, probe) of each individual trial was captured by a
separate predictor, alongside nuisance covariates. The resultant whole-brain maps
depicting parameter estimates were taken to the group level, creating stacks
composed of 19 × 3 × 3 × 3 × 4 × 2= 4104 events (i.e. subjects × runs × domains ×
loads × stages × repeats) for Study 1 and 16 × 3 × 2 × 2 × 2 × 2= 3072 events (i.e.
subjects × runs × manipulation × domains × loads × stages × repeats) for Study 2.

Conjunction analyses— We used minimum statistic conjunction-null tests36,62

to examine intersections across experimental domains as per SPM12’s suggested
flow. Specifically, we used the minimum T-statistic over n orthogonal contrasts.
Inference was based on individual cluster corrected statistical volumes per
contrasts, which were later combined using a logical AND. We derived minimal
cluster size by performing uncorrected analysis with a relaxed threshold (p < 0.01),
then applying the minimal false-discovery-rate (FDR) cluster (PFDR < 0.05) to
generate a cluster corrected map for each of the contrasts in the specific
conjunction. This enabled us to infer a conjunction effect at significant voxels. The
above procedure was performed in an identical manner across both studies and the
following comparisons were performed: (1) Domain General (DG) a 3-way
conjunction over the three stimulus domains in Study 1 and independently on the
two visual domains in Study 2; and (2) Stage General (SG) intersecting the three
processing stages in both studies (i.e. encode, maintain and probe).

Similarity calculation— Minimum statistic conjunction-null tests were
performed separately for each study36 in SPM12 with voxelwise thresholding at
p < 0.01 followed by false-discovery-rate (FDR) cluster correction across the whole-
brain mass at p < 0.05. The quotient of similarity (QS) summarized by dice
coefficients was calculated across the two studies to identify clusters that were
reproducibly identified for the DG and SG conjunctions across both studies.
Specifically, binary masks were created from the cluster thresholded maps and the
similarities calculated using the following formula:

QSðA;BÞ ¼ 2ðA \ BÞ
ðAþ BÞ : ð1Þ

Data driven parcellation— Our analyses focused on ROI’s produced from the
above conjunction maps and a whole-brain parcellation made available by another
group63. These ROI’s enabled both dimension reduction of the voxelwise space and
calculation of task-evoked connectivity matrices. Thus, they form a basis for
connectomics54.

Data driven parcellation— We used a “watershed transform”64, to segment the
inverse of the minimal conjunction maps into ROIs. This common segmentation
procedure treats the three-dimensional statistical volume as a multi-dimensional
surface where high and low intensities represent elevations. The algorithm
iteratively’filled’ independent catchment basins (CB) with unique labels by flooding
the various-independent local minima in the statistical volume and their
surroundings. At the end of the segmentation, we filtered out small ROIs, by
applying a >50-voxel exclusion criteria. The conjunction maps from Study 1 were
parcellated into ROIs using our in-house 3D implementation of the watershed
algorithm. Using the ROI set a database was formed containing the mean
parameter estimates for each ROI and each WM event within the stack (as defined
above).

Hierarchical clustering— Focusing on the (more inclusive) DG-ROI set we
collapsed events to compare visual domains and processing stages (i.e. averaged
across runs and loads). This formed an m × n matrix (one for each experiment),
where m are events averaged for each individual (subjects × visual domains ×
processing stages) and n are the ROI’s, e.g., from DG-conjunction. Using Euclidean
distance and the Ward method65 (which minimizes the total within-cluster
variance) we clustered the ROIs and WM conditions along both axes. We used
agglomerative hierarchical clustering40 (HCL) to uncover structure within the
hierarchies of the activation data stack defined above. Dendrogram Inconsistency
was used to define the natural data-driven cutoff across the HCL hierarchy. This
threshold was measured as the difference between height of the current link and the
mean height of its sub-graph (depth= 5) divided by the standard deviation of the
sub-graph.

Cluster purity measure— Purity is a common external evaluation criterion of
cluster quality. As the clustering is performed in an unsupervised manner, and we
should not expect correspondence between number of classes nor class assignments
due to chance alone, we matched each cluster to the class that was most frequent
and measured the intersection between them. Accuracy was measured as the
percent of total events that matched this initial pairing. Where N was the number
of total events, k the number of clusters, Ω ¼ ðω1;ω2; :::;ωkÞ the set of clusters and
C ¼ ðc1; c2; :::; ckÞ the set of classes.

PurityðΩ;CÞ
ðΩ 2 N;C 2 NÞ ¼ 1

N

Xk

i¼1

max
j

jωi \ cjj: ð2Þ

Transient functional connectivity estimate— While there exist various methods
to estimate connectivity between two regions66 dynamic or model-based
connectivity measures pose a challenge67. Here we used psycho-physiological
interaction models28,30 (PPI), which estimate the task-evoked functional

connectivity between each pair of brain regions. We used this approach primarily
for its simplicity and computational efficacy. Notably, the classic method is limited
to a single-PPI contrast. Recently a generalised form of PPI was suggested to assess
simultaneously multiple dimensions of the experimental space. We used a custom
MATLAB implementation of the following model:

YT ¼ β0 þ ½YS;HðXÞ;E�βG þ ½YS ´HðXÞ�βj þ e; ð3Þ

where X was, the matrix containing psychological timecourses (i.e. timecourses for
encode, maintain and probe events) and H(X) was the HRF convolution of that
matrix. YT was the target time series and YS the source time series. E was the
nuisance regressor matrix defined previously in the pre-processing stage. βG
included weights of no-interest and βj the weights for the PPI predictors, which
were the target of further analysis. β0 was the intercept and e the residual error.
This model was estimated for all pairs of connections to form a connectivity matrix
and upper lower triangles were averaged to form an undirected weighted
connectivity matrix for each condition in the design matrix.

Machine learning. Multi-class classification— Multivariate classification based on
fMRI measures has been successfully applied extensively in the past, e.g., to explore
multivariate discriminant neuronal coding relating to stimuli, task rules, emotions
and more52,68,69. Although it has mostly been used in the context of local voxel
patterns, combining this approach with global patterns extracted using some high
level parcellation scheme allows in-depth inspection of patterns from both activity
and connectivity across the brain. In this paper, we used dense and sparse multi-
class classification models in a ’one-vs-all’ scheme which means that a model was
trained to differentiate between a class and all events that are not of that class. The
classification accuracy was an estimation of the information content in a dataset70.
To achieve this, a stack of models per class was constructed. For the dense models
we used an ’Error Correcting Output Codes’71 (ECOC) ensemble approach to solve
the multi-class problem. We used the MATLAB built in function with linear
support vector machine binary classification as the actual learning algorithm to
discriminate between groups. For the sparse models we use multinomial logistic
regression by Friedman et al.44. Using the GLMnet MATLAB toolbox https://web.
stanford.edu/~hastie/glmnet/glmnet_alpha.html. This identifies the minimal set
of mutually exclusive features for each class along with weighting matrices and
class biases.

Null-model generation— To estimate significance relative to the null
distribution, we randomly divided events from Study 1 into two unequal parts
(75/25%) based on the participant’s id. The smaller sample was our within-study
validation set, and the bigger was the training set. We also included all the data
from Study 2 as an independent test set. We trained two classification models
one using the actual labels from the training set and another model (the null
model) using shuffled labels (i.e. destroying any possible connection between
dependent and independent measures). We then estimated the model’s
performance within study (using the validation set), and the models robustness
across studies (using the test set). This step was repeated a 1000 times to form
two distributions, our actual performance that quantifies the relevance of the
neuronal information to the classification task and the null distribution that
quantifies the classification of events by chance.

Feature selection flow— Neuroimaging data can range from highly selective
hypothesis driven features (i.e., specific regions of interest) to whole-brain
voxelwise inspection (several to tens of thousands of features). Connectivity data
provides an almost squared increase in dimensionality complexity relative to
regional activity (from tens to billions of features). This raises two complementary
problems, multicollinearity, where multiple features share similar relevant
information for classification and the “curse of dimensionality”, where the number
of features far surpasses the number of observations. Dealing with the latter is
possible by using sparse logistic regression instead of SVM.

Lambda selection— We trained our sparse models with a range of
regularization values using an exponential decay function. Optimal lambda was
selected from this range by finding the maximum absolute second derivative over
the sum minimal cross entropy values derived from the training set (also known as
finding the knee in scree plots).

Performance measures— In the context of this work, accuracy was defined as
the balance between the precision and recall (see detailed definitions Sokolova
et al.72), commonly known as F1-score, which is considered a more appropriate
measure for multi-class classification problems.

Statistical significance testing. To determine statistical significance, we used
the methods detailed below. All testing was performed using MATLAB 2017b
statistical toolbox and costume MATLAB functions (see code availability).

Behavioural significance testing— We used repeated-measures ANOVA to
examine behavioural effects for both accuracy and response time. In the latter
case we used log transformed response times to better comply with the normality
assumption of the test. When applicable, this was followed by a post hoc
multi-comparison pairwise tests to identify the basis and direction of the
significant effect.

Cluster averaged significance testing— We also used repeated-measures
ANOVA to examine global effects in the domain general ROI set for clusters
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(defined in the clustering section) averaged activation and connectivity. In the later
case, we distinguished between inter and intra connectivity. Mauchly’s test for
sphericity was performed to assess whether ANOVA assumptions were violated
and if so Greenhouse Geisser corrected p-values were used. When applicable, this
was followed by a post hoc multi-comparison pairwise test to identify the basis and
direction of significant effects. All post hoc tests used Bonferroni correction.

Classification accuracy significance testing— Following40,73–75 to estimate
classification accuracy significance we used a conservative repeated cross-validation
approach to form paired performance estimations as defined in performance
estimation section. We then estimated the empirical probability as p ¼ bþ1

mþ1, where
b was the number of events where Accperm > Accobs, i.e. the number of events where
the permuted null model out-performed the model trained by real data, and m was
the number of random sampling pairs (10 partitioning × 100 bootstraps). Effect
size was then calculated using the Mann–Whitney U-test to compare between the
permuted and observed performance (i.e., taking the conservative-independent
replication set values).

Measure comparison significance testing— To compare between activation and
connectivity accuracies we averaged performance within each of the ten-stratified
partitioning (selecting ten different sets of training and testing based on unique
subject’s id’s see above) and used t-tests to compare distributions above and
beyond the different sets.

Match/mismatch significance testing— To address the extent to which features
in the models for classification of domains generalised vs. were specific to WM
stages, we trained stage specific domain models using events from each processing
stage (encode, maintain & probe) independently. These were then applied to data
to which they were naive from all three domains and all three stages.

Domain by load thresholded network analysis— To uncover-specific
connections that were upregulated as a function of both load and domain (i.e.
interaction effects) we applied linear mixed effects models (using MATLAB fitglme
function) independently for each connection. Specifically, the upper triangle of
the connectivity matrix was extracted for all trial events, and for each connection
the following model was fitted ‘Y= 1+ study+ domain × load+ (1|subject)’.
ANOVA was then used on the model to assess main and interaction effects.
P-values were FDR corrected for multiple comparisons. This procedure was
performed first for whole trials (i.e. averaging across processing stages) and then
for maintenance only.

Code availability. All custom MATLAB routines and data used to generate the
analysis and figures of this paper will be committed upon acceptance for review to
the following GitHub: https://github.com/esoreq/WM.

Data availability
Neural and behavioural datasets for both studies have been made available online at
OpenNeuro Study one; https://doi.org/10.18112/openneuro.ds001634.v1.0.1. Study two;
https://doi.org/10.18112/openneuro.ds001635.v1.0.1.
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