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Circadian regulation in human 
white adipose tissue revealed 
by transcriptome and metabolic 
network analysis
Skevoulla Christou 1, Sophie M. T. Wehrens1, Cheryl Isherwood1,2, Carla S. Möller-Levet 3,  
Huihai Wu3, Victoria L. Revell1, Giselda Bucca 1,4, Debra J. Skene 1, Emma E. Laing   1, 
Simon N. Archer1 & Jonathan D. Johnston 1

Studying circadian rhythms in most human tissues is hampered by difficulty in collecting serial 
samples. Here we reveal circadian rhythms in the transcriptome and metabolic pathways of human 
white adipose tissue. Subcutaneous adipose tissue was taken from seven healthy males under highly 
controlled ‘constant routine’ conditions. Five biopsies per participant were taken at six-hourly intervals 
for microarray analysis and in silico integrative metabolic modelling. We identified 837 transcripts 
exhibiting circadian expression profiles (2% of 41619 transcript targeting probes on the array), with 
clear separation of transcripts peaking in the morning (258 probes) and evening (579 probes). There 
was only partial overlap of our rhythmic transcripts with published animal adipose and human blood 
transcriptome data. Morning-peaking transcripts associated with regulation of gene expression, 
nitrogen compound metabolism, and nucleic acid biology; evening-peaking transcripts associated with 
organic acid metabolism, cofactor metabolism and redox activity. In silico pathway analysis further 
indicated circadian regulation of lipid and nucleic acid metabolism; it also predicted circadian variation 
in key metabolic pathways such as the citric acid cycle and branched chain amino acid degradation. 
In summary, in vivo circadian rhythms exist in multiple adipose metabolic pathways, including those 
involved in lipid metabolism, and core aspects of cellular biochemistry.

Many aspects of mammalian metabolism exhibit daily variation driven in part by an endogenous circadian timing 
system1. This system is comprised of a central ‘master’ clock in the hypothalamic suprachiasmatic nuclei and an 
integrated network of circadian clocks present in all major tissues within the body2. Circadian disruption causes 
abnormal metabolic physiology3. Misalignment of human clocks with each other and the environment is believed 
to be a major contributor to obesity and related pathologies associated with shift work4,5.

At the molecular level, circadian clocks are formed from a set of inter-locking transcriptional translational 
feedback loops (TTFLs). In the core TTFL, transcription factors CLOCK and ARNTL (also known as BMAL1) 
stimulate transcription of three Period (Per) and two Cryptochrome (Cry) genes. Once translated the PER and 
CRY proteins bind to one another, translocate to the nucleus and inhibit the transcriptional activity of CLOCK 
and BMAL1, eventually repressing their own transcription6. A key secondary loop involves rhythmic transcrip-
tion of Rev-erbα (Nr1d1) by the CLOCK-BMAL1 complex. The resulting rhythmic accumulation of REVERBα 
protein provides temporal inhibition of Bmal1 transcription and thus feeds back onto the core TTFL7. In addition 
to defining internal biological time, clock proteins also bind to response elements in output genes8,9. Many of 
these output genes themselves encode transcription factors and thus the circadian clock can temporally regulate 
a large part of the transcriptome10,11.

It is estimated that nearly half of all murine genes exhibit a circadian expression profile in at least one tissue of 
the body10. Many of the rhythmic genes in a tissue are integral to local physiological function. Despite advances 
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in understanding of circadian rhythmicity in animal tissues, there is very little information on molecular rhythms 
in humans. Transcriptomic analyses of human whole blood suggest that approximately 7–9% of genes in whole 
blood RNA are rhythmic12,13, a similar proportion to that found within individual mouse tissues. However, it is 
difficult to access other human tissues for serial sampling. We and others have recently developed biopsy protocols 
for serial tissue collection of human skeletal muscle and subcutaneous white adipose tissue over 24-hours14–16.  
Here we have combined our adipose tissue biopsy method with the gold standard ‘constant routine’ protocol17 
to study the circadian transcriptome in human adipose tissue. The constant routine protocol removes rhythmic 
changes in environmental factors and behaviours (including light-dark, sleep-wake and feed-fast cycles) that 
are known to influence human circadian rhythms13,18. Resulting rhythms are therefore driven primarily by the 
endogenous circadian system.

Results
In this study seven healthy male participants underwent restricted sleep-wake and meal times before entering 
the laboratory, to maximise circadian synchronisation. They maintained this sleep and feeding schedule for three 
days in the laboratory before undergoing a 37-hour constant routine, during which five six-hourly subcutaneous 
adipose tissue biopsies were taken per participant. Transcriptomic data were generated from these biopsies and 
then subjected to in-depth bioinformatic analysis.

Circadian expression of the human adipose transcriptome.  Genes were classified as circadian if the 
expression profile(s) of one or more of their associated transcripts exhibited one full oscillation every 24 hours. To 
identify the set of genes with circadian profiles we fitted a sinusoidal function to the data, set a threshold to the R2 
value of the fit and restricted the amplitude’s 95% CI to not include zero. Using these criteria, we identified circa-
dian rhythms in 837 transcripts (~2% of all transcript targeting probes). Unsupervised clustering performed on 
the 837 circadian transcripts revealed 3 distinct clusters (Fig. 1A). Two of these clusters (yellow, 233 transcripts; 
light green, 346 transcripts) had peak expression in the circadian evening, whereas the third cluster (dark green, 
258 transcripts) had peak expression in the circadian morning (Fig. 1B). Furthermore, a frequency plot of the 
peak time of each rhythmic transcript revealed a bimodal distribution, with peaks predominantly occurring in 
the evening and morning (Fig. 1C). For subsequent analysis, yellow and light green clusters were pooled together 
to form a set of 579 ‘evening’ transcripts, whereas the dark green cluster provided the 258 ‘morning’ transcripts. 
Example transcript profiles for morning and evening-peaking genes are presented in Fig. 1D,E, respectively. A full 
list of all circadian transcripts is provided in Supplementary Table S1. The 837 transcripts are associated with 727 
unique genes, on which we focus our interpretation.

Function of circadian genes in the human adipose transcriptome.  Canonical clock genes exhibited 
robust rhythmicity in biopsies taken under constant routine conditions. Seven core clock genes were found to be 
rhythmic. Two clock genes (ARNTL, NPAS2) peaked in the circadian evening; the other clock genes (PER1, PER2, 
PER3, CRY2, NR1D1) peaked in the circadian morning (Fig. 2).

Validated databases were interrogated using our 727 circadian genes to identify rhythmic biological functions. 
GO enrichment analysis revealed a temporal separation of biological processes associated with circadian genes 
(Table 1). Most of the processes associated with the evening peaking transcripts were aspects of metabolism, 
including organic acid, co-factor and oxidation-reduction. Morning peaking genes were significantly associated 
with gene expression regulation, nucleic acid regulation and other metabolic processes. Further GO molecular 
function enrichment analysis indicated a predominance of nucleic acid and transcription factor binding in the 
morning, whereas catalytic and reductase activity was enhanced in the evening (Table 2).

Comparison with the adipose circadian/diurnal transcriptome in non-human species.  In 
a previous study of mouse white adipose tissue, 856 genes (~4% of genes assessed) were identified as having 
circadian rhythmicity10. Of those, only 32 transcripts were also classified as rhythmic in our human data set 
(Supplementary Table S2): 19 peaked in the evening and included the positive arm canonical clock genes, Bmal1 
and Npas2, whilst the remaining 13 peaked in the morning. Phases within the mouse data were expressed relative 
to circadian time (CT). The acrophases of most of these genes occurred at similar times within the behavioural 
cycle of diurnal humans and nocturnal mice. For example, PER3 in our human data peaks at 8.8 hours after the 
dim light melatonin onset (DLMO), which is near the time of awakening, whilst in the mouse white adipose tissue 
data Per3 peaked at CT12, which is defined as the onset of activity in constant darkness (i.e. biological evening for 
a nocturnal rodent). Similarly, the antiphasic gene ARNTL (BMAL1) in humans had an acrophase of −0.9 hours 
relative to the DLMO, which equates to biological evening, whilst in mouse white adipose tissue it peaked at CT23 
which approximates to the onset of the main rest phase (biological morning in a nocturnal rodent). A summary 
of the phases is presented in Supplementary Table S2.

We also compared the circadian rhythmic genes from our data set with genes expressed in baboon white adi-
pose tissue that have recently been reported to have diurnal rhythmicity, i.e. 24-hour rhythms when experimental 
subjects are in an entrained rhythmic environment19. Only 14 genes were rhythmic in both human and baboon 
adipose data sets: CRY2, PER1, PER2, NPAS2, ARNTL, NR1D1, ZDHHC14, SCN3B, PCYT2, TMEM8A, GNA12, 
P4HA2, C3orf31 (TAMM41) and RASL10B.

Because of the limited overlap in rhythmic genes between the human and mouse and baboon tissues, we also 
investigated the overlap in GO biological processes associated with the human adipose rhythmic genes, which 
could potentially show higher levels of similarity. GO annotation for all three genomes (human, mouse, and 
baboon) was downloaded from the Gene Ontology database (https://www.ebi.ac.uk/GOA/ on 13 October 2018). 
From these annotations the GO terms associated with biological processes were retained. Rhythmic genes that 
are homologous to (or present in) human were annotated using the respective GO biological process annotation. 
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Overlaps in the identifiers of the GO terms was then assessed. The results of this analysis are shown in the Venn 
diagram of Fig. 3. The mouse has the largest number of associated GO terms and the baboon the least, and these 
differences presumably reflect differences in the depths of annotation for each species. However, greater levels 
of overlap are now apparent with 27% of human biological processes overlapping with 46% of the baboon pro-
cesses, and 59% of human biological processes overlapping with 35% of the mouse processes. Four hundred and 
thirty-six terms were common to each species, which represents 23%, 39% and 14% of the human, baboon and 
mouse total biological processes, respectively. Supplementary Table S3 shows the top ten biological processes for 
the human vs. baboon, human vs. mouse and all three species comparisons that have been ranked according to 
the frequency of occurrence of the human biological processes.

Comparison with the human whole-blood transcriptome.  To assess the similarity of circadian tran-
scriptomes in different human tissues, we compared the current data from human white adipose tissue with 
published data sets from human whole-blood samples. Specifically, we used data from the constant routine fol-
lowing a week of sufficient sleep in a sleep restriction study12 and the baseline condition of a forced desynchrony 
study where sleep occurred in phase with melatonin13. Comparison of the datasets identified a larger overlap 
between circadian transcriptomes of the adipose tissue and blood samples taken in constant routine, than adipose 
tissue and blood taken from the baseline period of the forced desynchrony study. In total, 14 genes were circa-
dian in both blood data sets and in human subcutaneous adipose tissue (Supplementary Dataset 1). These genes 

Figure 1.  Circadian expression of the human white adipose tissue transcriptome. Temporal expression profiles 
measured in five six-hourly white adipose tissue biopsies collected from seven participants in constant routine 
conditions. (A) Heatmap showing the mixed model values at averaged DLMO times (average per sampling 
point across subjects). Red represents high expression, blue low expression. (B) The average of z-scored mixed 
model profiles per cluster was calculated. Lines represent the average profile of all probes within each cluster. 
(C) Histogram of peak time estimates of probes identified as exhibiting circadian rhythmicity. Peak times were 
derived from the mixed modelling. (D,E) Representative profiles of probes exhibiting either (D) morning and 
(E) evening peak expression. Thin black lines show each participant’s gene expression profile plotted according 
to their own DLMO. The red thick line depicts the sinusoidal model fit and the blue thick vertical line indicates 
estimated peak time.
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included the canonical clock genes, ARNTL (BMAL1), NPAS2, PER2, PER3, together with NR1D2 (REVERB-β), 
ribosome biogenesis factor (BMS1), C-type lectin domain family 18 member b (CLEC18B), clusterin associated 
protein 1 (CLUAP1), coactosin-like F-actin binding protein 1 (COTL1), histone cluster 2 H2B family member E 
(HIST2H2BE), myelin protein zero-like 1 (MPZL1), poly(A) binding protein interacting protein 2B (PAIP2B) and 
ribosomal protein large subunit 22 (RPL22).

Interaction network analysis.  In addition to the GO enrichment analyses, predicted molecular inter-
actions related to the 727 circadian genes were assessed using the online STRING tool. Predicted interactions 
derived from the morning-peaking genes were limited (Fig. 4). The main cluster within the network was asso-
ciated with the circadian clock. However, small interaction networks were also observed for mRNA processing/
splicing (e.g. Cleavage and polyadenylation specificity factor subunit 1, CPSF1; Heterogeneous nuclear ribonu-
cleoprotein A3, HNRNPA3; Splicing factor 45/RNA-binding motif protein 17, RBM17), cell cycle/centrosome 
regulation (e.g. Cyclin-dependent kinase 11 A, CDK11A; Pericentriolar material 1 protein, PCM1; Pericentrin, 
PCNT), and oxido-reductase/dehydrogenase activity (e.g. Acyl-CoA oxidase 3, pristanoyl, ACOX3; Acyl-CoA 
synthetase short chain family member 1, ACSS1; Aldehyde dehydrogenase 9 family member A1, ALDH9A1; 
Dehydrogenase/reductase 1, DHRS1; Hexose-6-phosphate dehydrogenase, H6PD).

A much larger set of interactions was generated from analysis of the evening-peaking genes (Supplementary 
Fig. S1). Within this network, many of the molecules with the largest number of interactions were involved in 
fatty acid, amino acid and carbohydrate metabolism. These included: Short-chain specific acyl-CoA dehydro-
genase (SCAD, from the ACADS gene), Aldehyde dehydrogenase family 1 member B1 (ALDH1B1), Citrate 
synthase (CS), Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex 

Figure 2.  Circadian rhythms of canonical clock genes in human white adipose tissue. Temporal expression 
profiles of canonical clock genes measured in five six-hourly white adipose tissue biopsies collected from seven 
participants in constant routine conditions. Thin black lines show each participant’s gene expression profile 
plotted relative to their own DLMO. The red thick line depicts the sinusoidal model fit and the blue thick 
vertical line indicates the estimated peak time.
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(DLAT), 3-hydroxyisobutyryl-CoA hydrolase (HIBCH), Malate dehydrogenase (MDH2), and Serine hydroxym-
ethyltransferase (SHMT1).

The network generated from the evening-peaking genes also included some smaller clusters. These included 
clusters relating to glutathione metabolism (Glutathione S-transferase Mu 1, GSTM1; GSTM3; GTSM4; GTSM5; 
Glutathione peroxidase 8, GPX8), protein ubiquitination (Ankyrin repeat and SOCS box protein 8, ASB8; F-box 
only protein 15, FBXO15; Leucine-rich repeat protein 1, LRR1; TNF receptor-associated factor 7, TRAF7; 
Ubiquitin-conjugating enzyme E2 L3, UBE2L3), protein trafficking and Golgi function (ADP-ribosylation factor 
1, ARF1; ARF4; BET1-like protein, BET1L; Coatomer subunit gamma-2, COPG2; Dynein light chain 1, DYNLL1; 
DYNLL2; KDEL endoplasmic reticulum protein retention receptor 2; KDEL2; Kinesin-1 heavy chain, KIF5B; 
Surfeit locus protein 4, SURF4).

Metabolic network analysis.  To predict circadian variation in metabolic reactions and associated 
pathways, our transcriptome data were applied to comprehensive pre-existing models of human metabolism. 
Consistent with our GO analysis, circadian rhythms were closely associated with fatty acid metabolism. Multiple 
reactions in mitochondrial fatty acid elongation (Fig. 5), biosynthesis and degradation pathways were predicted 
to exhibit circadian variation.

Analyses also predicted circadian variation in multiple steps of other key cellular metabolic pathways includ-
ing: purine and pyrimidine metabolism; the citric acid cycle, the pentose phosphate pathway, branched chain 
amino acid degradation pathways and glycosylphosphatidylinositol (GPI) anchor biosynthesis. The full list of 
reactions and metabolic pathways that display change in activity can be found in Supplementary Dataset 2 (rhyth-
mic reactions identified by R2 ≥ 0.8).

Discussion
This study contains the first 24-hour transcriptomic profiling of human adipose tissue in samples collected during 
a protocol that permits expression of endogenous circadian rhythms in vivo. Unmasking of circadian rhythms 
in a constant routine protocol permits removal/minimisation of rhythmic changes in the environment, feed-
ing behaviour and sleep-wake physiology, which are known to influence 24-hour rhythms17,18. Our previous 

Morning (Cluster 1) 258 probes Evening (Cluster 2 and 3) 579 probes

Biological Process p-value FDR Biological Process p-value FDR

Gene expression 3.609E-08 1.023E-04 Single-organism metabolic process 1.846E-18 8.853E-15

Cellular nitrogen compound metabolic 
process 2.876E-07 4.077E-04 Organonitrogen compound metabolic 

process 7.917E-15 1.300E-11

Histone H3 deacetylation 4.844E-07 4.577E-04 Cofactor metabolic process 8.134E-15 1.300E-11

RNA metabolic process 1.756E-06 1.245E-03 Small molecule metabolic process 2.904E-14 3.481E-11

Nitrogen compound metabolic process 3.328E-06 1.887E-03 Organic acid metabolic process 9.592E-14 9.199E-11

Nucleobase-containing compound 
metabolic process 4.157E-06 1.964E-03 Carboxylic acid metabolic process 5.182E-13 4.141E-10

Circadian regulation of gene expression 5.557E-06 2.251E-03 Oxoacid metabolic process 6.827E-13 4.676E-10

Cellular metabolic process 7.245E-06 2.568E-03 Coenzyme metabolic process 2.214E-12 1.327E-09

Heterocycle metabolic process 1.083E-05 3.411E-03 Single-organism biosynthetic process 8.464E-12 4.509E-09

Cellular aromatic compound metabolic 
process 1.703E-05 4.613E-03 Oxidation-reduction process 1.589E-10 7.618E-08

Table 1.  GO (process) enrichment of human adipose circadian genes.

Morning cluster (Cluster 1) 258 probes Evening cluster (Cluster 2 and 3) 579 probes

Molecular Function p-value FDR Molecular Function p-value FDR

Heterocyclic compound binding 3.255E-07 1.327E-04 Catalytic activity 2.554E-12 2.521E-09

Organic cyclic compound binding 5.835E-07 1.327E-04 Oxidoreductase activity 1.826E-09 9.012E-07

Nucleic acid binding 2.277E-06 3.454E-04 Binding 5.370E-08 1.767E-05

Transcription corepressor binding 4.662E-05 4.315E-03 Protein binding 5.370E-06 1.325E-03

Transcription cofactor binding 4.741E-05 4.315E-03 Transferase activity, transferring alkyl or aryl 
(other than methyl) groups 9.583E-06 1.892E-03

Core promoter binding 9.358E-05 7.097E-03 Oxidoreductase activity, acting on the CH-NH 
group of donors, NAD or NADP as acceptor 1.455E-05 2.394E-03

Binding 3.083E-04 2.004E-02 Lyase activity 2.189E-05 2.802E-03

RNA binding 5.542E-04 3.011E-02 Electron carrier activity 2.271E-05 2.802E-03

Ubiquitin binding 6.378E-04 3.011E-02 Aldehyde-lyase activity 7.113E-05 7.800E-03

Core promoter sequence-specific 
DNA binding 6.617E-04 3.011E-02 Carbon-carbon lyase activity 1.021E-04 1.008E-02

Table 2.  GO (molecular function) enrichment of human adipose circadian transcripts.

https://doi.org/10.1038/s41598-019-39668-3
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Figure 3.  Overlap of Gene Ontology biological process terms associated with rhythmically expressed genes in 
human, mouse and baboon. Only terms associated with rhythmic genes for which there is a homolog in human 
considered.

Figure 4.  Molecular interaction network associated with morning-peaking genes. Molecular interaction 
networks for genes encoding transcripts found to peak during the morning were computed using the STRING 
online database. Node size reflects the number of direct connections a molecule has within the network. 
Thickness of lines (edges) connecting nodes represents strength of evidence (confidence) supporting each 
connection as provided by STRING.
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report of temporal gene expression in the same depot of human adipose tissue14 assessed daily variation of clock 
gene expression in entrained (‘diurnal’) conditions. Nonetheless the phase of canonical clock gene expression 
is highly conserved between our two studies. Our previously reported diurnal rhythms described a peak of 
BMAL1/ARNTL expression in the late evening with PERs, CRY2, and REVERBα/NR1D1 peaking around late 
morning14. In the current study, BMAL1/ARNTL exhibited peak expression in the late biological evening, with 
the other clock genes peaking in mid-late biological morning. Our data add to existing knowledge of adipose 
rhythms20 and indicate that robust circadian rhythmicity exists in human adipose tissue in vivo and is associated 
with fundamental metabolic processes.

Assessment of rhythmicity in the transcriptome was performed using methods that allow the characterization 
of an expression profile based on its phase, amplitude and period, similar to the methods previously used for anal-
ysis of the circadian transcriptome in human whole blood12,13. The estimate that ≈2% of the adipose transcrip-
tome exhibits circadian rhythms is lower than the value estimated in previous studies, as reviewed elsewhere11 but 
still represents many hundreds of circadian genes. The lower estimate of circadian gene prevalence may be a fea-
ture of the tissue but may also reflect protocol design, technological platforms, and the analytical algorithms used 
to identify rhythmic signals, as discussed previously11. The cohort size and sampling resolution within our study 
is also lower than that recently recommended for genome-wide circadian analysis21, but is a necessary ethical and 
practical limitation when taking serial human biopsies. Our circadian genes separated into two clearly defined 
groups with a bimodal distribution of peak expression. A similar bimodal distribution has been reported in the 
circadian transcriptome of human blood12,13 and diurnal transcriptome of human skeletal muscle16 indicating that 
it is a common feature of 24-hour organisation of molecular processes in humans.

The results of our transcriptome analysis were first interpreted using Gene Ontology (GO) enrichment anal-
ysis. Biological processes in GO annotation highlight the overall biological purpose of a gene’s product whilst 
molecular function relates to the specific function of a gene product22. For the morning-peaking genes, GO 
enrichment revealed processes relating to circadian rhythms, as most of the clock genes had peak expression in the 
morning. In addition, GO analysis revealed prominent roles of morning-peaking genes related to gene expression 
(e.g. transcription factor and nucleic acid binding; histone deacetylation) and metabolism of nitrogen-containing 
compounds. A study examining the subcutaneous human adipose tissue transcriptome in biopsies taken over a 
12-hour period also found that the function of morning genes was enriched for transcription and translation23. 
Evening-peaking genes saw GO enrichment in multiple metabolic processes including organic acid metabolism. 

Figure 5.  Predicted rhythmicity of the mitochondrial short-chain, fatty acid elongation pathway. The activity 
of metabolic reactions in a metabolic model was assessed using the ‘Fast iMAT’ algorithm of MUFINS using 
averaged transcriptome samples and the human metabolic model Recon2 as input. For each reaction within 
the metabolic model we obtained a predicted metabolic activity profile across the circadian cycle. EC numbers 
represent specific enzymatic reactions. Circles and boxes indicate metabolites and reactions, respectively. Red 
boxes indicate reactions that were identified as rhythmic. Lines next to each circadian reaction indicate the 
dynamics (high or low) for each reaction across each of the five biopsy time points.

https://doi.org/10.1038/s41598-019-39668-3
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Enriched molecular functions included oxidoreductase activity and lytic activity. Consistent with this finding, 
mouse white adipose rhythms are closely involved in lipolysis24 indicating a conserved circadian involvement in 
catalytic functions.

Comparison of our data with published circadian transcriptome datasets yielded a relatively small number 
of common circadian genes. Notwithstanding the core clock genes, circadian transcriptome data are typically 
specific to the relevant tissue(s) in question10,11. Comparing circadian genes in human adipose tissue from the 
current study with those in human blood is potentially complicated by the fact that our study only involved male 
participants, whereas the studies of human blood included mixed male and female participants. Nonetheless, 
the non-clock genes common to all three studies were BMS1, CLEC18B, CLUAP1, COTL1, MPZL1, PAIP2B and 
RPL22. Products of these genes have very different functions: BMS1 is a likely ribosome biogenesis factor (by 
similarity), CLEC18B binds polysaccharides25, CLUAP1 functions in cilia biogenesis and hedgehog signalling26, 
COTL1 helps to regulate the actin skeleton27, MPZL1 is involved in signal transduction28, whereas PAIP2B and 
RPL22 are involved in translation29,30. Circadian genes that were common to human adipose tissue and at least 
one of the blood datasets were involved in fundamental processes for cell function; namely circadian rhythm 
regulation, metabolic processes and transcription and translation.

The low overlap between circadian transcriptomes in human and mouse adipose tissue could derive from spe-
cies differences as well as different physiological properties of the adipose depots31. In addition to the clock genes, 
conserved rhythmicity was observed in Cpsf1, Gstt2, Hlf, Rev1, Plce1, Nqo2, Rev1 and Timm10. These genes have 
roles like those seen in the GO biological enrichment. CPSF1 is involved in processing the 3′ end of pre-mRNA32; 
HLF is a transcription factor33; GSTT2 catalyses glutathione conjugation to both hydrophilic and hydrophobic 
compounds34; and REV1 is involved in DNA polymerase-mediated repair of DNA35. Similarly, genes in both adi-
pose depots were involved with metabolism; PLCE1 catalyses PIP2 into secondary messenger molecules IP3 and 
DAG36; NQO2 reduces quinone substrates37 and TIMM10 inserts hydrophobic proteins into the mitochondrial 
inner membrane38.

We finally assessed the functional consequence of our transcriptomic data through molecular interactions 
and metabolic pathway activity. The inferred/known molecular interaction networks supported the GO find-
ings, highlighting networks involved in circadian rhythms and key aspects of cellular metabolism. In addition, 
STRING analysis revealed clusters regulating other core aspects of cell biochemistry, such as mRNA processing/
splicing, protein trafficking and Golgi function. Application of our transcriptomic data to human metabolic net-
work models further supported key roles of adipose circadian rhythms in: fatty acid metabolism; nucleic acid 
metabolism; and other fundamental aspects of cell function, such as the citric acid cycle. These novel findings 
indicate the association of circadian processes with specific and critical metabolic pathways in cellular metabo-
lism of human white adipose tissue.

Our study has some limitations. As noted above, we only studied male participants. Previous research has 
demonstrated gender differences in circadian rhythmicity39,40 and white adipose physiology varies between men 
and women41. It will therefore be important to compare rhythms in a wider population in future work. The sample 
size reported in this manuscript is quite small, although comparable to many controlled laboratory human stud-
ies of this nature. Sample size is limited by the cost and ethical considerations of running such complex human 
studies. However, it must be emphasised that an important advantage of our study is that we were able to obtain 
repeated samples from each participant.

Conclusions
Molecular analysis of serial adipose tissue biopsies, taken under highly controlled conditions and coupled with 
in-depth bioinformatic analysis, has revealed the importance of circadian biology on a key human metabolic 
tissue. The most common rhythmic processes in human subcutaneous white adipose are those linked to fatty acid 
metabolism. However, rhythmicity was also observed in other fundamental cell processes, e.g. transcription and 
translation, nucleic acid metabolism and the citric acid cycle. The circadian timing system thus has an intimate 
relationship with many core aspects of human physiology and pathways relevant to therapeutics.

Methods
Participants.  The study received a favourable ethical opinion from the University of Surrey Ethics Committee 
and was conducted in accordance with the guidelines laid down in the Declaration of Helsinki. Written, informed 
consent was obtained prior to any study procedures being performed. We recruited seven participants, who were 
male, aged 18–30 years with body mass index (BMI) ≥ 19 kg/m2 and ≤30 kg/m2 and fat mass > 14%. These par-
ticipants were part of a cohort recruited for a previously published study18. They had no medical history that 
indicated a sleep or metabolic disorder and had not undertaken shift work within six months or crossed more 
than two time zones within one month of the study. Participants (Table 3) completed a set of validated sleep and 
chronotype questionnaires and were required to meet the following inclusion criteria: Pittsburgh Sleep Quality 
Index (score ≤ 5), Epworth Sleepiness Scale (score < 10), Horne-Östberg diurnal preference questionnaire (score 
between but not including 30–70, indicating that they are not extreme morning or evening types). Their habitual 
bed time was between 22:00 and 01:00 and wake time between 06:00–09:00 for 5 nights a week; habitual sleep 
duration was 7–9 hours per night.

All participants were medically assessed (electrocardiogram, blood pressure, heart rate, oral temperature and 
respiration rate) at the Surrey Clinical Research Centre (CRC) as part of a screening visit. They were required to 
test negative for drugs of abuse such as opiates, alcohol and cotinine, a metabolite of nicotine. A full blood bio-
chemistry screen was conducted to ensure good health and medication records were reviewed.
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Study design.  Ten days prior to the study session, participants were instructed to select and maintain a bed 
time (between 22:00 and 01:00) and wake time (between 06:00 and 09:00) that closely matched their habitual 
sleep-wake time, with a time-in-bed duration of at least 8 hours. If required, a nap was allowed within a 4-hour 
window, with the middle of the nap window being 12 hours after the midpoint of sleep. Additionally, participants 
were required to obtain 15 minutes of unobstructed natural light exposure within 1.5 hours of wake. Compliance 
was monitored using two L-actiwatches (Cambridge Neurotechnology Ltd, Cambridge, UK). One actiwatch was 
worn on the non-dominant wrist for activity analysis, whereas the other was worn around the neck for analysis 
of light exposure. Participants maintained a sleep diary and called a time-stamped voice mail within 10 minutes 
of the selected bed and wake times.

Seven days prior to the study, participants were asked to restrict the time they ate their meals to the follow-
ing: breakfast 30 minutes after wake, lunch 5.5 hours after wake and dinner 10.5 hours after wake. Caffeine was 
restricted to no more than 100 mg in the first three hours of waking, and a maximum of 4–5 units of alcohol was 
allowed per day. Seventy-two hours prior to the laboratory study, participants were given food by the study team 
to resemble the food they would consume during the study. They were required to maintain the meal schedule 
detailed above and, in addition, they were not allowed to consume any caffeine or alcohol and were asked to 
refrain from any heavy exercise during those 72-hours.

Participants entered the Surrey CRC, received a standard meal and went to bed in individual sleep rooms at 
the same time as they had selected during the pre-study protocol. Over the next 3 days, participants continued 
their same sleep-wake and meal schedule. All meals were isocaloric with the same macronutrient content (55% 
carbohydrate, 15% protein and 30% fat) and eaten in individual rooms. Meals were calorie adjusted to meet the 
individual energy requirements of the participant using the Schofield equation42. Participants could move around 
when not eating, but no strenuous activity was allowed. Over laboratory days 4 and 5, participants underwent 
a 37-hour constant routine. Sampling during the constant routine began five hours into the constant conditions 
to eliminate any run-in effects and consisted of hourly blood sampling and five six-hourly subcutaneous adipose 
tissue biopsies from the upper gluteal region, which is known to be metabolically active43. Biopsy tissue (≈200 mg 
per biopsy) was snap frozen in liquid nitrogen and stored at −80 °C until RNA extraction. Blood was collected 
into tubes containing lithium heparin anticoagulant, inverted 10 times, cooled, and centrifuged (1,620 g, 10 mins, 
4 °C) within 30 minutes of collection. Plasma was then collected and stored at −20 °C ready for analysis.

Plasma melatonin analysis.  All plasma melatonin determinations were conducted by Stockgrand Ltd 
(University of Surrey) using a tritium-based assay described elsewhere44. Dim light melatonin onset (DLMO) 
was calculated using the 25% method to permit alignment of gene expression to an endogenous circadian phase 
marker45.

Microarray analysis of biopsy tissue.  RNAlater-ICE solution (Thermo Fisher Scientific) was pre-chilled 
at −80 °C and 10 µl per mg of tissue was added to the frozen adipose tissue. The tissue was then kept for a mini-
mum of 16 hours at −20 °C. RNA was extracted from approx 30 mg of the thawed adipose tissue using the RNeasy 
mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The RNA was then assessed for 
quantity and quality using the NanoDrop 2000 spectrophotometer (LabTech International) and Agilent 2100 
Bioanalyzer (Agilent Technologies) with the RNA 6000 Nano Kit. Samples had an average RNA Integrity Number 
(RIN) of 7.3 ± 0.72 (mean ± SEM). RNA was labelled and amplified to produce cRNA using the one-colour 
low input quick amp labelling kit (Agilent Technologies). Hybridisation of cRNA to arrays (Agilent, human 
whole genome custom microarrays 4 × 44 k as described in the Gene Expression Omnibus, GEO46,47; platform 
ID: GPL15331) was performed for 17 hours at 65 °C following Agilent Technologies instructions. Once slides 
had been washed and scanned using an Agilent microarray scanner, data were extracted using Agilent Feature 
Extraction Software (Agilent [version 11.5.1.1]).

Physiological Variables Mean ± S.D.

Age (years) 22.9 ± 3.4

Body Mass Index (kg/m2) 23.9 ± 2.4

Body Fat (%) 16.8 ± 6.0

Questionnaire Data Mean ± S.D.

Munich Chronotype

       Sleep Time (decimal hr) 23.21 ± 0.39

       Wake Time (decimal hr) 07.88 ± 0.53

Horne-Östberg score 50.0 ± 7.8

Pittsburgh Sleep Quality Index 2.9 ± 1.2

Beck Depression Inventory 1.0 ± 1.2

Epworth Sleepiness Scale 5.1 ± 1.3

Ethnicity N

White 6

African 1

Table 3.  Participant demographics.
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Individual samples were filtered based on the AgilentQC metrics provided by Agilent Feature Extraction 
software. Only one sample was excluded based on our criteria that a sample should have a median coefficient of 
variation (CV) of less than 10% in spike-ins or in non-control replicated probes. For the remaining samples log2 
mRNA abundance values were quantile-normalized across all arrays using the R Bioconductor package limma48. 
Non-control replicated probes, along with their corresponding flags were averaged. Probes with more than 66% 
of samples flagged by Agilent FE software were not considered. The microarray dataset is accessible from GEO 
via accession number GSE87761.

Circadian alignment of subjects was conducted by referencing each participant’s sampling times to the partic-
ipant’s melatonin onset (DLMO value). A single component cosinor, with added linear trend and assuming 24 h 
period, was fitted to the mRNA abundance profile of each microarray probe by a linear mixed model with subjects 
as random effects using the lme4 package from R49. A circadian oscillation was considered if the mixed model fit 
had an R2 value higher than 0.8 and the 95% confidence interval (CI) of the calculated amplitude did not include 
the zero value. The false discovery rate (FDR) was calculated as the expected proportion of the circadian probes 
that are classed as circadian after sample labels within each subject had been randomly permuted. A total of 100 
random permutations were done for each probe independently and FDR was <10%.

Note that most alternative methods for determining rhythmicity make assumptions that are not compatible 
with our data. They assume replicated time points and evenly sampling points, i.e. all data samples come from dif-
ferent participants, there are several measurements for the same time point and sampling is performed at regular, 
fixed intervals. Our dataset has replicated time-series instead of replicated time points. Each participant provided 
data for all time points and although the sampling interval is similar across participants, the sampling time points 
are unique as they are adjusted to each participant’s melatonin profile.

Probes that had been identified as rhythmic underwent unsupervised clustering12,13,50 using a circular 
self-organising map50. Three clusters were identified as the optimal partition based on the Bayesian Information 
Criterion (BIC)51. For further downstream analysis/interpretation, two of these three clusters exhibiting peak 
expression within 5-hours of DLMO were analysed together and defined as evening-peaking. The third cluster 
was defined as morning-peaking.

Gene ontology (GO) enrichment analysis was conducted using Metacore software (Version 6.33, Build 69110). 
GO biological processes and molecular functions that had an enrichment p value and a corresponding FDR of less 
than 0.05 were considered to be significantly enriched52. Molecular interactions were identified/predicted using 
the online search tool STRING (www.string-db.org; V 10.5)53. The gene symbols associated with each transcript 
belonging to a cluster were entered as a multiple protein search. Default settings were used to identify/predict 
interactions with a minimum interaction (confidence) score of 0.4, corresponding to medium level of confidence.

Comparison of rhythmic genes with other circadian datasets.  Genes associated with circadian tran-
scripts were compared to rhythmically expressed genes identified by transcriptome analyses of mouse organs10, 
human whole blood12,13 and Olive Baboon19. Ensembl Biomart54 was used to identify homologous genes between 
organisms and cross-referenced with the gene symbols reported by each of the transcriptome studies. Expression 
profiles and peak times for rhythmic genes in mouse white adipose tissue were extracted from CircaDB55.

Metabolic network analysis.  To predict the activity of metabolic reactions within the human system the 
‘Fast iMAT’ algorithm of MUFINS56, a variant of the iMAT algorithm57,58, was used. Under a constraint-based 
modelling framework, iMAT approaches aim to maximise the congruency between functional -omic data and 
the activity of metabolic reactions in a metabolic model. Here, for each of the five time points assessed, we con-
ducted Fast iMAT analysis using the average (across participants) log2 transcriptome sample and the human 
genome-scale metabolic network model, Recon259, as input. Probes targeting transcripts of the same gene were 
averaged, producing a single mRNA abundance value for a given gene at a specific sampling time point. Averaged 
mRNA abundance values were discretised into three levels (−1, 0, 1) to represent three activity states (inactive, 
neutral, and active, respectively) for that sampling time point, using the percentile thresholds of ≤20% (state 
−1), >20% and ≤80% (state 0), and >80% (state 1). All exchange reactions (reactions that control the uptake/
excretion of metabolites) in the Recon2 model were unbounded. Subsequent outputs of Fast iMAT included the 
predicted activity state (−1, 0, 1) for each of the 10,770 reactions within the Recon2 model for each time point. 
Thus, for each reaction within the metabolic model we obtained a predicted metabolic activity profile across the 
circadian cycle. Metabolic reactions for which we obtained an activity profile exhibiting at least one change in 
state were further analysed. The fit (R2) of each metabolic activity profile to a sinusoidal function was assessed and 
a threshold of R2 ≥ 0.8 was used to identify predicted rhythmic metabolic activity profiles.

Metabolic reactions identified as rhythmic (predicted metabolic activity profile R2 ≥ 0.8) were mapped to the 
genes annotated as responsible for carrying out these reactions in the Recon2 model. The mapped genes were 
subsequently mapped to human KEGG pathway maps60–62 using the R package PathView63 for visualisation.

Data Availability
The microarray dataset is accessible from GEO via accession number GSE87761.

References
	 1.	 Johnston, J. D., Ordovas, J. M., Scheer, F. A. & Turek, F. W. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and 

Humans. Adv Nutr 7, 399–406, https://doi.org/10.3945/an.115.010777 (2016).
	 2.	 Schibler, U. et al. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals. Cold Spring Harb 

Symp Quant Biol 80, 223–232, https://doi.org/10.1101/sqb.2015.80.027490 (2015).
	 3.	 Bass, J. Circadian topology of metabolism. Nature 491, 348–356, https://doi.org/10.1038/nature11704 (2012).

https://doi.org/10.1038/s41598-019-39668-3
http://www.string-db.org
https://doi.org/10.3945/an.115.010777
https://doi.org/10.1101/sqb.2015.80.027490
https://doi.org/10.1038/nature11704


1 1Scientific Reports |          (2019) 9:2641  | https://doi.org/10.1038/s41598-019-39668-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	 4.	 Antunes, L. C., Levandovski, R., Dantas, G., Caumo, W. & Hidalgo, M. P. Obesity and shift work: chronobiological aspects. Nutr Res 
Rev 23, 155–168, https://doi.org/10.1017/S0954422410000016 (2010).

	 5.	 Lowden, A., Moreno, C., Holmback, U., Lennernas, M. & Tucker, P. Eating and shift work - effects on habits, metabolism and 
performance. Scand J Work Environ Health 36, 150–162 (2010).

	 6.	 Partch, C. L., Green, C. B. & Takahashi, J. S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24, 90–99, 
https://doi.org/10.1016/j.tcb.2013.07.002 (2014).

	 7.	 Preitner, N. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the 
mammalian circadian oscillator. Cell 110, 251–260 (2002).

	 8.	 Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57–68 (1999).
	 9.	 Ripperger, J. A., Shearman, L. P., Reppert, S. M. & Schibler, U. CLOCK, an essential pacemaker component, controls expression of 

the circadian transcription factor DBP. Genes Dev 14, 679–689 (2000).
	10.	 Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: 

implications for biology and medicine. Proc Natl Acad Sci USA 111, 16219–16224, https://doi.org/10.1073/pnas.1408886111 (2014).
	11.	 Laing, E. E. et al. Exploiting human and mouse transcriptomic data: Identification of circadian genes and pathways influencing 

health. Bioessays 37, 544–556, https://doi.org/10.1002/bies.201400193 (2015).
	12.	 Moller-Levet, C. S. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood 

transcriptome. Proc Natl Acad Sci USA 110, E1132–1141, https://doi.org/10.1073/pnas.1217154110 (2013).
	13.	 Archer, S. N. et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci USA 111, E682–691, 

https://doi.org/10.1073/pnas.1316335111 (2014).
	14.	 Otway, D. T. et al. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 

2 diabetic. Diabetes 60, 1577–1581, https://doi.org/10.2337/db10-1098 (2011).
	15.	 Loizides-Mangold, U. et al. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes 

cultured in vitro. Proc Natl Acad Sci USA 114, E8565–E8574, https://doi.org/10.1073/pnas.1705821114 (2017).
	16.	 Perrin, L. et al. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. Elife 7, https://doi.

org/10.7554/eLife.34114 (2018).
	17.	 Duffy, J. F. & Dijk, D. J. Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17, 4–13 (2002).
	18.	 Wehrens, S. M. T. et al. Meal Timing Regulates the Human Circadian System. Curr Biol 27, 1768–1775 e1763, https://doi.

org/10.1016/j.cub.2017.04.059 (2017).
	19.	 Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, https://doi.

org/10.1126/science.aao0318 (2018).
	20.	 Froy, O. & Garaulet, M. The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. 

Endocr Rev 39, 261–273, https://doi.org/10.1210/er.2017-00193 (2018).
	21.	 Hughes, M. E. et al. Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 32, 380–393, https://doi.

org/10.1177/0748730417728663 (2017).
	22.	 Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–29, 

https://doi.org/10.1038/75556 (2000).
	23.	 Loboda, A. et al. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med Genomics 2, 7, 

https://doi.org/10.1186/1755-8794-2-7 (2009).
	24.	 Shostak, A., Meyer-Kovac, J. & Oster, H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 62, 2195–2203, 

https://doi.org/10.2337/db12-1449 (2013).
	25.	 Huang, Y. L. et al. Human CLEC18 Gene Cluster Contains C-type Lectins with Differential Glycan-binding Specificity. J Biol Chem 

290, 21252–21263, https://doi.org/10.1074/jbc.M115.649814 (2015).
	26.	 Pasek, R. C., Berbari, N. F., Lewis, W. R., Kesterson, R. A. & Yoder, B. K. Mammalian Clusterin associated protein 1 is an 

evolutionarily conserved protein required for ciliogenesis. Cilia 1, 20, https://doi.org/10.1186/2046-2530-1-20 (2012).
	27.	 Dai, H. et al. Binding model of human coactosin-like protein with filament actin revealed by mutagenesis. Biochim Biophys Acta 

1764, 1688–1700, https://doi.org/10.1016/j.bbapap.2006.06.017 (2006).
	28.	 Grossmann, A. et al. Phospho-tyrosine dependent protein-protein interaction network. Mol Syst Biol 11, 794, https://doi.

org/10.15252/msb.20145968 (2015).
	29.	 Berlanga, J. J., Baass, A. & Sonenberg, N. Regulation of poly(A) binding protein function in translation: Characterization of the 

Paip2 homolog, Paip2B. RNA 12, 1556–1568, https://doi.org/10.1261/rna.106506 (2006).
	30.	 Shu-Nu, C., Lin, C. H. & Lin, A. An acidic amino acid cluster regulates the nucleolar localization and ribosome assembly of human 

ribosomal protein L22. FEBS Lett 484, 22–28 (2000).
	31.	 Fried, S. K., Lee, M. J. & Karastergiou, K. Shaping fat distribution: New insights into the molecular determinants of depot- and sex-

dependent adipose biology. Obesity (Silver Spring) 23, 1345–1352, https://doi.org/10.1002/oby.21133 (2015).
	32.	 Murthy, K. G. & Manley, J. L. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-

end formation. Genes Dev 9, 2672–2683 (1995).
	33.	 Hunger, S. P., Li, S., Fall, M. Z., Naumovski, L. & Cleary, M. L. The proto-oncogene HLF and the related basic leucine zipper protein 

TEF display highly similar DNA-binding and transcriptional regulatory properties. Blood 87, 4607–4617 (1996).
	34.	 Tan, K. L., Webb, G. C., Baker, R. T. & Board, P. G. Molecular cloning of a cDNA and chromosomal localization of a human theta-

class glutathione S-transferase gene (GSTT2) to chromosome 22. Genomics 25, 381–387 (1995).
	35.	 Lin, W. et al. The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res 27, 4468–4475 

(1999).
	36.	 Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. & Lomasney, J. W. A novel bifunctional phospholipase c that is regulated by Galpha 12 

and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276, 2758–2765, https://doi.org/10.1074/jbc.
M008119200 (2001).

	37.	 Kwiek, J. J., Haystead, T. A. & Rudolph, J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial 
quinolines. Biochemistry 43, 4538–4547, https://doi.org/10.1021/bi035923w (2004).

	38.	 Webb, C. T., Gorman, M. A., Lazarou, M., Ryan, M. T. & Gulbis, J. M. Crystal structure of the mitochondrial chaperone TIM9.10 
reveals a six-bladed alpha-propeller. Mol Cell 21, 123–133, https://doi.org/10.1016/j.molcel.2005.11.010 (2006).

	39.	 Bailey, M. & Silver, R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 35, 111–139, 
https://doi.org/10.1016/j.yfrne.2013.11.003 (2014).

	40.	 Duffy, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci USA 
108(3), 15602–15608, https://doi.org/10.1073/pnas.1010666108 (2011).

	41.	 Chang, E., Varghese, M. & Singer, K. Gender and Sex Differences in Adipose Tissue. Curr Diab Rep 18, 69, https://doi.org/10.1007/
s11892-018-1031-3 (2018).

	42.	 Schofield, W. N. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39(1), 5–41 
(1985).

	43.	 Khan, S. et al. Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic 
lipoprotein phenotype. J Lipid Res 43, 979–985 (2002).

	44.	 Fraser, S., Cowen, P., Franklin, M., Franey, C. & Arendt, J. Direct radioimmunoassay for melatonin in plasma. Clin Chem 29, 
396–397 (1983).

https://doi.org/10.1038/s41598-019-39668-3
https://doi.org/10.1017/S0954422410000016
https://doi.org/10.1016/j.tcb.2013.07.002
https://doi.org/10.1073/pnas.1408886111
https://doi.org/10.1002/bies.201400193
https://doi.org/10.1073/pnas.1217154110
https://doi.org/10.1073/pnas.1316335111
https://doi.org/10.2337/db10-1098
https://doi.org/10.1073/pnas.1705821114
https://doi.org/10.7554/eLife.34114
https://doi.org/10.7554/eLife.34114
https://doi.org/10.1016/j.cub.2017.04.059
https://doi.org/10.1016/j.cub.2017.04.059
https://doi.org/10.1126/science.aao0318
https://doi.org/10.1126/science.aao0318
https://doi.org/10.1210/er.2017-00193
https://doi.org/10.1177/0748730417728663
https://doi.org/10.1177/0748730417728663
https://doi.org/10.1038/75556
https://doi.org/10.1186/1755-8794-2-7
https://doi.org/10.2337/db12-1449
https://doi.org/10.1074/jbc.M115.649814
https://doi.org/10.1186/2046-2530-1-20
https://doi.org/10.1016/j.bbapap.2006.06.017
https://doi.org/10.15252/msb.20145968
https://doi.org/10.15252/msb.20145968
https://doi.org/10.1261/rna.106506
https://doi.org/10.1002/oby.21133
https://doi.org/10.1074/jbc.M008119200
https://doi.org/10.1074/jbc.M008119200
https://doi.org/10.1021/bi035923w
https://doi.org/10.1016/j.molcel.2005.11.010
https://doi.org/10.1016/j.yfrne.2013.11.003
https://doi.org/10.1073/pnas.1010666108
https://doi.org/10.1007/s11892-018-1031-3
https://doi.org/10.1007/s11892-018-1031-3


1 2Scientific Reports |          (2019) 9:2641  | https://doi.org/10.1038/s41598-019-39668-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	45.	 Mantele, S. et al. Daily rhythms of plasma melatonin, but not plasma leptin or leptin mRNA, vary between lean, obese and type 2 
diabetic men. PLoS One 7, e37123, https://doi.org/10.1371/journal.pone.0037123 (2012).

	46.	 Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. 
Nucleic Acids Res 30, 207–210 (2002).

	47.	 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41, D991–995, https://doi.
org/10.1093/nar/gks1193 (2013).

	48.	 Smyth, G. K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003).
	49.	 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 

1–48, https://doi.org/10.18637/jss.v067.i01 (2015).
	50.	 Möller-Levet, C. S. & Yin, H. In Intelligent Data Engineering and Automated Learning - IDEAL 2005: 6th International Conference, 

Brisbane, Australia, July 6-8, 2005. Proceedings (eds Gallagher, M., Hogan, J. P. & Maire, F.) 319–326 (Springer Berlin Heidelberg, 
2005).

	51.	 Schwarz, G. Estimating the dimension of a model. Ann Stat 6, 461–464 (1978).
	52.	 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal 

of the Royal Statistical Society. Series B (Methodological) 57, 289–300, https://doi.org/10.2307/2346101 (1995).
	53.	 Szklarczyk, D. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, 

D447–452, https://doi.org/10.1093/nar/gku1003 (2015).
	54.	 Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030, https://doi.

org/10.1093/database/bar030 (2011).
	55.	 Pizarro, A., Hayer, K., Lahens, N. F. & Hogenesch, J. B. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic 

Acids Res 41, D1009–1013, https://doi.org/10.1093/nar/gks1161 (2013).
	56.	 Wu, H. et al. MUFINS: multi-formalism interaction network simulator. NPJ Syst Biol Appl 2, 16032, https://doi.org/10.1038/

npjsba.2016.32 (2016).
	57.	 Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142, https://doi.org/10.1093/

bioinformatics/btq602 (2010).
	58.	 Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific 

metabolism. Nat Biotechnol 26, 1003–1010, https://doi.org/10.1038/nbt.1487 (2008).
	59.	 Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 31, 419–425, https://doi.

org/10.1038/nbt.2488 (2013).
	60.	 Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30 (2000).
	61.	 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. 

Nucleic Acids Res 44, D457–462, https://doi.org/10.1093/nar/gkv1070 (2016).
	62.	 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and 

drugs. Nucleic Acids Res 45, D353–D361, https://doi.org/10.1093/nar/gkw1092 (2017).
	63.	 Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 

29, 1830–1831, https://doi.org/10.1093/bioinformatics/btt285 (2013).

Acknowledgements
This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC; grants BB/
I008470/1 and BB/J014451/1). The authors thank: Dr Benita Middleton (Surrey Assays Ltd) for performing the 
melatonin assays (reagents supplied by Stockgrand Ltd); Surrey CRC staff for clinical sample collection and 
excellent care of study participants; Denis Baker and Mohammed Muse for assistance with setting up the study; 
Dr Michelle Gibbs for helpful discussions regarding study design.

Author Contributions
Study concept and design (D.J.S., S.N.A. and J.D.J.); acquisition of data (S.C., S.M.T.W., C.I., V.L.R. and G.B.); 
analysis and interpretation of data (S.C., S.M.T.W., C.I., C.S.M.L., H.W., E.E.L., S.N.A. and J.D.J.); writing of the 
manuscript (S.C., S.M.T.W. and J.D.J.); revision of the manuscript (all authors).

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-39668-3.
Competing Interests: D.J.S. is a co-director of Stockgrand Ltd and Surrey Assays Ltd.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-39668-3
https://doi.org/10.1371/journal.pone.0037123
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.2307/2346101
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/database/bar030
https://doi.org/10.1093/database/bar030
https://doi.org/10.1093/nar/gks1161
https://doi.org/10.1038/npjsba.2016.32
https://doi.org/10.1038/npjsba.2016.32
https://doi.org/10.1093/bioinformatics/btq602
https://doi.org/10.1093/bioinformatics/btq602
https://doi.org/10.1038/nbt.1487
https://doi.org/10.1038/nbt.2488
https://doi.org/10.1038/nbt.2488
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/bioinformatics/btt285
https://doi.org/10.1038/s41598-019-39668-3
http://creativecommons.org/licenses/by/4.0/

	Circadian regulation in human white adipose tissue revealed by transcriptome and metabolic network analysis

	Results

	Circadian expression of the human adipose transcriptome. 
	Function of circadian genes in the human adipose transcriptome. 
	Comparison with the adipose circadian/diurnal transcriptome in non-human species. 
	Comparison with the human whole-blood transcriptome. 
	Interaction network analysis. 
	Metabolic network analysis. 

	Discussion

	Conclusions

	Methods

	Participants. 
	Study design. 
	Plasma melatonin analysis. 
	Microarray analysis of biopsy tissue. 
	Comparison of rhythmic genes with other circadian datasets. 
	Metabolic network analysis. 

	Acknowledgements

	Figure 1 Circadian expression of the human white adipose tissue transcriptome.
	Figure 2 Circadian rhythms of canonical clock genes in human white adipose tissue.
	Figure 3 Overlap of Gene Ontology biological process terms associated with rhythmically expressed genes in human, mouse and baboon.
	Figure 4 Molecular interaction network associated with morning-peaking genes.
	Figure 5 Predicted rhythmicity of the mitochondrial short-chain, fatty acid elongation pathway.
	Table 1 GO (process) enrichment of human adipose circadian genes.
	Table 2 GO (molecular function) enrichment of human adipose circadian transcripts.
	Table 3 Participant demographics.




