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Artificial intelligence for precision oncology: beyond patient
stratification
Francisco Azuaje 1,2

The data-driven identification of disease states and treatment options is a crucial challenge for precision oncology. Artificial
intelligence (AI) offers unique opportunities for enhancing such predictive capabilities in the lab and the clinic. AI, including its best-
known branch of research, machine learning, has significant potential to enable precision oncology well beyond relatively well-
known pattern recognition applications, such as the supervised classification of single-source omics or imaging datasets. This
perspective highlights key advances and challenges in that direction. Furthermore, it argues that AI’s scope and depth of research
need to be expanded to achieve ground-breaking progress in precision oncology.
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INTRODUCTION
Artificial intelligence (AI), a field of computer science whose
origins can be dated back to the 1940s,1 aims to develop
computational systems with advanced analytical or predictive
capabilities. Such systems are typically designed to solve complex
data-intensive problems that require the prediction of, or reason-
ing about, their underlying phenomena. Machine learning (ML)
represents the most successful branch of AI. ML is concerned with
the development of programs with the capacity to learn from
data. Such a learning capacity is achieved by incrementally
improving on a prediction task based on problem-specific
measurements of performance.2 As defined by Tom Mitchell more
formally: “A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with
experience E”.3

ML has a solid history of applications in biomedical research,4–6

and is becoming a driver of pre-clinical and clinical oncology
research.7,8 Over the past few years, ML’s potential in precision
oncology has become more apparent by the reporting of major
advances in deep learning (DL), and its application to a variety of
diagnostic, prognostic, and other predictive tasks.5,9–11

DL is a sub-branch of ML that comprises a diverse family of
computational models consisting of many (deep) data processing
layers for automated feature extraction and pattern recognition in
large datasets, e.g., multilayer feed-forward neural networks.12,13

DL’s advances in cancer research have been made possible not
only by the availability of larger datasets and accelerated
computing capabilities, but also by developments in statistical
learning theory, algorithms, and open-source software accumu-
lated over the past 4 decades.13

The current visibility of DL in precision oncology has been in
large part due to its impressive performance in classifying imaging
data in different clinical domains. Examples include: the detection
and classification of skin lesions,11 the identification and
categorization of lung cancers,14 and the detection of metastases

in women with breast cancer,15 all of which apply different
versions of a DL technique known as convolutional neural
networks (CNN).12,16

Precision oncology research also benefits from a variety of
alternative ML approaches for supervised and unsupervised
pattern analysis in datasets originating from multiple sources,
including tumor-derived omic profiles. This includes, for example,
the prediction of oncogenes and tumor suppressors with random
forests.17 Key examples of (non-DL) ML techniques include:
probabilistic models, kernel-based models (e.g., support vector
machines), and decision tree-based models (e.g., random forests
and gradient boosting machines; GBM).3,18,19 These and other
approaches have provided the basis for promising predictive
modelling applications in oncology research.20,21 More detailed
examples are provided in the following sections.
To date, ML has played a prominent role in facilitating novel

applications that mainly rely on the supervised identification,
correlation, and classification of complex data patterns for patient
stratification. However, to deliver on the promise of a more precise
prevention, detection, and treatment of cancers, other clinically-
oriented computational modelling challenges must be tackled.
This perspective underlines a selection of such research challenges
or requirements for moving the field forward. It argues that ML
offers, yet to be fully tapped, opportunities for enabling precision
oncology far beyond relatively well-known applications, such as
the supervised classification of single-source omics or imaging
datasets. Moreover, there is a need for modelling approaches that
can assist researchers and clinicians in better understanding
biological causality. To advance and accelerate precision oncology
research, the scope of questions and applications that AI can
address ought to be considerably expanded (Fig. 1).
This article discusses four key challenges in ML for precision

oncology: dealing with multiple data modalities, insufficient data,
interpretability and explanation, and alternative learning
approaches. Each section begins with overviews of significant
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progress achieved to date. The article concludes with an outlook,
outstanding questions, and final remarks.

CHALLENGE A—DEALING WITH MULTIPLE DATA MODALITIES
Precision oncology research increasingly relies on the integrated
analysis of multiple types of omics data, e.g., transcriptomics and
proteomics. ML algorithms and applications have been developed
to automate different aspects of such a process at different levels
of integration.22 This includes the combination of data at the
model’s input level, the combination of features extracted from
multiple data sources independently and of predictions made by
different ML algorithms.23

Recent examples relevant to precision oncology are cancer sub-
typing based on the unsupervised learning of patterns observed
across point mutation, copy number, methylation, and RNA
expression datasets;24 the prediction of several clinical outcomes
(e.g., survival outcomes) of ovarian cancer patients through the
combination of copy number aberration, epigenome and tran-
scriptome datasets using a model that extracts predictive patterns
from both labeled and unlabeled samples;25 and the prediction of
glioblastoma progression based on the integrated analysis of DNA
methylation and matched imaging data.26

Although these are important advances, there is still a need for
expanding the range of predictive integration, in terms of data
types and ML algorithms. An important challenge is the prediction
of patient outcomes or phenotypes based on the integrative
analysis of multi-omics, imaging, and other types of clinical data.
Examples of progress in this area are the prediction of survival of
lung cancer patients using transcriptomics and histopathology
data;27 and the analysis of correlations between magnetic
resonance-derived features, gene expression and patient survival
data.28 Despite such notable progress, additional data types and
ML algorithms remain to be deeply investigated. One way to
improve such approaches is to enhance the integration of image-
derived information with additional layers of omics data and
expert-defined annotations. Moreover, future model assessments
should include additional independent databases with images
representing richer and more complex patterns beyond those
provided by well-established datasets, e.g., the TCGA image
collection.27

The application of ML to multiple data modalities will depend
on the availability of sufficiently large, matched, and carefully
annotated datasets. Future applications will benefit from ML
strategies that are suitable for dealing with relatively small

datasets (next section). Moreover, meaningfully linking multi-
omics to imaging data for predictive modelling will also depend
on advances in sample extraction and processing technologies. A
crucial challenge is the spatially-accurate matching of in vivo
imaging and ex vivo data.29

CHALLENGE B—INSUFFICIENT DATA
ML in general, and DL in particular, rely on large collections of
data. For example, outside cancer research, typical DL systems are
trained with several thousand or even millions of samples
previously labeled by humans.2 Despite the continuing reduction
of the costs of data generation, including molecular readouts
using different technologies, the access to massive high-quality
datasets in precision oncology will be constrained. This challenge
involves a relative lack of large truth or reference datasets
containing, for example, carefully molecularly characterized
tumors and their corresponding detailed clinical annotations.
To overcome this obstacle, researchers can apply transfer

learning (TrLe) methods, which have been developed for different
ML algorithms and applications since the 1990s.30 TrLe’s main
assumption is that predictive features learned in an application
domain X can in principle be applied to a different, but related,
application domain Y.
A prominent example of TrLe in precision oncology is the

automated classification of skin cancers with DL, as reported by
Esteva et al.11 Their classification system consisted of a deep CNN,
which was pre-trained on millions of images representing more
than 1000 generic image classes (the GoogleNet Inception CNN).
CNNs represent a diverse family of multi-layer artificial neural
networks, which are typically applied to the classification of
images. A CNN usually consists of multiple layers of data filters
applied to different regions of an image. Such filters are useful for
automatically extracting features correlated with the content of
the image, e.g., filters specialized in detecting edges and filters
specialized in extracting higher-level abstract attributes. The
GoogleNet Inception model is a widely-applied CNN model, which
was originally trained for accurately classifying millions of generic
images stored in the ImageNet database.31 Such a generic DL
system provides the architecture and learning parameters needed
to recognize features that are commonly relevant across image
processing problems, e.g., segmentation and texture features.
Next, Esteva et al. fine-tuned the system using more than 100K
skin lesion images associated with more than 700 skin diseases.
On hundreds of skin cancer images, they showed prediction

Fig. 1 AI in precision oncology: beyond patient stratification. Selection of key advances and challenges, as well as long-term outlook,
discussed in this perspective. Associations between future outlook and challenges are indicated with arrows connecting the former to the
latter
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performances comparable to those achieved by expert
dermatologists.
More recently, Coudray et al.14 applied a similar TrLe strategy,

also based on the GoogleNet Inception CNN, to predict lung
cancer subtypes using hundreds of whole-slide images. They
reported a prediction performance comparable to that obtained
by pathologists. The potential of TrLe beyond cancer imaging has
also been demonstrated. For instance, Sevakula et al.32 improved
cancer classification using gene expression data and a TrLe
strategy based on a different type of DL technique, called stacked
autoencoders. In their study, autoencoders were used for: (1)
generating compressed data representations that are found in
common across different cancer datasets; and (2) using such
extracted features to initialize the parameters (network weights) of
a DL model.
Apart from DL, TrLe can also be implemented with different ML

models and smaller datasets. Turki et al.33 presented an alternative
TrLe-based approach that offered improved prediction of drug
sensitivity of multiple myeloma patients by transferring patterns
learned in datasets from patients with breast and lung cancers. A
method related to TrLe, multi-task learning, was also shown to
make accurate predictions of drug sensitivity of cancer cell lines.34

This strategy allowed a knowledge exchange between two
different, but complementary, tasks: dimensionality reduction
and classification of gene expression datasets.
To address the challenge of dealing with small datasets, there

are also opportunities beyond TrLe approaches. For instance,
outside precision oncology, the implementation of model building
strategies based on multiple training runs and surrogate datasets
has led to reproducible and clinically-relevant predictions, which
can be as accurate as those obtained from models trained on
much larger datasets.35 Shaikhina and Khovanova,35 for example,
reported a neural network model that accurately and robustly
predicts the strength of bones in osteoarthritis patients using
training datasets as small as 22 samples. They overcame such
small sample limitations by implementing multiple runs of
thousands of models trained simultaneously with different
learning parameters. The resulting models were collectively
evaluated, and the highest performing model was selected for
further testing. To complement this training strategy, they also
generated surrogate datasets to expand the amount of data
available for testing the models. Such surrogate datasets represent
noisy versions of the original data, and are useful for supporting
the evaluation of the trained models in situations when additional
data are not available for model testing.

CHALLENGE C—INTERPRETABILITY AND EXPLANATION
The predictive performance, e.g., the accuracy or precision, of a ML
system is a critical, but by no means the most important
prerequisite for its deployment in the clinic. Another key
requirement is a ML system’s capacity to make predictions that
are sufficiently understandable or interpretable to humans.
Typically, the higher the complexity of a model the harder the
interpretability challenges posed by such models. The problem of
black box models is not limited to DL, but also concerns relatively
less complex models with more user-friendly model representa-
tions, such as random forests, which often comprise hundreds of
decision trees.
Despite ongoing efforts in biomedical and healthcare research,

such as those reported in refs. 36–38, the development of methods
for interpreting ML models is at a relatively early stage, in
particular in the field of precision oncology.39 Interpretability can
be achieved at different levels of data processing and abstraction,
and may not be necessarily constrained to specific models.
Augmenting the interpretability of ML approaches will allow users
not only to peer into a model and understand how predictions are
made, but also, perhaps more importantly, to obtain explanations

for patient-specific predictions. This may necessitate, in some
cases, a general view of which prediction features (e.g., molecular
biomarkers or image features) are important to assign a patient to
a particular clinical outcome. Other problems may need more
detailed and graphical depictions of evidence relationships
underpinning individual predictions.
Outside oncology research, there are several examples of the

potential of interpretability embedded into ML systems. Among
them, a system that predicts the risk of hypoxemia and offers
explanations of the underlying most relevant risk factors in real
time;40 the explanation of object identifications made by a DL
system based on the similarities between the image being
processed and previously analyzed prototypical images;41 and
the automated identification of image regions that match with
parts found in reference images used for training the model.42

Although domain-specific advances are still needed, DL models
are becoming more interpretable through the use of several
attribution methods. Such methods estimate the relevance, or
contribution, of each input feature in a DL network (e.g., pixel
regions) for making a specific prediction (e.g., image classifica-
tion).43 Encouraging progress is also being achieved beyond DL,
such as in the case of random forest models. Relevant examples
include: the estimation of the importance of input features (Gene
Ontology terms) for the prediction of gene expression states in the
aging brain,44 and the extraction of genomic interactions for
explaining gene expression patterns observed in different model
organisms.45

A key advantage of the examples outlined above is their relative
flexibility and ease of adaptation in different modelling tasks
relevant to precision oncology. However, precision oncology lacks
sufficient tools with demonstrated capacity for offering a deeper
or novel understanding of the biological mechanisms behind
patient-specific predictions. This is particularly challenging when
considering the other problems highlighted in this perspective.
Despite the usefulness of “agnostic” or global approaches to
interpretability, a new generation of methods adapted to the
particular needs and questions of precision oncology is warranted.
Yu et al.46 argue that the interpretability of models in biomedical
research will be improved with “visible approaches”. Such
approaches are based on the use of prior biological knowledge
of the biological structure of cells and tissues for guiding the
design of ML systems. Advances in this area will not only increase
the acceptability of ML in the lab and clinic, but also it will aid in
the generation of new hypotheses (e.g., biomarkers and
therapeutic targets) and in understanding the mechanisms
underlying particular pathological states. A potential limitation
of this approach is that in different domain-specific applications
such prior knowledge may not be readily available, and additional
efforts may be required for its acquisition and computer-readable
representation.

CHALLENGE D—ALTERNATIVE LEARNING APPROACHES:
HYBRID MODELS AND REINFORCEMENT LEARNING
Other ML approaches, based on adaptations of those highlighted
above, are also applicable and useful for precision oncology
research. Among them, there is a diversity of strategies that either
bag or boost groups of relatively weak models for jointly achieving
better prediction performance. Boosting and bagging can be
implemented by combining, for example, different sets of decision
trees (as in the case of GBM) or neural networks (as in the case of
network ensembles), respectively.
Reinforcement Learning (ReLe) is a ML branch that has not been

yet widely investigated in oncology research. ReLe-based models
learn to reach better predictive performance by a series of trial and
error steps. Essentially, the model continually senses its environment
and processes the resulting feedback, which includes rewards
assigned to each learning trial, until an optimal performance is
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obtained. Yauney and Shah47 demonstrated the potential of ReLe
for predicting optimal dosing regimens to reduce brain tumor size in
clinical trials. Their model learned temozolomide (TMZ) and
procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea and vin-
cristine (PCV) dosing regimens. The latter was estimated based on
the reduction of mean tumor diameters. Moreover, using simulated
clinical trials, their model reduced dosage concentrations and the
number of treatment cycles in comparison with values produced by
clinical experts. Despite such encouraging progress, an important
challenge is to evaluate these systems in larger independent patient
cohorts, as well as deeper investigations involving different cancers
and treatments.
ReLe-based approaches and their combination with DL models

will be increasingly applied to precision oncology. Recent
examples include: a deep reinforcement learning algorithm for
the early detection of pulmonary nodes in computed tomography
images;48 a ReLe model for controlling chemotherapy dosing in
cancer patients;49 and a deep reinforcement learning for the
estimation and adaptation of radiation protocols for lung cancer
patients.50 Although these and other examples reviewed in detail
by Mahmud et al.51 provide evidence of the potential of ReLe in
precision oncology, deeper investigations involving different and
larger patient cohorts will be needed. Another key requirement is
the incorporation of multiple data modalities associated with
different cancer types and therapeutic strategies.

FUTURE OUTLOOK AND CONCLUDING REMARKS
Based on the progress and challenges outlined above, this section
offers a brief selection of ideas for further advancing and
accelerating the application of ML in precision oncology.
ML will continue moving precision oncology research forward

and closer to the patient. Nonetheless, such efforts will require
oncology and AI researchers to address the gaps and challenges
outlined here and elsewhere.2,5 New ways of thinking about AI will
also be necessary to go well beyond incremental advances in
pattern recognition capacity. Such steps will be decisive to
substantially demonstrate the value of AI for bringing better
preventive, diagnostic, and treatment options to patients.
A key question is how to get oncology and AI experts efficiently

involved in the different stages of the ML development cycle. This
issue is particularly relevant to Challenges B and C (Fig. 1). Such
expert-in-the-loop systems may improve not only the way input
datasets are selected and predictive performance is evaluated, but
also they could guide the learning process.52 The latter may
comprise techniques for dynamically capturing users’ feedback
and its incorporation into the adaptation of the model, e.g., its
architecture and learning parameters. Depending on the applica-
tion domain, users may consist of a combination of clinical- and
computationally-minded experts, e.g., pathologists and ML
engineers working together to fine-tune models. Apart from
developing approaches for giving clinicians feedback on model
predictions, there are opportunities for incorporating expert
knowledge during model design or prior to prediction interpreta-
tion. Outside precision oncology research, examples of strategies
in this direction have been reported by Yu et al.46 and Girardi
et al.52 The latter demonstrated the active role of medical experts
at different stages of a data analysis workflow in the setting of
cerebral aneurysms research. Such a modelling strategy allowed
experts to select the data and metadata necessary for addressing
specific research questions. Moreover, based on interactive
visualizations, the expert could choose multiple combinations of
parameters for building a classification model.
Another area that merits further investigation is the development

of ML systems that can extend their main, originally-intended
application purposes. This issue is of particular relevance to
Challenges A and D. This could include, for example, using a cancer
diagnostic system for suggesting hypotheses about the interplay

between the underlying diagnostic biomarkers and candidate
therapeutic targets associated with a specific patient group. This
may require computational agents working in the background to
discover novel clinically-meaningful associations between molecular
profiles and other clinical variables stored in medical records. This
can be useful to boost and accelerate: (a) the identification of
clinically-relevant subtypes in clinical trials; (b) the discovery of novel
biomarkers or connections between them and clinical outcomes;
and (c) the identification of mechanistic insights for guiding
therapeutic strategies, which can then be fed back to researchers.
Can we give computational systems the ability to infer testable

causality? This will continue representing one of the central
questions for AI research and its application in and beyond
biomedical research. Addressing this question will impact different
aspects of ML research for precision oncology, such as those
concerning Challenges A and C. Satisfactory answers to that
question, even in very specific and controlled environments, will
not be feasible through the straightforward application of existing
ML algorithms or their incremental extensions for simply
achieving greater accuracy or computing efficiency. Advances in
this field will also continue benefitting from ground-breaking
progress previously achieved in the field of probabilistic reason-
ing.53 An example of progress related to this challenge was
recently provided by Yoon et al.,54 who proposed a model that
can estimate individualized treatment effects based on the
analysis of counterfactual clinical outcomes.
It will be indispensable to endow AI with novel capabilities to

achieve ground-breaking progress in predictive generalization.
Thus, advances in this direction should go far beyond an
improvement in prediction accuracy or reproducibility in inde-
pendent datasets from similar patient populations. It will require
AI systems that can generalize across settings in which data
distributions, potential sources of bias, and predictive perfor-
mance objectives vary. Another step forward for aiding research-
ers in addressing this challenge is the development of ML
pipelines that automate the design and evaluation of algorithms
(relevant to Challenges B and D). This is a crucial step not only for
facilitating and accelerating the implementation of models, but
also for delineating to the clinician the reasoning underlying the
model predictions, as exemplified by the AutoPrognosis system by
Alaa and van der Schaar.55

This article provided a perspective on key progress and
challenges in ML for precision oncology research. In particular, it
focused on four such areas concerning: dealing with multiple data
modalities, insufficient data, interpretability and explanation, and
alternative learning approaches. Based on such challenges and
recent progress, it briefly presented recommendations for moving
the field forward.
To improve and democratize precision oncology, the scope of

questions and applications that AI can address needs to be
expanded. This will further augment, without replacing, the
analytical and decision-making capacity of human experts.
Regardless of whether most of these and emerging challenges
can be overcome, one thing is certain: ML will transcend its main
role as a toolbox for accelerating pattern classification in pre-
clinical and clinical research.
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