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Abstract

Motivation: Around 2.1 million new HIV-1 infections were reported in 2015, alerting that the HIV-1

epidemic remains a significant global health challenge. Precise incidence assessment strengthens

epidemic monitoring efforts and guides strategy optimization for prevention programs. Estimating

the onset time of HIV-1 infection can facilitate optimal clinical management and identify key popu-

lations largely responsible for epidemic spread and thereby infer HIV-1 transmission chains. Our

goal is to develop a genomic assay estimating the incidence and infection time in a single cross-

sectional survey setting.

Results: We created a web-based platform, HIV-1 incidence and infection time estimator (HIITE),

which processes envelope gene sequences using hierarchical clustering algorithms and informs

the stage of infection, along with time since infection for incident cases. HIITE’s performance was

evaluated using 585 incident and 305 chronic specimens’ envelope gene sequences collected from

global cohorts including HIV-1 vaccine trial participants. HIITE precisely identified chronically in-

fected individuals as being chronic with an error less than 1% and correctly classified 94% of re-

cently infected individuals as being incident. Using a mixed-effect model, an incident specimen’s

time since infection was estimated from its single lineage diversity, showing 14% prediction error

for time since infection. HIITE is the first algorithm to inform two key metrics from a single time

point sequence sample. HIITE has the capacity for assessing not only population-level epidemic

spread but also individual-level transmission events from a single survey, advancing HIV preven-

tion and intervention programs.

Availability and implementation: Web-based HIITE and source code of HIITE are available at http://

www.hayounlee.org/software.html.

Contact: hayoun@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

HIV incidence quantifies newly infected individuals, making it a key

metric for monitoring the epidemic’s trend and guiding proper re-

source distribution (Brookmeyer, 1991). Furthermore, the efficacy

of an HIV prevention/intervention trial can be evaluated by measur-

ing the incidence rate difference to select optimal prevention/inter-

vention programs (Busch et al., 2010; Incidence Assay Critical Path

Working Group, 2011; Mastro, 2013). Compared to conventional

serologic incidence assays that utilize the readout of HIV-1 specific

antibodies (Kassanjee et al., 2014; Kassanjee et al., 2016; Keating

et al., 2016), the genomic assay has achieved much higher precision

in distinguishing chronic and incident cases (Cousins et al., 2012;

Moyo et al., 2016; Park et al., 2011; 2014; Ragonnet-Cronin et al.,

2012; Wu et al., 2015). For the first time, this genomic incidence
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assay has met the optimal performance standards of false recency

rate (FRR)—the proportion of chronically infected individuals being

misclassified as recently infected—and mean duration of recent in-

fection (MDRI), average timespan in which subjects are classified as

recently infected (Park et al., 2017).

Estimating the onset time of HIV-1 infection is an important

task in HIV-1 prevention as it can aid in identifying risk behaviors

that lead to transmission. Dating an HIV-1 infection can allow us to

detect acute and recent infections, which is beneficial for clinical

management including incidence surveillance, antiretroviral therapy

(ART) initiation and further transmission prevention. Infection time

estimates can be used to infer HIV-1 transmission clusters, which en-

able us to discover geographic and demographic factors of HIV-1

transmission chains (Brenner et al., 2011). Pinpointing transmission

events permits us to monitor and evaluate ongoing prevention ef-

forts. Furthermore, the timing of an infection can be used to identify

transmitted viral strains and thereby characterize breakthrough

viruses’ phenotypes, guiding next-generation vaccine designs.

The analysis of intrahost HIV-1 gene sequence populations has

suggested the potential for molecular dating. Many studies have iso-

lated envelope gene sequences from hundreds of early infected indi-

viduals and created mathematical models to estimate days post

transmission (Keele et al., 2008; Lee et al., 2009). Furthermore,

complexity in sequence diversity resulting from multiple founder

variants has been interpreted by the shifted Poisson mixture model

(SPMM), estimating the time of infection and number of transmit-

ted/founder variants (Love et al., 2016). HIV-1 diversity measured

from next-generation sequencing reads was also used to estimate

time since infection (Puller et al., 2017).

We developed a single algorithm that will estimate the rate of

HIV-1 incidence and approximate the time of transmission for those

recently infected patients. This tool, HIV-1 Incidence and Infection

Time Estimator (HIITE), is designed to function in a single cross-

sectional survey setting, unveiling the epidemic status at both popula-

tion and individual levels. We evaluated HIITE’s performance with

890 incident and chronic specimens collected from global cohorts

from Africa, America, Asia and Europe, including HIV-1 vaccine trial

participants. HIITE is made public as a web-based platform.

2 Materials and methods

2.1 Specimen characteristics
Published HIV-1 envelope gene sequences were collected from 297

chronic specimens (Supplementary Table S1), as previously

described (Park et al., 2017). All chronic specimens were reported to

have a documented HIV infection of at least 2 years. Supplementary

Table S1 presents each specimen’s minimum duration of infection—

days from the first HIV positive date, seroconversion or the first

sample collection. A total of 144 chronic specimens with full envelope

gene sequences and 297 specimens with envelope gene segments (HXB2

7134-7499) were collected, as marked in Supplementary Table S1.

Supplementary Table S2 presents a total of 283 incident speci-

mens comprised of 252 specimens at Fiebig stages I–V and 31 speci-

mens from the Women’s Interagency HIV Study (WIHS) with a

documented infection of less than 1 year. The estimated time since

infection is 17 [13, 28] days for Fiebig stage I, 22 [18, 34] days for

II, 25 [22, 37] days for III, 31 [27, 43] days for IV and 101[71, 154]

days for V, with a 95% confidence interval (Fiebig et al., 2003; Lee

et al., 2009). The minimum and maximum days post-infection were

based on HIV-1 negative and positive test dates for the 31 WIHS

specimens.

We compiled 194 previously published serial specimens from 43

subjects. Their first specimens were collected within 6 months of

transmission (Fiebig stages I–V). This cohort included 179 incident

and 5 chronic specimens for full envelope gene sequences and 186

incident and 8 chronic specimens for envelope gene segments

(HXB2 7134-7499; Supplementary Table S3). Supplementary

Table S3 presents each specimen’s estimated days post infection

with a 95% confidence interval.

We analyzed a total of 997 full envelope gene sequences from

116 RV144 HIV vaccine trial participants (49 vaccine and 67 pla-

cebo recipients) (Edlefsen et al., 2015; Janes et al., 2015; Rolland

et al., 2012). The RV144 trial subject’s vaccine status, subtype, sex

and the elapsed time between the last HIV negative test and speci-

men collection (maximum infection duration) are available at

https://www.hiv.lanl.gov/content/squence/HIV/SI_alignments/set12.

html, where a total of 124 subjects are listed. We selected 116 in-

cident specimens with five or more envelope gene sequences and

an HIV-1 infection duration of less than 2 years (Supplementary

Table S4).

Collectively, we analyzed a total of 585 incident specimens and

305 chronic specimens of the envelope gene segment, HXB2 7134-

7499. Full envelope gene sequences were available from 547 inci-

dent and 149 chronic specimens, as marked in Supplementary

Tables S1–S4. More than half of the specimens were subtype B

(63%), and subtypes A, C, D and recombinants were also repre-

sented (4, 16, 1 and 15%, respectively). Sixty seven percent of sam-

ples were from male subjects, 27% from female subjects and sex

was not reported for the remaining samples. Subjects’ HIV-1 infec-

tion risk factors were reported to be men sex with men (39%), het-

erosexual (23%), intravenous drug users (IDU) (5%) or unknown

(34%). Around 8% of samples were obtained from ART experi-

enced subjects. The proportion of specimens with viral load less

than 1000 copies/ml was 3% and that with CD4þT cell count less

than 200 cells/mm3 (AIDS) was 3%.

2.2 HIITE design
HIITE takes input (five or more) sequences in a fasta format (input

sequences are removed when each task is complete) and ‘Align’ op-

tion is available to align sequences using a global alignment algo-

rithm, Context-Dependent Alignment (Huang, 1994). HIITE

measures the inter-sequence Hamming distance distribution of

aligned sequences and calculates the diversity and variance (mean

and variance of the Hamming distance distribution). The diversity is

given as HD=NB and variance is ðHD2 �HD
2Þ=NB where

HD ¼ 2

N N � 1ð Þ
XN�1

i¼1

XN
j¼iþ1

HDij (1)

HD2 ¼ 2

N N � 1ð Þ
XN�1

i¼1

XN
j¼iþ1

HD2
ij (2)

Here NB is the length of a sequence, N is the number of sequences in

a specimen and HDij is the number of base substitutions (Hamming

distance) between sequences i and j. Additionally, HIITE measures

the genome similarity index (GSI), defined as (Park et al., 2014)

GSIk ¼
Xk

d¼0

Xn

i¼1

Xn

j¼1

fifjI HDij ¼ d
� �( )

; (3)

where n is the number of distinct sequences within a specimen, fi ðfjÞ
is the frequency of the sequence i (jÞ and IðHDij ¼ dÞ is an indicator
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that it is 1 when the Hamming distance between sequence i and j is d

otherwise, 0. An input is classified as chronic when it satisfies

the condition of diversity> hdiversity and GSI< hGSI (C1 in Fig. 1B).

Otherwise, the input is subject to clustering in order to identify a sin-

gle lineage from specimens with multiple founder variants. When the

ratio between variance and diversity, b is greater than the threshold,

hb, the hierarchical agglomerative clustering algorithm (from the

sklearn.cluster python package) is used to identify a single lineage

where b is less than the threshold. The clustering algorithm is ex-

pected to identify a single lineage, excluding recombinant strains, if

any were detected as separate clusters due to their distances from a

major cluster. When the number of sequences within a lineage is too

small (for example, less than 4), the major lineage with minimum b is

used instead to measure the single lineage diversity. When the single

lineage diversity is greater than hdiversity (condition C2 in Fig. 1B), the

input is denoted as chronic. Otherwise, the input is classified as in-

cident and the time since infection along with its 95% prediction inter-

val are estimated using the relationship between time since infection

and single lineage diversity, as described below. HIITE is available at

www.hayounlee.org/software.html and the architecture of HIITE’s

frontend, backend and database is shown in Supplementary Figure S1.

2.3 Mixed effect model and prediction interval
A linear mixed effect model was used to estimate the slope of

time since infection against the single lineage diversity. The model

equation is

ti dð Þ ¼ aþ gið Þd þ cþ lið Þ; (4)

where ti dð Þ is subject i’s time since infection for a given diversity d, a

is the population slope between diversity and time since infection, c

is the population intercept and aþ gi and cþ li are the slope and

intercept of subject i, respectively. The lme4 package in R was used

to estimate the model parameters. The 95% prediction interval of

time since infection was calculated by resampling data from the

fitted linear mixed-effects model using merTools package in R.

This interval covers 95% of the resampled points in the diversity-

time plane.

3 Results

Our goal is to develop a single assay, HIITE, for determining HIV-1

incidence and estimating the time of infection for recently infected

individuals. We first considered two metrics: (i) GSI and (ii) diver-

sity. A recent infection was characterized as the presence of se-

quences with few mutations that was marked by high GSI (Park

et al., 2014; 2017). The incidence assay using GSI as a genomic bio-

marker has demonstrated high precision for HIV incidence assess-

ment, meeting the optimal FRR and MDRI performance standards

(Park et al., 2011; 2014; 2017). Additionally, intrahost HIV enve-

lope gene sequences obtained from individuals with a single founder

showed linear diversification patterns with quadratic attenuation

(Park et al., 2016), demonstrating that the single lineage diversity

can be a marker for determining the onset time of an infection.

Figure 1A compared the GSI (GSI4) and diversity of full envelope

gene sequences collected from incident and chronic specimens. We

compiled 144 chronic specimens whose documented HIV infection

was greater than 2 years, and 252 incident specimens acquired

within 2 years of infection, at Fiebig stages I–V (see Section 2 and

Supplementary Tables S1 and S2). As expected, the chronic speci-

mens were located at the low GSI and high diversity region

(Fig. 1A). Therefore, when a specimen’s diversity was greater than

hdiversity and GSI less than hGSI, HIITE labeled it as chronic (Fig. 1B).

Chronic specimens with longer evolution period may have a

greater diversity than incident specimens. However, when multiple

viruses are transmitted, the sequence diversity of incident specimens

can be as high as chronic diversity. As shown in Figure 1A, 33 out of

252 (13.1%) incident specimens’ diversity overlapped with the

chronic specimens’ diversity, suggesting multiple founder infections.

To properly assess multiple founder cases, we measured the ratio of

variance to diversity, b. At the early infection stage, the Hamming

distance distribution of a single founder’s descendants was approxi-

mately shown to be a Poisson where b ¼ 1 (Lee et al., 2009).

When b was significantly greater than 1, hierarchical agglomerative

clustering was used to identify a single lineage where b < hb. When

the single lineage diversity was greater than hdiversity, the specimen

was classified as chronic, otherwise it was classified as incident

(Fig. 1B).

Our next step was to determine a set of threshold values that

maximize the sum of sensitivity and specificity, provided that speci-

ficity was over 99%. The sensitivity is the proportion of incident

specimens that HIITE designates as incident and specificity is the

fraction of chronic specimens that HIITE identifies as chronic. Note

that the optimal incidence assay performance standards require a

less than 1% FRR (100%-specificity) (https://docs.gatesfoundation.

org/documents/hiv-incidence-rules-and-guidelines.pdf). The receiver

operating characteristic (ROC) analysis showed that the area under

the ROC curve was maximal (0.997) at hb ¼7 and hGSI ¼0.2

(Fig. 1C and Supplementary Fig. S2). With hb ¼7 and hGSI ¼0.2,

hdiversity ¼ 0:78 maximized the sum of sensitivity and specificity,

given that specificity was over 99%. Figure 1D plots the sum of

sensitivity and specificity in the plane of hb and hGSI for

hdiversity ¼ 0:78. Additionally, we examined the previously pub-

lished longitudinal specimens from 40 subjects (Supplementary

Table S3). Figure 2A plots the single lineage diversity dynamics of

this longitudinal sequence data. Here, we used the time interval and

increase in single lineage diversity from each subject’s first sample to

remove infection time uncertainty. As expected, the diversity in-

crease was highly correlated with days from first sample (Fig. 2A).

The correlation coefficient was maximal at hb ¼7 (Fig. 2B).

Figure 2C plots the single lineage distribution of the 252 incident

A B

C D

Fig. 1. HIITE. (A) GSI and diversity of 252 incident and 144 chronic subjects.

The incident subjects were at Fiebig stages I–V and chronic subjects’ docu-

mented HIV-1 infection periods were longer than 2 years. (B) Flow chart of

HIITE: the condition C1 denotes ‘diversity> hdiversity’ and ‘GSI< hGSI’, condi-

tion C2 denotes ‘single lineage diversity> hdiversity’. (C) The ROC curves for

hb ¼7 and hGSI ranging from 0 to 1. The area under the ROC curve was max-

imal (0.997) at hb ¼7 and hGSI ¼0.2 (solid red curve). (D) The sum of sensitivity

and specificity in the plane of hb and hGSI (Color version of this figure is avail-

able at Bioinformatics online.)
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and 144 chronic specimens with hb ¼7, hGSI ¼ 0.2 and

hdiveristy ¼0.78, resulting in a sensitivity of 96.0% and specificity of

99.3%.

To estimate incident specimens’ infection time, we used a

mixed effects model to measure the slope of the single lineage di-

versity dynamics in Figure 2A (see Section 2). The solid red line in

Figure 2A denotes the best fit of the linear mixed effects model for

longitudinal specimens from 40 subjects. Additionally, to quantify

individual sample variability in the diversity-time relationship,

we generated a 95% prediction interval from the mixed-effects

model, which covers 95% of the data points in the diversity-time

plane (Fig. 2A). For example, the single lineage diversity of 0.3%

denotes 148 days from infection with the 95% prediction interval

of [55–242] days.

Next, we attempted to address whether the mixed effects model

fit also holds at chronic stages. The chronic specimens significantly

deviated from the 95% prediction interval of the single lineage di-

versity dynamics where 85% of chronic specimens lied outside of

the band (Fig. 2D). The majority of the chronic specimens’ diversity

was smaller than the projected diversity from incident stages. This

observation suggests that the linear relationship between diversity

and infection time is not valid for long-standing infections.

Therefore, HIITE designated the stage of infection to be either

chronic or incident and estimated the time of infection for those re-

cent subjects.

To cross-validate HIITE’s mixed-effect model estimates regard-

ing time since infection, we used 252 incident specimens in Fiebig

stages I–V in Supplementary Table S2. We compared HIITE’s time

since infection estimates to Fiebig stage estimates. HIITE correctly

classified 240 specimens as incident and all these specimens’ 95%

prediction interval, except for one, overlapped with their respective

Fiebig stage’s 95% confidence interval. Figure 2E showed the esti-

mated time since infection with the 95% prediction interval grouped

in Fiebig stages I–V. Additionally, the correlation between Fiebig

stage estimates and our estimates was statistically significant

(Spearman’s correlation coefficient q¼0.44, P<0.001).

To examine HIITE’s viability in a resource-limited setting, we

evaluated its performance using an envelope gene segment (�400

nucleotide base long). The genomic assay’s applicability for routine

use in cross-sectional surveys can be maximized by utilizing next-

generation sequencing platforms that are optimized for 300–500

base long sequencing (Park et al., 2014). We compiled 11 577 enve-

lope gene segments (HXB2 7134-7499) of 297 chronic and 283 inci-

dent specimens (Supplementary Tables S1 and S2). As observed in

the full envelope gene analysis in Figure 1A, the chronic and incident

specimens showed a disparity in the plane of GSI1 and diversity

(Fig. 3A). With hb ¼ 14, hGSI ¼ 0:45 and hdiversity ¼ 0:96, the 297

chronic and 283 incident specimens showed 84.1% sensitivity and

99.3% specificity. The HXB2 7134-7499 segment estimated a

shorter time since infection than that of the full envelope gene, for a

given single lineage diversity. For instance, when the segment’s di-

versity was 0.3%, time since infection was estimated to be 86 days,

whereas the full envelope gene estimate was 148 days. This can be

A

C D E

B

Fig. 2. HIITE analysis of full envelope gene sequences. (A) Single lineage di-

versity dynamics of longitudinal incident specimens from 40 subjects in

Supplementary Table S3, who were followed since their first sample, which

was taken within 6 months of infection. To remove uncertainty in the timing

of infection, the sampling time interval and increase in the single lineage di-

versity from each subject’s first sample were used. The best fit (solid red line)

of the mixed-effects model to the single lineage diversity dynamics is

presented along with the 95% prediction interval (dotted red lines).

(B) Spearman correlation coefficient between the single lineage diversity dif-

ference and time difference for the 40 longitudinally followed subjects in

Figure 2A. The correlation coefficient was maximal at hb ¼7. (C) With thresh-

olds hb ¼7, hGSI ¼0.2, and hdiveristy ¼0.79, the single lineage diversity distri-

butions of the 252 incident (red) and 144 chronic (blue) specimens resulted in

a sensitivity of 96.0% and specificity of 99.3%. (D) The single lineage diversity

of 144 chronic specimens is plotted along with each specimen’s minimum

documented duration of infection. Around 85% of chronic specimens are

located outside the 95% prediction interval in Figure 2A, violating the linear

relationship between diversity and infection time. (E) HIITE estimated time

since infection of Fiebig stage I–V samples. Among the 252 early infected sub-

jects in Fiebig stages I–V, 12 subjects were misclassified as chronic and

excluded. Each individual’s time since infection estimate (black circles), along

with 95% prediction interval (black lines), is plotted against the 95% confi-

dence interval for days post infection at each Fiebig stage (red boxes).

Subjects at Fiebig stages I/II and II/III were grouped as II and III, respectively.

The correlation between Fiebig stage and our estimate was statistically sig-

nificant (Spearman’s correlation coefficient q¼0.44, P< 0.001) (Color version

of this figure is available at Bioinformatics online.)

A B

C D

Fig. 3. HIITE analysis of HXB2 7134-7499 segment sequences. (A) GSI and di-

versity of HXB2 7134-7499 segment specimens obtained from 283 incident

and 297 chronic subjects in Supplementary Table S1 and S2. (B) Single

lineage diversity increase and days from first sample for the 36 longitudinal

subjects in Supplementary Table S3. The best fit (solid red line) of the mixed-

effects model to the single lineage diversity dynamics is presented along with

the 95% prediction interval (dotted red lines). (C) HIITE estimated time since

infection of 223 Fiebig stage I–V samples. Each individual’s time since infec-

tion estimate (black circles) and its 95% prediction interval (black lines) are

plotted against the 95% confidence interval for days post infection at each

Fiebig stage (red boxes). The 95% prediction intervals of all but four speci-

mens overlapped with Fiebig stage 95% confidence intervals. The correl-

ation between Fiebig stage and our estimate was statistically significant

(Spearman’s correlation coefficient q¼0.31, P<0.001). (D) HIITE’s time since

infection estimates (black horizontal lines) and 95% prediction intervals (black

boxes) for 15 WIHS specimens classified as incident. The infection time inter-

vals obtained from each specimen’s HIV-1 negative and positive test dates

are plotted by red boxes. HIITE estimates overlapped with all specimens’

documented infection time intervals, except for specimen 9. WIHS specimen

1 is from subject TY2947, 2 from JG8930, 3 from JY3080, 4 from SS0342, 5

and 6 from RH7057, 7 from VE6375, 8 and 9 from EJ7211, 10 from TI9054, 11

and 12 from GE6106, 13 from OY9080, 14 from DA1342, and 15 from SI1392

(Supplementary Table S2) (Color version of this figure is available at

Bioinformatics online.)
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explained from the fact that the segment encompasses V3 and V4

loops and thus presents a greater level of diversification in a given

evolution time, as compared to the full envelope gene. In addition,

the HXB2 7134-7499 segment presented a wider 95% prediction

band than the full envelope analysis (Figs. 2A and 3B).

The correlation coefficient between Fiebig stage estimates and

HIITE estimates was 0.31 (P<0.001) for the HXB2 7134-7499 seg-

ment. The 95% prediction intervals of all but four incident speci-

mens overlapped with Fiebig stage 95% confidence intervals (Fig.

3C). Only one out of 15 WIHS specimens classified as incident

showed a deviation from the documented infection time interval

(Fig. 3D). In summary, more incident specimens were misclassified

when HIITE used the HXB2 7134–7499 segment rather than full

envelope gene, resulting in reduced sensitivity (84.1% versus

96.0%). However, HIITE’s time since infection estimate remained

highly consistent with Fiebig stage and documented infection

duration.

HIITE’s performance was further cross validated with specimens

collected from an HIV vaccine trial. HIITE was applied to 49

vaccinee and 67 placebo participants of the RV144 trial (Rolland

et al., 2012). Having the records of each subject’s last HIV-1 nega-

tive test date permitted us to examine whether the HIITE prediction

conformed to this record (Fig. 4A). Using full envelope gene se-

quences, our assay classified 7 out of 116 incident subjects as

chronic. This resulted in 94% sensitivity (Supplementary Fig. S3),

which is in agreement with the 96% sensitivity measured from the

252 incident specimens in Supplementary Table S2. We exemplified

a subject with two founder variants, which HIITE successfully clus-

tered as two different lineages (Supplementary Fig. S4). The 95%

prediction interval of 11 subjects’ estimated time of infection was

located outside each subject’s maximum duration of infection

(Fig. 4A). By adding 7 subjects who were misclassified as chronic to

these 11 subjects, the prediction error for time since infection was

16% (Supplementary Fig. S3).

Next, we further examined the seven cases that HIITE misclassi-

fied as chronic. As depicted in Supplementary Figure S5, these

subjects showed high level of diversity resulting in chronic classifica-

tion. Although subject AA037 showed a pattern of multiple founder

variants, HIITE did not perform clustering on this specimen since it

was classified as chronic by condition 1, C1 in Figure 1B. Our assay

was tuned to provide less than 1% FRR (over 99% specificity) in

order to avoid extraneous clustering, which would have misclassi-

fied chronic samples as incident.

We next compared vaccinated subjects with placebo recipients

of the RV144 trial. We found no differences among their maximum

infection duration (Wilcoxon rank sum test, P¼0.57), diversity

(P¼0.19), GSI (P¼0.21) and variance (P¼0.40). When we com-

pared 48 vaccinated subjects with 61 placebo subjects classified as

incident, time since infection provided by HIITE also did not differ

(P¼0.58).

Figure 4B showed HIITE’s prediction of time since infection

for 96 RV144 trial participants classified as recent, using HXB2

7134-7499 segment. This segment showed 83% sensitivity and 18%

prediction error for time since infection (Supplementary Fig. S3).

These segment-based time since infection estimates were signifi-

cantly correlated with the full envelope gene-based estimates

(Spearman’s correlation coefficient q¼0.56, P<0.001), as shown in

Supplementary Figure S3.

Table 1 summarized the overall performance of HIITE using all

incident and chronic specimens examined in this study. For the full

envelope gene, 547 incident specimens and 149 chronic specimens

showed a FRR of 0.67% [0% –2.0%], MDRI of 492 [404–582]

days, sensitivity of 94.0% [92.0%–95.8%] and prediction error for

time since infection of 13.5% [10.8%–16.5%]. For the envelope

gene segment HXB2 7134-7499, 585 incident specimens and 305

Fig. 4. HIITE’s performance on vaccinated subjects and placebo recipients of RV144 vaccine trial. (A) HIITE estimated the time since infection (open circle) and

95% prediction interval (black line) for 109 RV144 trial participants who are denoted as incident by HIITE. Days from each subject’s HIV negative test date is

marked by a filled black or red circle. Circles in red indicate cases which fell outside of the predicted interval. Out of the 109 subjects, 11 subjects’ 95% prediction

interval was located outside each subject’s documented maximum duration of infection (marked by red dots). (B) The segment HXB2 7134-7499-based estimates

on time since infection (open circle) with 95% prediction interval (black line) for the 96 RV144 vaccine trial participants HIITE classified as incident. Each subject’s

days from last HIV-1 negative sample is denoted by a filled circle (Color version of this figure is available at Bioinformatics online.)

Table 1. HIITE performance

Full envelope (547 incident and 149 chronic) HXB2 7134-7499 (585 incident and 305 chronic)

FRR 0.67% [0%–2.0%] 0.66% [0%–2.0%]

MDRI 492 [404–582] days 358 [312–418] days

Sensitivity 94.0% [92.0%–95.8%] 83.1% [80.0%–86.0%]

Prediction error for time since infection 13.5% [10.8%–16.5%] 19.8% [16.6%–23.1%]
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chronic specimens showed a FRR of 0.66% [0%–2.0%], MDRI of

358 [312–418] days, sensitivity of 83.1% [80.0%–86.0%] and pre-

diction error for time since infection of 19.8% [16.6%–23.1%].

Additionally, we conducted k-fold cross validation by dividing all

the incident and chronic specimens into four subsets, respectively.

To clearly separate out test data from training set, one of the four

sub-sets was used as the test data and the other three were used as

the training set for HIITE. We repeated this process such that each

subset was independently used as the test data. Supplementary Table

S5 shows the algorithm performance averaged over the four test

sets. HIITE is available as an online web tool, and its web interface,

backend workflow and data processing are presented in Section 2

and Supplementary Figure S1.

The 95% confidence intervals were obtained by sampling speci-

mens with replacement.

4 Discussion

We developed a single assay, HIITE, to detect incident infections

and estimate days post infection. HIITE’s innovation is implement-

ing the metrics of HIV-1 envelope gene sequences in order to con-

currently inform the stage of infection and time since infection for

incident cases. The precision of HIITE is unprecedented, meeting op-

timal incidence assay performance standards of less than 1% of

FRR and 1 year of MDRI. HIITE achieved a sensitivity of 94%

(full envelope gene) and 83% (HXB2 7134-7499 segment). This

high level of precision was achieved by estimating the single lineage

diversity of specimens originating from multiple founder variants.

HIITE takes empirical approaches to estimate time since infec-

tion from one individual’s HIV-1 envelope gene sequence popula-

tion. The main driving force for HIV diversification is random

errors made by viral reverse transcriptase (Mansky and Temin,

1995). In addition, heavy immune pressure (Boutwell et al., 2010;

Liao et al., 2013; McMichael et al., 2010; Richman et al., 2003),

viral recombination and APOBEC3G/F-mediated hypermutation

(Simon et al., 2005) collectively contribute to heterogeneous HIV

diversification patterns, resulting in variable evolution rates across

individuals. A mixed effects model was used to properly assess the

variation of the relationship between viral diversity and time of in-

fection across individuals.

HIITE’s design and validation were formulated by congregating

diverse HIV-1 sequences from global cohorts from Africa, America,

Asia and Europe. These global cohorts represented a diverse array

of subtypes, risk behaviors, viral loads and CD4 T cell counts. In the

designing step, HIITE’s algorithm and parameters were determined

by examining hundreds of documented incident and chronic speci-

mens. HIITE was then validated with specimens previously collected

from RV144 vaccine trial participants. These globally accumulated

HIV-1 sequence datasets enabled us to develop a single assay that

simultaneously estimates HIV-1 incidence and infection time, which

is available to the public via a web-based software application.

One of HIITE’s advantages is providing the epidemic’s valuable

information at the population level and at the individual level. At

the population level, precise incidence assessment strengthens epi-

demic monitoring efforts and guides strategy optimization for pre-

vention and intervention programs. Once HIITE measures the

number of individuals classified as incident and chronic from a

cross-sectional survey, the rate of incidence is determined as a func-

tion of these measures and the assay’s FRR and MDRI (Kassanjee

et al., 2012). At the individual level, revealing the timing of HIV-1

transmission facilitates optimal clinical management, including

ART initiation, risk behavior assessment and further transmission

prevention. Additionally, infection time estimates can be used to

identify key populations largely responsible for epidemic spread

(Peitzmeier et al., 2015) and thereby infer HIV-1 transmission clus-

ters. This in-depth epidemic illustration allows us to discover de-

tailed geographic and demographic factors of HIV-1 transmission

chains.

HIITE faces considerable challenges for its routine-use in cross-

sectional surveys. First, it is not viable to sequence plasma specimens

from virally suppressed ART subjects and elite controllers. Thus, an

alternative algorithm such as proviral DNA sequencing can be

sought to isolate genomic signatures. Second, incidence deter-

mination at the population level requires additional epidemic con-

siderations as the assay performance may vary across different

subpopulations. For instance, HIITE’s sensitivity regarding viral

subtype needs to be examined with more diverse subtype specimens.

The majority of our incidence specimens (�97.5%) were obtained

within 1 year of infection. Inclusion of more late-recent specimens

collected from 1 to 2 years since infection can potentially result in

the decrease of HIITE’s sensitivity. Third, assay-specific factors,

including cost and regulatory requirements, ought to be evaluated as

a pre-requisite for HIITE to be employed in cross-sectional surveil-

lance. To reduce sequencing cost, next-generation sequencing meth-

ods can be implemented. In order to minimize sequencing errors of

long-read next-generation sequencing methods, unique barcodes can

be assigned to each HIV-1 cDNA template prior to PCRs and obtain

a consensus sequence from the reads with the same barcode (Kivioja

et al., 2012).

HIITE is the first assay to simultaneously inform two key met-

rics, HIV-1 incidence and infection time, in a highly precise manner.

HIITE suggests a potential paradigm shift from host signal-based

surveys to viral signal-based surveys, advancing HIV-1 prevention/

intervention efforts.
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