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Abstract

KLF1 regulates definitive erythropoiesis of red blood cells by facilitating transcription through 

high affinity binding to CACCC elements within its erythroid-specific target genes including those 

encoding erythrocyte membrane skeleton (EMS) proteins. Deficiencies of EMS proteins in 

humans lead to the hemolytic anemia Hereditary Spherocytosis (HS) which includes a 

subpopulation with no known genetic defect. Here we report that a mutation, E339D, in the second 

zinc finger domain of KLF1 is responsible for HS in the mouse model Nan. The causative nature 

of this mutation was verified with an allelic test cross between Nan/+ and heterozygous Klf1+/− 

knockout mice. Homology modeling predicted Nan KLF1 binds CACCC elements more tightly, 

suggesting that Nan KLF1 is a competitive inhibitor of wild type KLF1. This is the first 

association of a KLF1 mutation with a disease state in adult mammals and also presents the 

possibility of being another causative gene for HS in humans.
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Introduction

Erythroid Krüppel-like factor (EKLF, KLF1) is the founding member of a family of 

transcriptional activators and repressors whose defining feature is their DNA binding motif 

[1]. Three highly conserved C2H2 zinc finger domains at the carboxyl terminus regulate 

transcription by binding to consensus CACCC elements [2]. The zinc finger domains are 

involved in protein-protein interactions that modulate transcriptional specificity of KLF 

proteins [3]. The N-terminal region of KLF proteins is less conserved and contains 

transcriptional activators and/or repressor domains that function through interactions with 

additional transcription factors and chromatin remodelers [4,5].

KLF1 is an essential regulator of erythropoiesis [1,6–9], and as such, its expression is 

limited to erythroid cells of yolk sac, fetal liver, spleen and bone marrow. KLF1 activates a 

diverse set of genes associated with erythropoiesis [10,11], including the β-globin gene 

(Hbb) [12,13] and genes encoding the erythrocyte membrane skeleton (EMS) [14–16]. Gene 

targeting of Klf1 in mice provides insight into the essential role of KLF1 during 

erythropoiesis [6,7,16]. The complete loss of KLF1 in homozygous Klf1−/− embryos results 

in death by 15 days gestation due to defective definitive erythropoiesis [6,7,16]. However, 

heterozygous Klf1+/− knockout mice are haplo-sufficient as they survive to adulthood with 

no deleterious phenotype. A significant finding was that transcription of EMS genes in fetal 

liver from KLF1-null embryos is decreased dramatically [16].

The EMS confers properties of stability, durability and deformability to red blood cells. 

Many studies have shown that qualitative or quantitative disruption of the EMS components 

or its protein-protein interactions leads to inherited hemolytic anemia in mouse and man 

[17,18]. The major proteins of the EMS are α and β spectrin, ankyrin, protein band 3, 

protein 4.1R and protein 4.2. Deficiencies of EMS proteins lead to the hemolytic anemia 

Hereditary Spherocytosis (HS) which is the most common hereditary anemia in persons of 

Northern European descent with an incidence of 1/2,000 [17,18]. Mutations in the EMS 

genes SPTA1 (α-spectrin), SPTB (β-spectrin) and ANK1 (ankyrin), comprise approximately 

70% of the mutations causing HS, while mutations in SLC4A1 (Band 3) and EPB42 (Protein 

4.2) [18,19] constitute another 20% of the patient population. Approximately 10% of HS 

patients have no known genetic defect in EMS genes [19].

HS causing genes have been identified using mouse models [20–22] which have been 

invaluable for elucidating the function of the EMS. The Neonatal anemia mouse (gene 

symbol Nan) [23] provides a unique model to identify a new gene for HS. The 

hematological presentation of the Nan mouse mimics that of human HS in that the 

erythrocytes from adult Nan/+ mice exhibit spherocytosis and osmotic fragility [24]. The 

anemia phenotype of Nan/+ mice also includes decreased red blood cell number, decreased 

hematocrit, decreased hemoglobin and elevated zinc protoporphyrin [24]. Characterization 

of Nan/+ red blood cell ghost proteins show a substantially decreased amount of almost all 
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EMS proteins [24]. We have previously mapped the Nan locus to a critical region on 

Chromosome 8 that contains Klf1 [24]. There are 31 functional genes in this region, none of 

which encode EMS proteins, leaving Klf1 as the most promising candidate gene for Nan. 

We now describe the identification and characterization of a mutation in Klf1 as the 

defective gene in Nan mice. This is the first association of a KLF1 mutation with a disease 

state in adult mammals and also presents the possibility that KLF1 is a causative gene for 

HS in humans.

Results

Phenotypic and Hematologic Characterization of Nan Mice

The Nan mutation was originally generated by N-ethyl-N-nitrosourea (ENU) mutagenesis on 

the C3H101H strain [23] and transferred to C57BL/6J (B6) and WB/ReJ (WB) [24]. In this 

study, we transferred the Nan mutation to the FVB/NJ (FVB) strain. FVB Nan/+ pups can be 

recognized at birth due to their pallor, and their anemia persists into adulthood. Erythrocytes 

from adult FVB Nan/+ mice exhibit spherocytosis (Supplementary Fig. S1) and osmotic 

fragility characteristic of HS. Adult FVB Nan/+ mice present with decreased red blood cell 

number, decreased hematocrit, decreased hemoglobin and elevated zinc protoporphyrin 

(Supplementary Table S1). Thus, the strain background does not affect the anemia 

phenotype caused by the Nan mutation.

Klf1 is Mutated in Nan Mice

We had mapped previously the Nan locus to a 648 Kb region on Chromosome 8 which 

includes 31 genes as determined by the sequence available in GenBank contig NT078575 

[24]. There were no known EMS genes in the Nan critical region. However, Klf1 was 

present and is known to regulate the expression of the EMS genes Ank1, Slc4a1 and Spnb1 
[16], leaving Klf1 as the most promising candidate gene for Nan. DNA sequence analysis of 

the Klf1 gene in Nan/+ mice (B6, WB, and FVB Nan congenic lines) revealed an A to T 

transversion (A1065T) in exon 3 (Fig. 1), resulting in an amino acid substitution of glutamic 

acid to aspartic acid at amino acid position 339 (E339D) in the second zinc finger domain of 

KLF1 (Fig. 2). An A to T transversion is typically seen for ENU-induced mutations. To 

verify that this SNP was unique to Nan, we sequenced this region from 21 different inbred 

mouse strains including the founder strain for Nan mice (C3H101H), 4 other sublines of the 

C3H strain (C3H/HeJ, C3HeB/FeJ, C3H/HeSnJ, C3H/HeOuJ) and the 101H parental strain 

(Supplementary Table S2). Analysis of the Klf1 nucleotide sequence in these different 

strains demonstrates that the A1065T mutation is found only in Nan mice, indicating the 

mutation is specific to Nan.

The remaining 30 genes in the Nan critical genomic region were sequenced, including the 

exons along with the flanking intron boundaries, and no causative gene mutations for Nan 
were found. Only common polymorphisms were found in the remaining 30 genes in the Nan 
critical genomic region. To determine if there was a regulatory gene defect in any of the 30 

genes, RTPCR of bone marrow RNA from Nan and wild type mice showed that there was no 

change in expression (including evidence of alternative splicing) for all 30 genes.
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The amino acid sequence for the three zinc finger domains of all KLF1 proteins indicates 

that the glutamic acid is highly conserved (Fig. 2). The E339D alteration disrupts the 

arginine - glutamic acid - arginine (R1--E--R2) protein motif (Fig. 2) required for 

interactions of zinc finger 2 (ZF2) with its DNA targets [25], and the impact of this change is 

therefore significant. Interestingly, the glutamic acid at this position in ZF2 is conserved in 

all mammalian members of the KLF protein family (Klf1 through Klf17), revealing a strong 

evolutionary selection for this residue in the function of KLF proteins.

Allelic Test Cross Confirms Klf1 is Nan

To document further that the E339D KLF1 mutation in Nan is causative, we established an 

allelic test cross between Nan/+ mice and heterozygous Klf1+/− knockout mice. Adult Nan/+ 

mice exhibit lifelong hemolytic anemia [24], whereas Nan/Nan embryos die in utero at 12.5 

days gestation [23]. Since both Nan/Nan and KLF1-null homozygote knockout mice 

(Klf1−/−) die in utero, we predicted that if Nan and Klf1 were the same gene, then no Nan 
mice with the Klf1 knockout would be born from this allelic test cross. The result of the 

allelic test cross showed that of 91 mice analyzed at birth, 32 Nan mice without the Klf1 
knockout (Nan/+) were generated whereas no Nan mice carrying the Klf1 knockout (Nan/-) 

were detected (Fig. 3a). The probability of exclusively producing 32 Nan/+ mice by chance, 

with no Nan/-mice generated from this test cross, was extremely small (p = 2.3 × 10−10). 

Thus the allelic test cross results provide strong evidence of the candidacy of Klf1 being the 

defective gene for Nan. Some animals generated from these crosses were allowed to develop 

into adulthood and hematological characterization by the one step osmotic fragility test 

confirmed the HS phenotype of the Nan/+ mice. In contrast, Klf1+/+ and Klf1+/− mice were 

normal.

The fate of Nan/-embryos was established by examination of fetuses at different gestational 

ages from timed matings of Nan/+ × Klf1+/− mice. At 14.5 days gestation, Nan/- embryos 

had developed abnormally and died in utero, while the presence of pale Nan/+ and normally 

developing embryos (Klf1+/+ and Klf1+/−) were observed (Fig. 3b). These findings were 

generated by genotyping embryos from this mating for the wild type or A1065T Nan 
mutation of Klf1 by DNA sequencing and for the Klf1 knockout allele by electrophoretic 

analysis of an established PCR reaction (http://jaxmice.jax.org/protocolsdb/). The 

phenotypically normal embryos were genotyped as either Klf1+/+ or Klf1+/−. The results of 

this test cross provide substantial evidence that Klf1 is the mutated Nan gene. In addition, 

12.5 day Nan/-embryos from timed allelic crosses were also found to be dysmorphic 

implicating the allelic nature of the compound heterozygote (Fig. 3c). The dysmorphic 

features in Nan/-embryos are in contrast to the phenotype observed for Klf1−/− embryos 

which exhibit severe anemia without dysmorphology suggesting that the expression of the 

abnormal Nan KLF1 protein manifests itself in a profound phenotype in comparison to 

Klf1−/− embryos [6,7].

Protein Homology Modeling Predicts Altered DNA Binding in Nan KLF1

Since the KLF1 E339D mutation is in a highly conserved zinc finger domain involved in 

DNA binding, we predicted the DNA binding interactions of Nan KLF1 would be altered. 

To test this hypothesis, we examined the impact of the E339D mutation on KLF1 by 
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molecular homology modeling of interactions of wild type and Nan KLF1 proteins with the 

β-globin (Hbb) CACCC DNA element 5’ TTCCACACCCT 3’ [1,7], in which zinc finger 1 

(ZF1) binds CCA, ZF2 binds CAC, and zinc finger 3 (ZF3) binds CCT. Homology modeling 

of KLF1 indicates that the E339D mutation locates in ZF2, where the side chains of the R1--

E--R2 (wild type) and R1--D--R2 (Nan) motifs face inwards towards the DNA major groove 

(Fig. 4a). Consistent with previous models of C2H2 ZF domains [25,26], wild type R1 

(R336) binds the DNA by hydrogen bonding with C1 in the common CACCC binding motif 

and E339 stabilizes this interaction by hydrogen bonding to NH(ε) in the R1 side chain (Fig. 

4b, Supplementary Video S1 and S2). Molecular dynamics simulation (10 picoseconds) 

supports this structural model and also shows the effects of disrupting this stabilizing 

interaction with the E339D mutation in Nan KLF1. In the mutant protein, D339 maintains 

only sporadic interaction with the R1 side chain, forming alternate hydrogen bonds with both 

NH(ε) and the terminal NH2 groups, leaving the R1 side chain free to hydrogen bond with 

the pairing Guanine to C1 in the CACCC motif (Fig. 5c, Supplementary Video S3 and S4). 

The impact of the amino acid change in Nan KLF1 is a 3-dimensional steric change with the 

concomitant suggestion that Nan KLF1 binds tighter to target DNA.

Discussion

HS is a common anemia in persons of Northern European descent and as such has received 

much attention in the last two decades during which HS causing genes have been identified 

[17–19]. However, there remains a sub-population of 10% of HS patients for whom no 

known genetic defect has yet been identified [19]. The identification of the gene causing the 

Nan mutation is significant because the Nan mutant has allowed discovery of a new HS gene 

which may also cause this disease in humans.

Nan mice exhibit an E339D KLF1 mutation and the collective results of the (i) allelic test 

cross, (ii) the anemia of Nan/+ embryos, (iii) the dysmorphology coupled with embryonic 

lethality of Nan/- mice and (iv) protein modeling showing the impact of the amino acid 

change on KLF1 binding, support the causative nature of this mutation. Since both the wild 

type and mutant forms of KLF1 are present in Nan mice, we hypothesize that Nan KLF1 

functions as a competitive inhibitor of wild type KLF1. This leads to ineffective production 

of EMS proteins and concomitant hemolytic anemia. Competitive inhibition also helps 

explain the apparent disconnect between the finding that Nan/+ heterozygous mice are 

anemic, whereas Klf1+/− heterozygous mice are normal and haplo-sufficient. The 

dysmorphology observed in Nan/- embryos demonstrates further the severe dominant-

negative effect of the Nan mutation in homozygote embryos. The dysmorphic phenotype 

differs from the pale phenotype of Klf1−/− embryos [6,7] suggesting the Nan E339D KLF1 

mutation has a profound effect that alters gene expression and development in the absence of 

wild-type KLF1.

We speculate that the putative dominant/negative competitive inhibition that results from the 

alteration in DNA binding of Nan KLF1 impairs the function of wild type KLF1-associated 

transcription complexes that occur normally in the production of β-globin and EMS 

proteins. The recent finding that KLF1-regulated genes are coordinately transcribed at 

transcription factories in erythroid cells [27] provides an intriguing mechanism to speculate 
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how Nan KLF1 may alter transcription of EMS genes. The clustering of KLF1-regulated 

genes at transcription factories is KLF1-dependent, and this coordinated organization of 

transcriptional complexes promotes reinitiation of transcription and boosts the output and 

production of erythroid proteins [27]. The transcriptional complexes may be impaired 

because the mutated Nan KLF1 protein binds tightly to the EMS target genes and blocks the 

activity of wild type KLF1. Furthermore, this model predicts that any mutation in KLF1 that 

alters specificity of DNA binding and/or disrupts interactions with proteins in transcriptional 

complexes may suppress wild type KLF1 activity.

Conclusion

The Nan mutation is the first direct association of a mutation in KLF1 with a disease state in 

adult mammals and the exact mechanism of its effect warrants further investigation. 

Furthermore, we propose that mutations in human KLF1 that suppress the expression of 

EMS genes will also lead to HS and may explain the subpopulation of HS cases with no 

known genetic defect. The putative dominant/negative competitive inhibition of the Nan 
mutation makes the Nan mouse an excellent model system to study the function of KLF1.

Materials and Methods

Mice

All mice were maintained at the University of Missouri-Kansas City (UMKC) Lab Animal 

Center with animal usage guidelines and procedures approved by the UMKC Institutional 

Animal Care and Use Committee. C57BL/6J (B6), WB/ReJ (WB), and FVB/NJ (FVB) 

mice, along with (B6 × 129S4)F1-Klf1tm1Sho knockout mice (JAX stock number 002474) 

were obtained from The Jackson Laboratory (Bar Harbor, ME). Genomic DNAs for mouse 

strains were also obtained from The Jackson Laboratory and the 101H strain sample for 

DNA extraction was a gift from the Medical Research Council Harwell (Oxfordshire, 

England).

Genotyping

Nan mice were recognized by their pallor at birth and were genotyped using either a single-

step osmotic fragility test or testing for zinc protoporphyrin levels. Genomic DNA from 

mouse tissue (tail, spleen, and embryonic) was prepared from samples as described 

previously [28,29]. The presence of the E339D KLF1 Nan mutation was detected by PCR 

amplification and DNA sequence analysis of the third exon of Klf1 (Klf1-ex3F 5’ 

TTGCTTGGAGGGTGGTACTT 3’; Klf1-ex3R 5’ GGAGGTGTGTGTACAGGTAAGTG 

3’). Klf1 knockout mice were genotyped using a separated PCR assay which detected the 

presence or absence of the neomycin resistance cassette within the Klf1 gene, according to 

the procedures developed by The Jackson Laboratory Animal Resource Department (http://

jaxmice.jax.org/protocolsdb/).

DNA sequence analyses

Genomic PCR was performed using primers (Oligo Etc., Wilsonville, OR; IDT Coralville, 

IA) derived from sequences flanking the exons in each gene from the Nan critical region. 
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Gene sequences were obtained from Genbank (http://www.ncbi.nlm.gov) and Ensembl. 

(http://www.ensembl.org). Primer design, PCR conditions, and DNA sequence analyses 

were completed as described previously [29]. The primer sequences utilized for these assays 

are available upon request. SNPs were characterized utilizing the Single Nucleotide 

Polymorphism database (http://www.ncbi.nlm.nih.gov/projects/SNP/). cDNA sequences 

were used to number the nucleotide position of the SNPs in Nan mice. The accession code 

for the gene sequences in the Nan critical region is GenBank contig NT078575.

Molecular Modeling

Homology models of wild type KLF1 and Nan KLF1 proteins were created with 

MODELLER [30] using Zif268 (PDB:1AAY) as the template structure. The bound DNA in 

1AAY was mutated manually with 3DNA [31] to include the common KLF1 binding motif 

CACCC (5’-TCCACACCCT-3’). Instead of optimizing these structures for static analysis, 

molecular dynamics simulations were performed with GROMACS [32] as follows on the 

initial models to examine the full effect of the Nan mutation on the protein-DNA interaction. 

First, the models (protein and bound DNA) were enriched with hydrogen atoms not present 

in the original homology model using the “Add hydrogens” tool at WHATIF [33] and the 

“Add hydrogens” tool at MolProbity [34] and reformatted to the appropriate labeling 

schema for GROMACS input. Second, each model was used to generate a unique topology 

file with the GROMACS pdb2gmx tool and GROMOS96 53a5 force field [35]. These 

structures were then energy-minimized with the GROMACS grompp and mdrun tools and 

placed into theoretical boxes (GROMACS editconf), which were subsequently solvated with 

water molecules (GROMACS genbox). At this point, a 10 picosecond simulation of the 

protein DNA interaction was performed, again using the GROMACS grompp and mdrun 
tools. Analysis of the simulations was performed by visualization of the final structure and 

trajectory files in VMD [36] and high-resolution figures were constructed in PyMol 

(www.pymol.org).

Statistical analyses

Hematological assays were performed on five animals. Differences between groups were 

determined by Student’s t-test using SPSS Statistics 17.0 software (Chicago, IL). 

Differences were considered significant when P < 0.05. The probability (p) of producing 32 

Nan/+ mice and no Nan/-mice was calculated using the product rule; p = (1/2)32.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Identification and characterization of the Klf1 mutation in Nan mice. (a) Wild type Klf1+/+ 

sequence corresponding to the GAA codon for glutamic acid at position 339 of the KLF1 

protein. The single peak of the A dinucleotide involved in the mutation is identified with the 

arrow. (b) Corresponding Klf1 sequence from a heterozygous Nan/+ mouse showing the 

double peak of the A and T dinucleotides, identified with an arrow, at the third position of 

the codon representing the presence of both the mutant Nan and wild type alleles. The codon 

change from GAA to GAT results in the substitution of aspartic acid for glutamic acid.
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Fig. 2. 
Amino acid sequence alignment of the three zinc finger domains from mammalian KLF1 

proteins. This alignment shows the high conservation of these domains, especially the R1-E-

R2, DNA binding motif in zinc finger 2. The R1-D-R2 motif is found only in Nan mice.
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Fig. 3. 
Allelic test cross of Nan/+ mice with Klf1+/− knockout mice. (a) The Nan/+ mice could be 

distinguished phenotypically from the Klf1+/+ and Klf1+/− mice by their pallor at birth. At 1 

to 2 days the pups were sacrificed and the Nan genotype was determined by measuring zinc 

protoporphyrin levels. The Nan Klf1 mutation was verified by PCR amplification and DNA 

sequence analyses of the third exon of Klf1 to detect the A1065T mutation. The Klf1 
knockout genotype was determined by a separated PCR assay which detects the neomycin 

resistance cassette present in the Klf1 knockout mice. No Nan/Klf1− mice were observed at 

birth. (b) E14.5 embryos from a C57BL/6J Nan/+ × (B6 × 129S4)F1-Klf1+/− mating were 

genotyped as above and digitally photographed. Nan/+ embryos were pale but otherwise 

appeared to be developing normally. Klf1+/+ and Klf1+/− embryos were phenotypically 

identical. The Nan/-embryos present with dysmorphology in contrast to either Klf1−/− or 

Nan/Nan embryos as previously described [6, 7, 23]. (c) E12.5 embryos from a C57BL/6J 
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Nan/+ mice × (B6 × 129S4)F1-Klf1(+/−) mating display the same phenotype as E14.5 

embryos.
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Fig. 4. 
Computational modeling and dynamic simulation of wild type and Nan KLF1 protein 

structures with bound DNA. (a) Alignment of computationally generated homology models 

of wild type (orange) and Nan (cyan) KLF1 structures reveals a subtle change in the Nan 
mutant. (b) Analysis of molecular dynamics simulations of the KLF1-DNA interaction 

indicate the formation of a stabilizing hydrogen bond (dashed yellow line) between E339 

and R336 in the wild type KLF1 protein, facilitating interaction of R336 with a cytosine 

base (yellow) in the major groove of the consensus DNA binding motif (5’-CACCC-3’). (c) 

According to the simulation model, the mutation of wild type E339 to an aspartic acid 

(D339) in Nan KLF1 results in an alteration of the side chain hydrogen bond between the 

mutated residue and R336, which then interacts with a guanine base (blue) rather than the 

cytosine of the wild type model.
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