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Plants use surface receptors to perceive information about many aspects of their local environment. These
receptors physically interact to form both steady state and signalling competent complexes. The signalling
events downstream of receptor activation impact both plant developmental and immune responses. Here,
we present a comprehensive study of the physical interactions between the extracellular domains of
leucine-rich repeat receptor kinases (LRR-RKs) in Arabidopsis. Using a sensitized assay, we tested reciprocal
interactions among 200 of the 225 Arabidopsis LRR-RKs for a total search space of 40,000 interactions.
Applying a stringent statistical cut-off and requiring that interactions performed well in both bait-prey and
prey-bait orientations resulted in a high-confidence set of 567 bidirectional interactions. Additionally, we
identified a total of 2,586 unidirectional interactions, which passed our stringent statistical cut-off in only
one orientation. These datasets will guide further investigation into the regulatory roles of LRR-RKs in plant
developmental and immune signalling decisions.
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Background & Summary
Due to their sessile nature, plants must be able to accurately sense ever-changing signals from their local
growth environment. The detection of environmental signals at the cell surface is mediated partly
through the molecular activities of an expanded protein family of leucine-rich repeat receptor kinases
(LRR-RKs), with 225 members in Arabidopsis thaliana (hereafter Arabidopsis)1,2. This family of receptors
controls key developmental and immune responses3,4. In spite of great efforts, the vast majority of these
proteins still have no defined biological functions, and therefore little progress has been made in
understanding how the signals downstream of these receptors are integrated to guide decisions that
regulate both plant development and pathogen defense processes5.

The best-studied examples of LRR-RK activation initially involve a ligand binding to the extracellular
domain (ECD) of a cognate receptor. This induces the physical interaction between the ECDs of the
receptor LRR-RK and a co-receptor LRR-RK to form a signalling competent complex4. The identification
of shared components between immune and developmental signalling complexes provides at least one
possible mechanism for the observed cross-talk between these pathways6. Systematic information about
how members of the LRR-RK family physically interact to affect signalling has not been previously
available, as these proteins are biochemically poorly tractable. To systematically identify the physical
interactions between the ECDs of LRR-RKs in the model plant Arabidopsis, we undertook a large-scale
screening effort. The interactions between LRR-RKs are known to be transient and of low affinity,
especially in the absence of an activating ligand, and we therefore implemented the sensitized
extracellular interaction assay (ECIA) method to test for interactions7. The method is based on the
avidity-based extracellular interaction screen (AVEXIS) technique, which has been optimized to observe
weak interactions. In AVEXIS the prey protein construct includes a pentamerization domain to increase
assay sensitivity8. In a recent publication, we cloned and expressed the ECDs of 200 of the 225
Arabidopsis LRR-RKs in both bait and prey constructs to conduct an all-by-all protein interaction screen,
and thus assayed the total possible LRR-RK interaction space to a 79% completeness9.

Here, we present the data from that study in its most expanded form, including the data used for the
published analyses, an additional analysis that identifies a set of interactions that are found in only one
orientation, and the raw data needed for the implementation of other normalization and hit-calling
protocols. These data provide unique opportunities to formulate experimentally testable hypotheses
aimed at understanding further how physical interactions in LRR-RK complexes control plant
developmental and immune responses. We chose an extremely stringent cut-off to build a high-
confidence interaction network including the most reliable bidirectional interactions. Next, we used these
data to: i- assign biological function to previously uncharacterized receptors, and ii- demonstrate that the
interconnectivity of physical interactions between LRR-RKs is a requisite to appropriately transduce a
complex range of environmental signals to the plant9. However, the use of such stringent statistical cut-
offs to produce the bidirectional dataset has likely resulted in the omission of biologically relevant data.
For instance, interactions occurring only in one of the bait-prey or prey-bait orientations (unidirectional)
have the potential to yield further biological insights.

Methods
The methods described here are expanded from those found in our related work on this topic9.

Expression of the extracellular domains of LRR-RKs.
The ECDs of LRR-RKs present several challenges for effective expression, which has led to a dearth of
studies involving the use of recombinant proteins on a large scale. To express these domains, we first
identified the location of signal peptides and transmembrane domains to determine the boundaries of the
extracellular domains. The signal peptide was identified using SignalP4.010, and the transmembrane
domain predicted using Phobius11, TMHMM12, and other prediction programs for secondary structure
prediction such as InterPro13. We further improved ECD boundary prediction by visual inspection of
primary amino acid sequences to identify the location of the N- and C-terminal cysteine-capping
consensus motifs (CXXXXC and variations thereof). The LRR domains form a hydrophobic core and
these motifs are thought to cap this region and produce disulphide bonds to maintain proper tertiary
structure. We have found that removal of these cysteine caps results in reduced expression and solubility
in vitro. Once the proper sequence was determined, we designed primers that added the additional
sequences required for RecA-mediated Sequence and Ligation Independent Cloning (Supplementary
Table 1). Amplification was done using Phusion Flash Mastermix (Thermo Scientific) according to the
manufacturer’s instructions for 2-step Polymerase Chain Reaction. 176 ECDs were cloned from the
plasmid templates available from the Arabidopsis Biological Resource Center14, while the remaining 24
were cloned from Arabidopsis seedlings and mature leaves using RT–PCR. The amplified sequences were
inserted into the pECIA-2 (for expression as bait) and the pECIA-14 (for expression as a prey) vectors for
expression in Drosophila melanogaster Schneider 2 (S2) cells (vectors were a gift from C. K. Garcia)7.
These expression vectors are modified versions of pMT/BiP/V5 (Invitrogen, V4130-20), which are driven
by a copper-inducible Drosophila metallothionein promoter and contain the Drosophila BiP protein
signal sequence. Sequences were cloned between the existing BiP signal sequence and the C-terminal
epitope tags specific to each vector, and the presence of the correct ECD insert was confirmed with Sanger
sequencing prior to expression.
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LRR-RK extracellular domain expression
All proteins were expressed using Drosophila S2 cells cultured at 27 °C in ESF 921 Insect Cell Culture
Medium, Protein Free (Expression Systems). S2 cells were transiently transfected with expression vectors
using Effectene (Qiagen) per manufacturer’s instructions followed by incubation at 21 °C. Twenty-four
hours later, protein expression was induced with 1 mM CuSO4 and the supernatant was collected after
three days of induction. After harvest the media containing the expressed ECDs was supplemented with
protease inhibitor cocktail (Sigma) and 0.02% NaN3 and then stored at 4 °C until use. Protein expression
was assessed by western blotting using anti-V5 antibodies (Invitrogen) for bait proteins or by alkaline
phosphatase activity quantification for prey proteins.

Primary reciprocal interaction screen
Pairwise reciprocal interaction assays were performed largely as previously described for the extracellular
interactome assay with the modifications noted below7. The media containing the recombinant ECDs was
diluted four-fold with PBS buffer containing 1 mM CaCl2, 1 mM MgCl2 (equilibration buffer), and 0.1%
bovine serum albumin (BSA; Sigma). First, assay plates were prepared by adsorbing 100 μl of media
containing bait proteins fused with an Fc domain, directly to 96-well protein-A-coated plates (Thermo
Fisher Scientific) by overnight incubation at 4 °C. The coated plates were then washed with a PBS solution
containing 0.1% Tween-20 before use to remove any loose protein that could interfere with subsequent
protein interaction. The washed plates were then blocked with 100 μl of equilibration buffer containing
1% BSA for 3 h at 4 °C and then washed once more. 100 μl of the diluted media containing the prey
proteins fused to alkaline phosphatase was then added to the wells and incubated for 2 h at 4 °C and then
washed away prior to adding the alkaline phosphatase (AP) substrate (KPL). Protein interaction between
bait and prey was quantified by measuring the absorbance at 650 nm using a Synergy H4 Multi-Mode
plate reader (BioTek) after 2 h of incubation at room temperature. In addition to quantitative data, an
image was captured of each 96-well plate for visual inspection. Visual inspection ensured that the
included positive (containing the known interaction pair BAK1-BIR415,16) and negative (prey only)
control wells performed as expected, allowing the associated plate to be included in downstream analysis.
The complete set of raw absorbance values was combined into a binary dataset using an in-house
designed script (Platero v0.1.4), and then subjected to post-experimental statistical analysis to remove
both false positive and false negative interactions.

Data analysis
The complete set of raw absorbance values (Data Citation 1) for each protein pair in both directions was
compiled into a data matrix containing 200 columns and 200 rows. To accurately compare absorbance
values, we first needed to eliminate any bias in the data arising from the differential background binding
capacities of the individual bait and prey protein preparations. This may arise due to variation in protein
expression, protein stability, quality of Protein A coated plates, or intrinsic ‘stickiness’ of certain proteins.
We implemented a two-way median polish approach to remove any effects that arose as a result of
specific protein preparations17,18. In the data matrix, each row represented an individual bait preparation,
and each column represented an individual prey protein preparation. The 2-way median polish has the
effect of removing first any assay wide effect (the background level of absorbance in the assay and any
effect of the 96-well plates used), followed by removing any row or column specific effects (e.g. the
intrinsic level of absorbance associated with a given protein preparation). The result is a data matrix
containing only the residual values, which in effect are the amount of the observed absorbance that can be
attributed to the physical interaction between the bait and prey having considered the overall level of
absorbance associated with those proteins screen-wide. Thus, those protein pairs that physically interact
can be viewed as outliers in the dataset, regardless of whether the individual proteins involved show an
overall high or low level of background absorbance in the screen.

The calculated residuals were then used to identify true interactions, which appear as outliers in the
data distribution. We hypothesized that the data should contain mainly protein pairs that show no
physical interaction, with a small subset of pairs that show high levels of interaction. This would result in
a unimodal distribution centred on 0 with a tail to the right containing the interactions. Therefore, any
statistical methods we use must be robust to outliers. We chose to use the median and median absolute
deviation (MAD), rather than mean and standard deviation, to score the screen for this reason. The MAD
is the median of the absolute deviation of each data point from the overall data median. After calculating
the MAD value for the data, we can then relate each individual residual measurement in terms of the
number of MAD units that it is away from the median value.

We chose an arbitrary, yet widely used, score cut-off of 2.5 to identify high confidence interactions,
which results in a set of 2586 protein pairs that interact in one orientation (6.5% of the 40,000
interactions tested, Data Citation 2). In addition, we determined that 567 interactions were found in both
the bait-prey and the prey-bait orientations (2.8% of the 20,100 bidirectional interactions tested including
self-interactions, which are effectively tested in both directions in a single well, Data Citation 3). To
isolate these bidirectional interactions, we chose to use the geometric mean of the scores of the interaction
as measured in the bait–prey and prey–bait orientations to avoid any undue influence by extreme values.
Any value for which the geometric mean product was greater than 2.5 was considered significant for the
highest-quality, bidirectional dataset (Data Citation 3). These two datasets are publicly available online at
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the Bio-Analytic Resource (BAR) under accession (MI 2189, Smakowska-Luzan et al.9, doi:10.1038/
nature25184): http://bar.utoronto.ca/interactions.

Confirmation test of the predicted interactions
To test the accuracy of our predicted physical interactions, we selected all 567 bidirectional interactions
and a random subset of the non-interacting pairs for independent retest. For each of the interactions
retested, the ECDs were newly re-expressed and retested in both the bait–prey and the prey-bait
orientations. To ensure there was no non-specific binding to the plates, we included three prey-only
negative control wells for each interaction tested. To ensure that the assay functioned as expected each
plate also contained a positive control well containing the known interacting proteins BAK1 and BIR4.

To validate the predicted interactions identified in the primary screen, the data from the primary and
retest screens first had to be made directly comparable. As the primary screen scoring methods rely on a
large and unbiased population containing mostly non-interacting protein pairs, we were unable to use the
same procedure for the retest data, which is small, biased in its composition, and contains a majority of
predicted positive interactions. Instead, we implemented a multi-stage hit calling method to ensure
reliable data confirmation. To ensure that the retest and primary screen data could be directly compared,
the absorbance values from the two datasets for each interaction were paired and the data subjected to an
interquartile range (IQR) normalization step. This results in scaled data that can be directly compared.
For both datasets the geometric mean absorbance for each bidirectional interaction was calculated using
the bait-prey and prey-bait values. To identify an appropriate cut-off for identification of positive physical
interactions, the threshold geometric mean value for inclusion in the bidirectional dataset in the primary
screen was calculated and found to be 0.090989. Therefore, any interaction in the retest screen with a
geometric mean value> 0.090989 was considered positive, while all others were considered negative.

Code availability
The custom PLATERO script used for concatenating the interaction absorbance values is available from
https://github.com/AdamMott/platero-code.

Data Records
The raw interaction absorbance data from the CSI has been deposited to FigShare (Data Citation 1), and
has previously been available in Supplementary Table 11 of Smakowska-Luzan et al.9. The column
headings are as follows:

Bait_ECD
This is the unique locus identifier for the Arabidopsis gene from which the nucleic acid sequence
corresponding to the ECD was extracted and cloned into the bait expression plasmid.

Prey_ECD
This is the unique locus identifier for the Arabidopsis gene from which the nucleic acid sequence
corresponding to the ECD was extracted and cloned into the prey expression plasmid.

Abs_650_nm
The raw absorbance value measured in the primary screen for the bait-prey pair listed.

The protein interactions from this publication have been submitted to the IMEx (http://www.
imexconsortium.org) consortium through IntAct19 and assigned the identifier IM-26261 (Data Citation 2),
while those described in Smakowska-Luzan et al.9 can be found in IM-26260 (Data Citation 3).

Technical Validation
The technical validation of the interaction data is presented in detail in Extended Data Figures 1–3 of
Smakowska-Luzan et al.9. In brief, the successful expression of each construct was first verified by western
blot performed either on the S2 cell media or after purification on protein-A coated 96-well plates. Then,
we used the known interacting proteins FLS2 and BAK1 to optimize assay conditions. We ensured that
the protein concentrations contained in the media were sufficient to measure interaction in a ligand-
independent manner due to the sensitized nature of the assay. At sub-optimal protein conditions, we
demonstrate that the interaction can be made ligand-dependent, demonstrating that the expressed
proteins functioned as expected. We further optimized the temperature of protein production and the pH
of the assay to maximize the sensitivity of the interaction assay.

After completing the primary screen, we next tested the reliability and reproducibility of the identified
interactions. To address reproducibility, we compared the values calculated from the primary and retest
screens to each other and to the pooled negative control measurements from both screens, which are
composed of prey only wells (n = 618). As expected, the non-interacting protein pair data distributions
from both the primary and retest screens were statistically indistinguishable from the pooled negative
controls, while the bidirectional interaction sets were statistically significantly different from all negative
sets. We also directly compared the values from the primary screen and retest, which showed a Spearman
correlation coefficient of 0.769, further demonstrating the reproducibility and reliability of the interactions
measured in the screen.
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Usage Notes
There are numerous potential uses for the presented datasets. First, direct physical interaction with a
receptor of known biological function is a valuable predictor of function for uncharacterized receptors.
Thus, the data can be used as a powerful hypothesis generation tool for subsequent experiments to
identify novel actors in well-studied biological processes.

Second, the dataset as a whole can be used to construct a network analysis of the interactions, as we
demonstrated in our recent publication9. Our network analysis is only one such representation, and
similar networks could be built using different input data arising from the unidirectional interaction set,
or from novel analyses of the raw data. A novel analysis of the network structure in fact has recently been
used to derive powerful insights into how pathogens target the network to subvert plant immunity20.
Such network structures are excellent tools for further inspection of other publicly available datasets, such
as mapping gene expression data onto the network to identify co-expressed or co-regulated sub-networks.
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