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Summary

Learning increases the selectivity of cortical representations for behaviorally relevant stimuli, but 

how this occurs through changes in activity of different cell types remains unclear. We imaged 

simultaneously responses of pyramidal cells (PYR), and parvalbumin (PV), somatostatin (SOM), 

and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice 

learned to discriminate two visual patterns. Learning increased the selectivity for both stimuli in 

subsets of PYR, PV and SOM cells but not VIP cells. Strikingly, PV neurons became as selective 

as PYR cells and less correlated with stimulus preference of the local network. A linear dynamical 

system model revealed that PYR to PV interactions reorganized such that stimulus selective PYR-

PV subnetworks emerged during learning. In contrast, SOM cells became decorrelated from the 

local network and may gate selectivity changes. Thus, learning shapes the activity and interactions 

of multiple cell classes as the network becomes more selective for processing of behaviorally 

relevant stimuli.

Introduction

Learning exerts a powerful influence on how cortical circuits process sensory information. 

Cortical representations become more selective when sensory stimuli acquire behavioral 

relevance during learning(Recanzone et al., 1993; Schoups et al., 2001; Yang and Maunsell, 

2004; Rutkowski and Weinberger, 2005; Blake et al., 2006; Li et al., 2008; Wiest et al., 

2010; Gdalyahu et al., 2012; Goltstein et al., 2013; Yan et al., 2014; Poort et al., 2015; Chen 

et al., 2015a). These improvements in sensory coding take place in richly interconnected 

networks containing principal excitatory neurons as well as multiple classes of GABAergic 

interneurons, each with distinct molecular, cellular and connectional properties(Markram et 

al., 2004; Xu et al., 2010; Pfeffer et al., 2013; Kepecs and Fishell, 2014; Jiang et al., 2015). 

Yet how learning changes the responses and interactions of excitatory and inhibitory cell 

classes remains poorly understood.

Specific classes of inhibitory interneurons have been implicated in plasticity of cortical 

circuits with sensory experience and learning(Maffei et al., 2006; Letzkus et al., 2011; 

Kuhlman et al., 2013; Makino and Komiyama, 2015; Kato et al., 2015; Chen et al., 2015b; 

Sachidhanandam et al., 2016; Kaplan et al., 2016). In principle, inhibitory neurons could 

gate the plasticity of inputs onto pyramidal cells(Kuhlman et al., 2013; van Versendaal et al., 

2012; Barnes et al., 2015) as well as inhibit or disinhibit their responses to specific sensory 

stimuli(Makino and Komiyama, 2015; Kato et al., 2015; Chen et al., 2015b; 

Sachidhanandam et al., 2016). However, it is not known whether learning can enhance the 

response selectivity for behaviorally relevant stimuli in specific classes of interneurons and 
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thus provide more stimulus-specific inhibition to the network. Moreover, each interneuron 

class has been suggested to act as a functionally (and thus computationally) homogeneous 

unit during sensory or behavioral events(Kato et al., 2015; Kvitsiani et al., 2013; Pi et al., 

2013; Hangya et al., 2014; Pinto and Dan, 2015; Karnani et al., 2016), but it is not clear 

whether learning leads to homogeneous response changes within each interneuron class. 

Finally, due to the dense connectivity of cortical networks, any change in responses in one 

group of interneurons could lead to complex changes in responses of neurons belonging to 

other classes. The majority of previous work has studied changes in a single class of 

interneurons at a time. A few studies have measured the activity of multiple cell 

classes(Karnani et al., 2016; Kerlin et al., 2010; Wilson et al., 2017), while others have used 

model-based methodologies incorporating multiple cell classes(Kuchibhotla et al., 2017; 

Litwin-Kumar et al., 2016) or have modelled population data from a single cell class(Harris 

et al., 2003; Pillow et al., 2008). However, there are no studies yet that provide a model-

based fit of concurrent activity in multiple identified cell classes that account for the 

influences of the local population on each cell. As a result it is not well understood how 

learning modifies the functional interactions between multiple cortical interneuron classes to 

support more selective processing of sensory information.

To address these questions we imaged simultaneously the responses of four classes of 

cortical neurons: putative pyramidal cells (PYR), and parvalbumin (PV), somatostatin 

(SOM), and vasoactive intestinal peptide (VIP) expressing interneurons in layer 2/3 (L2/3) 

of the primary visual cortex before and after mice learnt a visual discrimination task. In each 

cell class we observed heterogeneous responses to behaviorally relevant visual stimuli as 

well as diverse response changes with learning. Most strikingly, learning led to a strong 

increase in the stimulus selectivity of PV cells. A linear dynamical system (LDS) model 

revealed a reorganization of interactions between PYR and PV cells and the emergence of 

stimulus specific PYR-PV subnetworks. In contrast, SOM-PYR interactions seemed to gate 

response plasticity, as the degree of correlation with the SOM population before learning 

predicted the extent of selectivity increase in PYR cells. Concurrently, SOM cells became 

decoupled from the local network during learning, which may facilitate further plasticity. 

These results underscore the complex and concerted nature of network-wide changes in 

activity across multiple cell classes during learning.

Results

To understand how learning changes the responses of different cell types in V1, we trained 

mice to perform a visual discrimination task in a virtual reality environment(Poort et al., 

2015) (Fig. 1a). Head-fixed mice learnt a go-no go discrimination task (Fig. 1b) in which 

they ran through a virtual approach corridor where the walls displayed a short stretch of 

circle patterns followed by gray for a random distance, before they were abruptly presented 

with one of two grating patterns. Mice were rewarded for licking a reward spout only in 

response to vertical gratings. No punishment was given for licking in response to angled 

gratings (40° relative to vertical). All mice learnt to discriminate the two stimuli, starting at 

chance performance (behavioral d’ close to zero) and reaching our threshold criterion of d’ > 

2.0 within 9 days (~85% accuracy, Fig. 1c, sign test, P = 0.008, N = 8 mice).
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We used viral vectors to express the calcium indicator GCaMP6f(Chen et al., 2013) in V1 

and recorded responses of populations of L2/3 cells during the task before and after learning 

using two-photon calcium imaging. We then re-identified the same neurons in co-registered, 

immunohistochemically stained brain sections of the same animals and detected 

simultaneously imaged PV-positive, SOM-positive and VIP-positive interneurons(Kerlin et 

al., 2010; Keller and Martin, 2015) (Fig. 1d, Supplementary Fig. 1). Immuno-unlabeled cells 

were classified as putative PYR cells(Rudy et al., 2011).

We first characterized the responses of the four cell classes while mice engaged in visual 

discrimination. The activity of many cells in each class was modulated by the onset of the 

task-relevant grating stimuli (Fig. 1e, Supplementary Fig. 2a, b). The average peri-stimulus 

time histograms (PSTHs) revealed cell class-specific response profiles (Fig. 1f, 

Supplementary Fig. 2c); while VIP cell responses preceded and peaked close to stimulus 

onset, the responses of SOM cells were delayed relative to PYR and PV cells after stimulus 

onset (Fig. 1f, Supplementary Fig. 2d). The average activities of SOM and VIP cells 

exhibited opposing response profiles and were thus most different from each other, whereas 

responses of PYR and PV cells were most similar (Fig. 1g, Supplementary Fig. 2e).

Importantly, despite differences in average response profiles, the responses of individual 

neurons within each cell class were highly heterogeneous, including stimulus-evoked 

increases and decreases in activity (Fig. 1e, Supplementary Fig. 2a, b). Within-class 

response diversity was also apparent in responses triggered by the onset of running, and the 

delivery of reward or an odor (Supplementary Fig. 3). Thus, grating-evoked response 

profiles are broadly different between cell classes, but also heterogeneous within each cell 

class.

During learning, the responses to task-relevant grating stimuli changed in subsets of neurons 

from all cell classes, including both increases and decreases in response amplitude 

(Supplementary Fig. 4), as well as changes in the average population response of different 

cell types over the course of several days (Supplementary Fig. 4a, d). This was associated in 

varying degrees of stimulus selectivity changes in individual cells (difference in the 

responses to the vertical and angled grating stimuli normalized by the response variability, 

see Online Methods and Fig. 2a, b). On average, PYR cells significantly increased their 

stimulus selectivity, as reported previously (average absolute selectivity pre learning, 0.31 

± 0.32 (mean ± std), post learning 0.41 ± 0.45, sign test, P < 10-7, N = 1249)(Poort et al., 

2015). Notably, selectivity also increased robustly in PV cells, which became as selective as 

PYR cells for the task-relevant stimuli (Fig. 2b, c, pre learning 0.25 ± 0.20, post learning 

0.43 ± 0.38, sign test, P = 0.002, N = 132). Although on average the selectivity of the SOM 

interneurons did not change significantly (pre learning 0.27 ± 0.18, post learning 0.40 

± 0.46, P = 0.51, N = 58), a specific subpopulation became more selective (Fig. 2b, c): SOM 

cells that were negatively correlated with VIP cells after learning exhibited larger changes in 

selectivity, and had significantly higher selectivity in mice that learned the task 

(Supplementary Fig. 5). In contrast, VIP cells were poorly selective for behaviorally relevant 

stimuli, which remained unchanged after learning (pre learning 0.19 ± 0.17, post learning 

0.19 ± 0.16, P = 1.00, N = 175). We found that changes in eye position, pupil size, eye 

movements, running and licking could not account for the increased selectivity of responses 

Mrsic-Flogel Page 3

Nat Neurosci. Author manuscript; available in PMC 2019 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



after learning (Supplementary Fig. 6d-h). Furthermore, the increased response selectivity 

was specific to the task-relevant grating stimuli and was not observed in the approach 

corridor (Supplementary Fig. 6i).

To test that the increased preference for task-relevant stimuli was not a result of 

nonlinearities in the relationship between a neuron’s firing rate and calcium concentration, 

we performed loose-patch recordings of spiking activity while simultaneously imaging 

GCaMP6 calcium fluorescence in from the three interneuron classes in visual cortex slices. 

We found a near-linear relationship between firing rate and associated calcium fluorescence 

changes for all interneurons (PV = 13, SOM = 17 and VIP = 11 cells). The slope of this 

relationship was lower for PV cells than for SOM and VIP cells (Fig. 2d), possibly reflecting 

different calcium buffering capacities of these GABAergic populations(Hu et al., 2014). The 

relationship between firing rate and fluorescence changes allowed us to infer the firing rates 

of all imaged cells based on measured calcium transients on each trial. The selectivity values 

obtained from the inferred firing rate closely matched those obtained from calcium signals in 

each interneuron class (Fig. 2d, average absolute selectivity of inferred spike rate pre 

learning 0.25, 0.27, 0.20; post learning 0.43, 0.39, 0.20 in PV, SOM and VIP cells, 

respectively). Thus, the observed changes in selectivity during learning were unlikely to 

arise from differences in calcium signal nonlinearities of the three classes of interneuron.

The increased selectivity of PV cells for the grating stimuli was unexpected given that these 

interneurons are thought to broadly integrate the activity of surrounding PYR cells(Kerlin et 

al., 2010; Bock et al., 2011; Hofer et al., 2011; Scholl et al., 2015), thus providing local 

inhibition proportional to the average local activity levels. Indeed, we observed a positive 

correlation between PV cell selectivity and that of the average activity of nearby PYR cells 

(within 100 μm from the PV cell) before learning (Fig. 2e top, slope = 0.2, confidence 

intervals (CI) 0.14 to 0.26, R = 0.49). However, the slope of this relationship decreased with 

learning (Fig. 2e bottom, slope = 0.05, CI 0.02 to 0.10, reduction in slope bootstrap test P < 

10-4, R = 0.26). Thus, the emergence of selective responses for behaviorally relevant stimuli 

in PV cells was associated with their activity becoming more independent from the average 

stimulus preference of the surrounding PYR cells. In contrast, the relationship between the 

selectivity of SOM cells and surrounding PYR cells remained constant with learning (Fig. 

2f, slope before learning 0.14, CI 0.04 to 0.24, and after learning 0.15, CI 0.05 to 0.25, no 

significant change in slope with learning, P > 0.05).

These results suggest that improvements in response selectivity during learning are 

associated with a restructuring of firing interdependencies between different cell types in 

visual cortex. PV cells might become more strongly influenced by external (top down or 

bottom up) inputs and driven less by surrounding PYR cells after learning. Alternatively, 

individual PV cells might acquire more selective input from subsets of PYR cells with 

specific stimulus-preferences during learning, causing them to respond more selectively and 

thus reflect local network activity to a lesser degree. These two hypotheses predict distinct 

changes in firing interdependencies between different cell types in visual cortex over 

learning. If a cell type were to decouple from the surrounding network and become more 

strongly influenced by external inputs, its co-fluctuations with neighbouring cells would 

decrease substantially. In contrast, if a cell maintained selective associations with 
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neighbouring cells of a given stimulus preference, co-fluctuations with those neighbouring 

cells would not strongly decrease after learning. The first, but not the second alternative 

would predict that co-fluctuations between PV neurons and the local network should 

decrease.

To distinguish between these hypotheses, we computed noise correlations during the visual 

stimulus period between pairs of neurons within and across cell classes, before and after 

learning (Figs. 3a-c, Supplementary Fig. 7). Noise correlations reflect the stimulus-

independent trial-to-trial covariability of responses, and thus provide an estimate of mutual 

connectivity and shared inputs(Cohen and Kohn, 2011; Cossell et al., 2015). We found that 

learning decreased noise correlations both within and between cell classes (sign test, all Ps < 

10-4, with the exception of SOM-SOM cell pairs, P = 0.35), indicating that firing in the 

network became more independent (Fig. 3c). Notably, the activity of SOM cells became 

strongly decorrelated from that of PYR, PV and VIP cells, while in contrast PV cells showed 

less decorrelation (Fig. 3c, inset). SOM cells in particular thus seemed to become uncoupled 

from the local network during learning. Changes in eye position, pupil size, eye movements, 

running or licking could not account for the observed changes in noise correlations with 

learning (Supplementary Fig. 8).

We sought to assess in more detail the extent to which the activity of individual cells in the 

network was influenced by inputs from the local network or by stimulus-related, external 

input, and whether changes in these influences over learning could account for the observed 

changes in selectivity and correlations. To address these questions, we fit the data to a linear 

dynamical system (LDS) model which predicted the activity of each cell based on two main 

components: (1) a weighted contribution of inputs from all other simultaneously recorded 

cells on the previous time step (the recurrent input), and (2) a contribution from a trial-

invariant stimulus-locked input (the stimulus input, Fig. 3a, b). When the LDS model is fit to 

the data, the interaction weights organize to best capture the covariance of the responses 

across the population, whereas the stimulus input to each cell organizes to exactly capture 

the average PSTH of each cell (see Online Methods). We also included an input proportional 

to running speed in the model, but this had a negligible contribution to the responses 

(Supplemental Fig. 9a). Any remaining unexplained response variability was assigned to a 

residual term.

To test whether the model captured the data well, we asked if the observed noise correlations 

were accounted for by the interaction weights between cells in the model (see Online 

Methods). On simulating the network responses with all interaction weights set to zero, 

average noise correlations were greatly diminished compared to the data (Fig. 3f, average 

over all cells 0.013 from 0.077). Moreover, both shuffling or setting interaction weights to 

zero heavily disrupted the pattern of individual pairwise noise correlations (Fig. 3g, 

observed versus simulated: R2 = xx; setting weights to zero: R2 = -0.18; shuffling weights: 

R2 = xx). In contrast, simulating responses with the residuals shuffled, which removed any 

correlations not captured by the model, had a much smaller effect on noise correlations and 

left their patterns largely intact (Fig. 3f, g, average over all cells 0.056 from 0.077; observed 

versus simulated; shuffling residuals: R2 = 0.59). Thus, in addition to the PSTH of each cell, 

the model also captured the correlated trial-by-trial response fluctuations across the 
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population using a fixed set of interaction weights (also see Supplementary Fig. 9b for the fit 

to pre learning data). This implies that neuronal co-fluctuations observed before and after 

learning (Fig. 3b) could be accounted for by the interaction weights between cells. 

Interestingly, although the model was blind to cell type, we observed cell class specific 

differences in interaction weights and their changes over learning (Supplementary. Fig. 9c).

Manipulating the interaction weights in the model allowed us to determine the extent to 

which the recurrent local network accounted for the stimulus selectivity of interneurons. We 

deleted all interaction weights and simulated the responses of the population (see Online 

Methods). Pre learning, the selectivity of PV and SOM cells did not change on deleting 

interaction weights. However, post learning, deletion of interaction weights resulted in a 

significant reduction in PV selectivity (Fig. 4a, slope before learning 0.83, CI 0.64 to 1.03, 

slope after learning, 1.41, CI 1.24 to 1.56, P < 10-4), while no such effect was observed in 

SOM cells (slope before learning 0.93 CI 0.72 to 1.18, slope after learning 1.08 CI 0.87 to 

1.35, P > 0.05, also see Supplementary Fig. 10a). Moreover, we found that the effect of 

specifically deleting PYR to PV interaction weights on reducing PV selectivity increased 

after learning (Fig. 4c, top, sign test P < 0.05) while the effect of weight deletions did not 

change with learning for SOM cells (Fig. 4c, bottom, all Ps > 0.05). This result suggests a 

reorganisation of local PYR interaction weights onto PV cells during learning. Indeed, we 

found that post learning, PYR to PV and PV to PV weights were significantly higher 

between cells which preferred the same grating stimulus compared to cells with opposite 

preference (Fig. 4b, P-values < 10-3, Wilcoxon rank-sum test). No such differences were 

observed either pre or post learning for PYR to SOM or SOM to SOM weights (Fig. 

Supplementary 10b, all P-values > 0.05). Thus, selective interactions between PV cells and 

subsets of PYR cells with similar stimulus preference emerged with learning, consistent with 

the learning-related development of selective PYR-PV subnetworks.

To establish whether PYR to PV interaction weights were required to change over learning 

to account for the observed selectivity changes, we jointly fit the LDS model to the pre- and 

post-learning data, while constraining specific parameters (stimulus inputs or interaction 

weights) to remain fixed across learning and allowing others to vary. Holding all or none of 

the parameters fixed gave poor or good fits of selectivity changes during learning 

respectively (Fig. 4e left, indicated by horizontal lines in right panel). When stimulus inputs 

to SOM or PYR cells were held fixed over learning, not surprisingly, the model failed to 

fully capture the observed selectivity changes in these cell types (Fig. 4e right, bootstrap test 

on the difference between model with all parameters free compared to model with 

parameters fixed, both P-values < 0.002, see Online Methods). In contrast, changes in PV 

selectivity were significantly disrupted only when stimulus inputs to PV cells as well as 

PYR to PV interaction weights were both constrained to remain fixed across learning (P < 

0.002, also see Supplementary Fig. 10c). This effect was stronger when PV to PV weights 

were additionally constrained (P = XX). Thus, in contrast to SOM and PYR cells, the 

changes in PV selectivity were affected only when both stimulus-locked drive and local 

interactions with PYR cells were fixed across learning.

Importantly, the increased post learning selectivity of PV cells further boosts the selectivity 

of PYR cells. Specific deletion of PV to PYR weights reduced PYR selectivity, and the 
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effect was greater after learning (Fig. 4f, P < 10-3). In contrast, the effect of deleting SOM 

and PYR cell weights on PYR cells did not change with learning (Fig. 4f, P > 0.05).

Taken together, these results indicate a key functional difference between PV and SOM 

interneurons. Post learning, PV cells may integrate activity more selectively from local PYR 

cells to in turn provide more selective inhibition to the network after learning. In contrast, 

SOM cells appear to become uncoupled from the local network and might be influenced 

more by external sources after learning.

SOM cells target the apical dendrites of PYR cells. This might enable them to gate the 

influence of top-down learning-related signals arriving in layer 1(Yavorska and Wehr, 2016; 

Zhang et al., 2014). Thus, PYR cells that experience SOM mediated dendritic inhibition 

synchronous with their bottom up stimulus drive may be unable to pair top down and bottom 

up inputs, and thus may not exhibit learning-related selectivity changes. We selected PYR 

cells with high noise correlations with the average activity of the SOM population before 

learning (top 20th percentile), and found that this subset of PYR cells exhibited very low 

selectivity increases during learning (Fig. 5a, right, Fig. 5b). Conversely, PYR cells with the 

lowest noise correlations with the SOM population (bottom 20th percentile) showed a 

significantly larger learning-induced increase in selectivity (Fig. 5a, left, Fig. 5b). This 

dependence of PYR cell selectivity changes on their coupling to the SOM population was 

only apparent before but not after learning (Supplementary Fig. 11), and the degree of 

coupling with PV, VIP or PYR populations could not predict selectivity changes in PYR 

cells (Fig. 5b). PV cells, which also significantly increased selectivity with learning 

displayed no such relationship with SOM cell population activity (Fig. 5c), consistent with 

the notion that PV cells may be less influenced by top-down input, but might inherit their 

selectivity from the PYR network.

Discussion

Response heterogeneity within interneuron classes

Previous studies in various cortical areas have suggested that interneurons of a given 

molecularly defined class can act as a relatively homogenous functional unit during specific 

sensory or behavioral events, including high activity correlations between cells of the same 

class(Kato et al., 2015; Sachidhanandam et al., 2016; Kvitsiani et al., 2013; Pi et al., 2013; 

Hangya et al., 2014; Pinto and Dan, 2015; Karnani et al., 2016). We found that activity 

correlations across cell classes (e.g. PV-VIP cell pairs) can be as high as those within a class 

(e.g. PV-PV, VIP-VIP pairs). This implies that functional cell ensembles or subnetworks can 

span multiple cell types. Importantly, however, we observed a substantial within-class 

heterogeneity in responses aligned to onsets of behaviorally relevant grating stimuli, 

running, reward and odour delivery, as well as in learning-related response changes of PV, 

SOM and VIP interneurons in visual cortex. The fact that neurons within each cell class can 

be functionally diverse may not be surprising given that each molecularly defined class 

comprises cells with various morphologies, network connectivity and intrinsic 

properties(Markram et al., 2004; Kepecs and Fishell, 2014; Jiang et al., 2015; Runyan and 

Sur, 2013; Tasic et al., 2016). The challenge for future studies is to establish the extent to 

which the heterogeneous behavior of single cells is captured by the diversity of cell types 
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within an interneuron class and to determine any brain-state and region-specific differences 

in their activity.

Learning increases selectivity of specific cell types and reorganizes their interactions

We show that learning changes the selectivity and functional interactions of multiple classes 

of inhibitory interneurons in V1. Our results demonstrate that the relationship between 

neurons within and across cell classes and their contribution to network function is not 

static, but that it can change with experience(Kuhlman et al., 2011). We found that PV cells 

were poorly selective for task-relevant grating stimuli before learning. This is consistent 

with observations that PV cells broadly integrate inputs from their neighbors and therefore 

display broad visual stimulus tuning in mouse V1(Kerlin et al., 2010; Bock et al., 2011; 

Hofer et al., 2011; Scholl et al., 2015). After learning, however, PV cells became selective 

and their tuning was less related to the preference of the average surrounding network. This 

result implied a rearrangement of interactions between PYR and PV cells. To estimate 

interactions between individual cells in a network, we developed a quantitative measure of 

interaction strength using a linear dynamical system model. The model fit a static weight 

matrix with which it captured the trial to trial activity fluctuations between each cell pair 

during a recording. This provided two significant insights. First, the origins of noise 

correlations in a neural network have been debated. Here we suggest that noise correlations 

can to a large extent be accounted for by concurrent functional interactions with simple 

linear dynamics. Second, in the LDS model PYR to PV interaction weights became specific 

for stimulus preference during learning and significantly contributed to PV selectivity 

changes. The model therefore suggests that learning induces plasticity in excitatory 

connections onto PV cells. Changes in PYR to PV interactions might lead to the emergence 

of stimulus selective PYR-PV subnetworks, implying that PV cells may integrate local 

excitatory inputs more specifically as a function of learned stimulus relevance. These effects 

were cell class specific and not observed in interactions of PYR and SOM cells. Rather, 

SOM cells became uncoupled from the local network during learning, raising the possibility 

that their activity during stimulus presentation increasingly reflects signals from long-range 

inputs (ref Makino,Komiyama). In the future, these hypotheses could be tested directly by 

assessing the local and long-range connectivity of PYR, PV and SOM neurons with specific 

response properties (Hofer et al., 2011; Ko et al., 2011) in naive and expert mice.

Irrespective of origin, the increased selectivity of PV and SOM subpopulations implies an 

increase in the amount of selective inhibition in the local network, which we suggest further 

sharpens cortical representations of task-relevant sensory stimuli(Alitto and Dan, 2010; 

Harris and Mrsic-Flogel, 2013). In contrast, VIP cells remained unselective throughout 

learning, suggesting they do not play a direct role in shaping selective PYR cell responses 

after learning, but they may contribute to the decorrelation of SOM cell activity from the 

local network (Pfeffer and Scanziani; Lee and Rudy, and the recent Sur NN paper).

Increase in PYR selectivity is gated

SOM cells have been shown to be important for learning, as well as exhibiting changes in 

their activity and bouton density in concert with learning-related changes in PYR cells 

(cichon&Gan 2015 nature, Makino Komiyama, chen, Komiyama). Here we find that already 
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in naïve animals the degree of correlated activity with the SOM cell population predicts how 

strongly PYR neurons increase their selectivity during learning. We therefore suggest that 

SOM cells gate learning-related plasticity, by preventing PYR cells that are highly correlated 

with the SOM population from increasing their stimulus selectivity. Pairing of top-down and 

bottom-up inputs arriving in apical and basal dendrites respectively is important for forming 

new associations(Larkum, 2013), and SOM cells preferentially inhibit apical dendrites. If 

PYR cells respond to a visual, bottom-up input that also correlated with activity in a 

subpopulation of SOM cells, they may receive concurrent SOM mediated inhibition of the 

apical dendrite which may prevent the association of visual and top down inputs. High 

correlations with SOM cells may thus prevent learning related plasticity, while low 

correlations are permissive of plasticity. We observe a strong decorrelation of SOM cells 

from the rest of the network during learning. This may serve as a mechanism to increase 

plasticity of V1 circuits in general as visual stimuli become behaviorally relevant. Thus as 

mice learn the behavioral relevance of visual, their visual circuits may become primed to 

more readily undergo additional learning-related changes, for instance to facilitate further 

associations between visual stimuli and behavioral signals.

Our results highlight the existence of functional diversity across and within three 

molecularly defined cell classes of interneurons. The heterogeneous nature of experience-

dependent response changes in different inhibitory neurons suggests that optogenetic 

manipulations of entire cell classes may not be the most appropriate approach for 

investigating the circuit mechanisms of cortical processing and plasticity, and may require 

precisely targeted interventions with cellular resolution(Packer et al., 2015; Rickgauer et al., 

2014). Taken together, our results emphasize that learning-induced changes in cortical 

circuits are highly interdependent, involving interactions between specific subsets of neurons 

across multiple cell classes.

Online Methods

Experimental procedures for the behavioral task and two-photon calcium imaging have been 

described in detail in a previous study(Poort et al., 2015).

Animals and surgical procedures

All experimental procedures were carried out in accordance with institutional animal welfare 

guidelines and licensed by the Swiss cantonal veterinary office. Mice used in this study were 

C57Bl/6 wild type mice obtained from Janvier Labs (4 males, 1 female), crosses between 

Rosa-CAG-LSL-tdTomato (JAX: 007914) and PV-Cre (JAX: 008069) (3 males), and crosses 

between Rosa-CAG-LSL-tdTomato and VIP-Cre (JAX: 010908) (1 male, 1 female) all 

obtained from Jackson Laboratory. The crosses expressed tdTomato in PV and VIP 

interneurons respectively and were used for comparison of immunohistochemical labelling 

with genetic labelling, which was consistently found to be very high (typically >90%). Mice 

aged between postnatal days 48-58 were anaesthetized with a mixture of Fentanyl (0.05 mg 

kg−1), Midazolam (5 mg kg−1), and Medetomidin (0.5 mg kg−1). Additional drugs 

provided analgesia (Rimadyl 6 mg/kg), anti-inflammatory effects (dexamethasone, 1.6 mg/

kg), and reduced mucus secretions (atropine, 0.04 mg kg−1). A circular craniotomy (4 mm 
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diameter) was made over the right primary visual cortex (V1) and a virus expressing 

GCaMP6f (AAV2.1-syn-GCaMP6-WPRE(Chen et al., 2013), vector core, University of 

Pennsylvania Gene Therapy Program) was injected in 1-3 sites using glass pipettes and a 

pressure micro-injection system (Picospritzer III, Parker). The craniotomy was then sealed 

with a glass cover slip and cyano-acrylic glue (Loctite) and a custom machined aluminium 

head-plate was cemented onto the skull using dental cement (C&B Superbond). Antibiotic 

(Baytril 0.4 mg kg−1) and analgesia (buprenorphine 0.08 mg kg−1) was given at the end of 

surgery and repeatedly during recovery of the animal. Imaging and behavioral training 

started approximately three weeks after surgery.

Two-photon calcium imaging

Imaging was performed using a custom-built resonant scanning two-photon microscope and 

a Spectra Physics MaiTai eHP laser with a DeepSee prechirper (< 70 fs pulse width, 80 MHz 

repetition rate) at 940 nm using a Nikon 16× 0.8 NA objective. Images of 750 × 750 pixels 

and a field of view of 350 µm × 350 µm were acquired using a 12 kHz resonant scanner 

(Cambridge Technology) and an FPGA module (PXIe-7965R FlexRIO, National 

Instruments) with an imaging rate of 32 Hz. We used a piezo Z-scanner (P-726.1CD, Physik 

Instrumente) to scan 4 planes with 20 µm spacing, resulting in an imaging rate of 8 Hz for 

each imaging plane.

The microscope was controlled using custom software written in Labview (National 

Instruments). Two-photon calcium imaging of GCaMP6-labelled neurons in layer 2/3 

(typically 150-300 µm below the cortical surface) was performed before and after learning in 

8 mice (pre learning: either first or second day of training; post learning: either day 7, 8 or 9 

of training). Before each recording session the same imaging site was found by matching 

anatomical land marks. Mice with bone re-growth under the window, or poor viral 

expression were excluded from the study.

Image stacks were first corrected for motion by maximizing the cross-correlation of all 

frames with a reference image(Guizar-Sicairos et al., 2008). The reference image was an 

average of 30 successive frames and it was selected by computing for 30 candidate reference 

images (at linearly spaced positions in the recording stack) the x- and y-shift to 100 single 

frames (also linearly spaced) to obtain the most typical reference image with the smallest 

average shift. Regions of interest (ROIs) were selected by manually assigning pixels to 

individual cells by inspecting individual frames, as well as the average and maximum 

projections of the imaging stacks. Frames with motion shifts exceeding 5 microns 

(Euclidean distance) relative to neighbouring frames were rejected (on average 0.11% of all 

frames, range 0 to 1.05%).

Behavioral training and discrimination task

Mice were trained in a visual discrimination task in a virtual corridor over 9 days. Mice had 

free access to water, but were food deprived to maintain at least 85% of their free-feeding 

body weight (typically 85-90%, 2-3 g of standard food pellets per animal per day). Before 

the onset of training in the task, animals became accustomed to handling and gentle restraint 

over two to three days, before they were head-fixed and trained to run on a styrofoam 
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cylinder (20 cm diameter, on a ball-bearing mounted axis) in the dark for two to four days. 

This period was also used to find suitable imaging sites. A reward delivery spout was 

positioned near the snout of the mouse, and licks were detected using a piezo disc sensor and 

custom electronics. The reward was a 10% solution of soya infant milk powder (SMA 

Wysoy) delivered by opening a pinch valve (NResearch) controlled through custom 

electronics. The mice’s running speed on the cylinder was detected with an optical mouse 

(Logitech G700, USB polling rate of 125 to 1000 Hz). This signal was used to control the 

speed at which mice moved through a virtual environment that was presented on two screens 

in front of them. The virtual environment consisted of linear corridors created in a gaming 

engine (Unity), and the position in the environment was controlled by custom software 

written in Labview (National Instruments). The luminance of visual stimuli was corrected 

using a luminance meter (Konica Minolta, LS-100).

A trial started when the mouse was positioned at a starting point in an approach corridor 

with walls showing black (0.1cd m−2) and white (10.9cd m−2) circles on a gray background 

(luminance 5.5cd m−2). Black and white circles were present for a short distance (111 cm) 

followed by a random distance of gray walls (minimum usually 74-185 cm, additional 

random delay chosen from an exponential distribution with mean 37 cm). Mice were then 

randomly teleported to one of two grating corridors (length 111 cm) with either a vertical 

grating pattern (square wave gratings, 100% contrast) or an angled grating pattern (rotated 

40° relative to vertical) on the walls. We estimate the spatial frequency of the gratings in the 

centre of the screen to be ~0.05 cycles per degree, and temporal frequency at the average 

running speed ~4 Hz. In the vertical grating corridor, the mouse could trigger the delivery of 

a reward, a drop of soy milk, by licking the spout after it had entered a ‘reward zone’ a short 

distance (55.5 cm) into the grating corridor (mice typically started licking in anticipation of 

the reward zone). This was considered a 'hit' trial. If an animal did not lick by the end of the 

reward zone, shortly before the end of the vertical grating corridor (92.5 cm from the start), 

it was given a drop of reward by default and this was considered a 'miss' trial (this rarely 

happened after the first few sessions). In the angled grating corridor, the mouse did not 

receive a reward, and a single lick or more in this corridor was considered a 'false alarm' 

(FA) trial. No punishment was given. During initial stages of training the probability of non-

rewarded trials was occasionally increased to discourage unrewarded licking (probability of 

angled grating trials 50-70%). We quantified the performance of the mouse using a 

behavioral d-prime: bd′ = Φ−(H) − Φ−1(F), where Φ−1 is the normal inverse cumulative 

distribution function, H is the rate of hit trials and F is the rate of false alarm trials.

Mice were trained in an olfactory discrimination task in the dark after reaching high levels of 

performance in the visual discrimination task. Mice were presented with one of two odor 

stimuli after a random delay (delays determined using the same method as the visual task): 

10% soya milk odor (go stimulus, licking was rewarded with a drop of soya milk) or 10% 

soya milk with 0.1% limonene mixture odor (no-go stimulus, no reward for licking). Odors 

were delivered through a flow dilution olfactometer calibrated with a mini PID (Aurora) at 

10-20% saturated vapor concentration of the above solutions, and at 1 L/min flow rate.
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Immunohistochemistry and image registration

Brains were fixed by transcardial perfusion with 4 % paraformaldehyde (PFA) in phosphate 

buffer 0.1 M followed by 24 hours of post-fixation in the same solution at 4°C. The whole 

brains were incubated successively in 20 ml of 10 %, 20 % and 30 % sucrose in phosphate 

buffer saline (PBS) at 4°C for 1, 8 and 12 hours respectively. For antigen retrieval, the brains 

underwent two freeze-thaw cycles in liquid nitrogen, followed by three 10 minute washes in 

PBS. The brains were then sliced tangentially to the surface of visual cortex. 80 µm slices 

were cut on a vibratome (Zeiss Hydrax V50) and washed three times for 10 minutes each in 

PBS.

Slices were blocked overnight at room temperature with blocking buffer (Triton X-100 2 %, 

goat serum 10 %, NaN3 0.04 % in PBS), incubated in primary antibodies in blocking buffer 

for twelve hours at room temperature and 2.5 days at 4°C, rinsed three times for one minute 

and three times for ten minutes in PBS and finally incubated in secondary antibodies in 

blocking buffer for one day at room temperature. Slices were then rinsed three times for one 

minute and three times for ten minutes in PBS before being mounted on slides in DABCO-

PVA (2.5 % DABCO, 10 % polyvinyl alcohol (Sigma; Type II), 5 % glycerol and 25 mM 

Tris buffer at pH 8.7).

The following primary antibodies were applied in blocking buffer:

Target Host Dilution Supplier

Parvalbumin Goat 1/500 Swant (PVG-213)

Parvalbumin Mouse 1/1000 Swant (PV 235)

Vasoactive intestinal peptide Rabbit 1/500 ImmunoStar anti-VIP (#20077)

Somastostatin Rat 1/200 Millipore (MAB354)

The following secondary antibodies were applied in blocking buffer:

Genotype Primary Secondary Code number

WT Mouse-anti PV DyLight 405 715-475-150

Rabbit-anti VIP Rhodamine Red X 711-295-152

Rat-anti SOM Alexa 647 712-605-153

PV-tdTomato Mouse-anti PV Alexa 594 715-585-151

Rabbit-anti VIP Alexa 647 711-605-152

Rat-anti SOM DyLight 405 712-475-153

VIP-tdTomato Goat-anti PV DyLight 405 705-475-147

Rabbit-anti VIP Rhodamine Red X 711-295-152

Rat-anti SOM Alexa 647 712-605-153

All secondary antibodies were from Jackson ImmunoResearch and were used at 1/200 

dilution in blocking buffer.
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The slices were imaged with a confocal microscope (Zeiss LSM 700), and confocal z-stacks 

were compared with the previously acquired in vivo imaging planes and z-stacks of the 

recording sites(Keller and Martin, 2015; Kerlin et al., 2010). We determined the approximate 

location of the injection site using GCaMP6 fluorescence, and then used blood vessel 

patterns and cellular morphology to identify the imaging site. We matched at least three 

points in the confocal z-stack to points in the in vivo imaging plane to obtain a 3-

dimensional transformation matrix which was applied to the entire confocal z-stack. Cells 

were then manually identified and assigned to cell classes based on immunostaining.

To measure the overlap of labelling by transgenic mouse lines and immunostaining, we 

performed immunostaining on PV, SOM, and VIP transgenic mice (2 mice each) expressing 

tdTomato in the respective interneuron class, and determined the percentage of overlap 

between immunostaining and transgenic marker expression, which in each case was above 

90%.

Genotype Immuno + Also tdTomato + Percent

PV 250 236 94.4%

SOM 167 164 98.2%

VIP 152 139 91.4%

We further measured the percentage of transgenically labelled cells that were also identified 

as belonging to the same interneuron class by immunostaining:

Genotype tdTomato + Also Immuno + Percent

PV 312 289 92.6%

SOM 278 195 70.1%

VIP 233 188 85.4%

These values are, however, more relevant for studies relying on transgenic mouse lines to 

categorise cell classes. The lower values of overlap for SOM cells have been previously 

reported (Pfeffer et al 2013, Tasic et al, 2016).

Simultaneous loose patch and fluorescence measurements

Crosses between PV-Cre (JAX: 008069) and Rosa-CAG-LSL-tdTomato (JAX: 007914) (4 

males) were injected with GCaMP6f expressing AAV virus (AAV1.Syn.GCaMP6f.WPRE, 

vector core, University of Pennsylvania Gene Therapy Program) and VIP-Cre (JAX: 

010908, 3 males) or SOM-Cre (JAX: 013044, 3 females) mice were injected with 

AAV1.Syn.Flex.GCaMP6f.WPRE.SV40, (vector core, University of Pennsylvania Gene 

Therapy Program) in V1 at P27-P40. After 9-16 days, animals were anesthetized with 

pentobarbital (150mg/kg), and brains were intracardially perfused by ice cold Choline 

Chloride solution containing 110 mM Choline chloride, 11.60 mM Na- ascorbate, 7 mM 

MgCl2, 3.10 mM Na-Pyruvate, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, and 25 
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mM D-Glucose bubbled with a 5% CO2, 95% O2 mixture. Coronal slices of cortex (350 µm) 

were cut in the same Choline chloride solution using a VT1200S vibratome (Leica). After 30 

minutes at 32 degrees in ACSF containing 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 

26 mM NaHCO3, 2 mM MgCl2, 1 mM CaCl2, 25 mM D-Glucose bubbled with a 5% CO2, 

95% O2 mixture, slices were brought to room temperature.

Loose patch recordings were performed at 32 degrees in ACSF. Pipettes (5-7 MΩ) filled with 

5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES, 4 mM MgATP, 0.3 mM NaGTP, 10 

mM Na-phosphocreatine, 0.1% w/v biocytin were lowered in the bath. Fluorescent cells 

were targeted for loose-cell patch clamp recordings (seal > 50 MΩ). To induce activity in 

otherwise quiet slices, a second glass pipette with a potassium-based solution was placed 

above the recorded cell and slight positive pressure was applied to trigger activity in the 

recorded neuron. This pipette contained a mixture of internal solution and a diluting solution 

in 3:7 ratio. The diluting solution contained 150 mM NaCl, 2.5 mM KCl and 10 mM Hepes 

(final potassium concentration 48 mM). Electrophysiological signals were acquired using a 

Multiclamp 700B (Axon instruments) filtered between 1 Hz to 2 KHz and digitized at 20 

KHz with a NI-PCI6229 (National Instruments) and acquired with WinWCP (John 

Dempster, University of Strathclyde). Extracellular spikes were detected using custom 

Python scripts. Simultaneous two-photon imaging was performed at 34 Hz frame rate using 

a custom-built two-photon microscope at a wavelength of 940 nm, through a 16× water 

immersion objective (0.8 NA, Nikon).

Data analysis

Image stacks were corrected for motion and regions of interest (ROIs) were selected for each 

cell in each session. Raw fluorescence time series F(t) were obtained for each cell by 

averaging across pixels within each ROI. Baseline fluorescence F0(t) was computed by 

smoothing F(t) (causal moving average of 0.375s) and determining for each time point the 

minimum value in the preceding 600s time window (120s for slice experiments). The change 

in fluorescence relative to baseline, ΔF/F, was computed by taking the difference between F 

and F0, and dividing by F0. To test the influence of out-of-focus fluorescence from the 

neuropil surrounding cell body ROIs on neuronal responses of the difference cell classes and 

learning-related changes, we repeated the key analyses after adapting the method of Ref. 

(Chen et al., 2013) to correct for neuropil contamination of calcium traces (Supplementary 

Fig. 12). We created for each cell a neuropil mask by extending the ROI by 25μm and taking 

all pixels that were more than 10μm away from the cell boundary, excluding pixels assigned 

to other cells. In order to avoid including segments of dendrites and axons in the neuropil 

mask, we computed for each pixel the average fluorescence across all frames, and excluded 

pixels that were more than 2 standard deviations brighter than the mean across all pixels in 

the neuropil mask. We performed a robust regression on the relationship between the 

fluorescence values of the ROI and neuropil mask. By inspecting the slope of this regression 

in a sample of our dataset we obtained a factor of 0.7 by which we multiplied the neuropil 

mask fluorescence before subtracting it from the ROI fluorescence.

Responses were analyzed separately for the vertical and angled grating corridor by aligning 

neuronal activity to the onset of the grating corridors. We used a Wilcoxon rank-sum test to 
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determine if the response of a cell (average ΔF/F in a time window of 0-1 s after grating 

onset) was significantly different for vertical and angled gratings (P < 0.05). Within stimulus 

conditions, we used a Wilcoxon signed-rank test to determine if the response (ΔF/F 0-1 s) to 

the gratings significantly increased or decreased relative to baseline (-0.5 to 0 s). For 

visualizing stimulus-evoked responses (Fig. 1e, Supplementary Fig. 2a, b, 3, 4b, e), and for 

computing the change in stimulus-evoked responses with learning (Supplementary Fig. 4c, 

f), we subtracted the pre-stimulus baseline (-0.5 to 0 s before stimulus onset) from the 

average response. For each cell the time to peak response was defined as the time of the 

maximum of the average ΔF/F in the window of -0.5 to 2s after stimulus onset 

(Supplementary Fig. 2d).

We quantified the selectivity of each cell as the selectivity index (SI) which was the 

difference between the mean response (0-1 s) to the vertical and angled grating divided by 

the pooled standard deviation. The selectivity was positive for cells that preferred the 

vertical grating and negative for cells that preferred the angled grating. To obtain an average 

measure of the selectivity across a population of cells including vertical and angled 

preferring cells, we took the average of the absolute selectivity of all cells (Fig. 2c, 

Supplementary Fig. 6d-i, 13a). We calculated the selectivity of the local PYR population 

around each interneuron by averaging the responses of all PYR cells within 100 μm 

distance, to the two grating stimuli (Fig. 2e, f, Supplementary Fig. 12b). We calculated the 

confidence intervals for the slope in these figures by a bootstrap procedure where we 

randomly selected cells with replacement 10,000 times to obtain the 2.5 and 97.5 

percentiles. The P value was given by the percentage of bootstrapped pre learning slope 

values that were lower than the post learning slope multiplied by two (two-sided test). To 

compute Δselectivity, we subtracted the absolute selectivity before learning from the 

absolute selectivity after learning (Fig. 4c, d, Fig. 5, Supplementary Fig. 12).

We used the Pearson correlation coefficient to quantify the correlation between responses of 

pairs of cells. The significance of the correlation coefficient was determined using Student's 

t-distribution. Noise correlation was computed by first subtracting for each trial and each 

cell the average responses across all trials. For analysis of noise correlations, we only 

included cells that significantly responded to grating stimulus onset. Changes in noise 

correlations with learning between different cell types (Fig. 3c) were tested using a sign test 

with Bonferroni correction on all cells imaged pre and post learning.

We quantified differences between response profiles across cell classes by using a random 

forest decoder that classified cells to one of two classes based on the shape of the baseline-

subtracted response, averaged across all trials (Fig. 1g, Supplementary Fig. 2e). For a given 

pair of cell classes, we randomly picked 20 cells of each class to train the decoder (Matlab 

function TreeBagger, with parameters Ntrees = 32, minleaf = 5), and estimated the accuracy 

of classifying the cells of each class that were not used for training. We repeated this 

procedure 1000 times for each pair of cell classes and averaged the accuracies to obtain the 

classification accuracy. In order to estimate the baseline classification accuracy, we 

randomly picked two sets of 20 cells from the same class to train the decoder. We used the 

classification accuracy (CA) to compute the similarity score SS = 2×(1-CA), where scores 

near 0 and 1 indicate low and high PSTH similarity between two cell classes respectively.
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Linear Dynamical System Model

We modelled the activity of simultaneously imaged neurons with a linear dynamical system. 

The interactions between cells were modelled with a weight matrix A. The stimulus drive to 

each cell was modelled with an input time series It which was fixed across trials for a given 

stimulus, where t indexes time relative to stimulus onset. Running speed related modulation 

of responses was modelled as an additional input ξ vt
i , where ξ is a vector of coefficients 

that determines the speed modulation of each cell and vt
i  is the running speed at time 

sample t on trial i.

For each imaging session, we extracted trials spanning -1 to 1 s relative to the onset of the 

two grating stimuli and the onset of the grey pre-stimulus period. We then fit the following 

equation to the population activity:

rt
i = rt − 1

i + Art − 1
i + It + ξ vt

i + et
i (1)

by minimizing the sum of squared residuals over all trials i and time samples 

t:rt
i A; It; ξ = arg min(∑i, t ∥ et

i ∥2) . A and ξ were set to be stimulus-independent whereas 

It was set to be stimulus-dependent. The model was fit separately pre and post learning to 

infer the changes in parameters with learning. Model fitting was blind to cell type.

To analyze the contribution of neuronal interactions and stimulus-related inputs to the 

measured responses we derived analytical expressions for the responses produced by the 

model under a given set of parameters:

rt
i = A+𝕀 tr0

i + ∑τ = 1
t A+𝕀 t−τ(It + ξ vτ

i + eτ
i ) (2)

where r0
i  is the measured activity one time step before trial onset (note that trial onset 

begins 1 second before stimulus onset) and  is the identity matrix. Using this equation, we 

computed the population responses when weights were deleted (set to zero) and when 

residuals were shuffled (Fig. 3f, g). In the model, the interaction weights are a function of 

only the covariance of the data (see Equation.XXX) and the residuals contain any variability 

not captured by the model. The degree to which the observed covariance was accounted for 

by correlations in the residuals was assessed by simulating the responses after shuffling the 

residuals. To determine the degree to which the observed covariance was accounted for by 

interaction weights, we simulated responses after shuffling or deleting the interaction 

weights. These manipulations allowed us to test whether the model captured the coordinated 

variability in the data using a set of parameters fixed across trials, without requiring any 

additional unexplained inputs that covary across trials or time.

To shuffle residuals in Fig. 3f, g, we randomly permuted the trial labels of the residuals 

across all vertical stimulus trials separately for each cell and then computed the responses 

according to Equation (2) by substituting the shuffled residuals. Having calculated the 
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responses under residual shuffling, we then computed pair-wise noise correlations using the 

same method as for the experimental data. We repeated this for 100 random shuffles and 

averaged over the noise correlations generated by these shuffles for each cell pair. To 

calculate the noise correlations when interactions are removed (Fig. 3f, g), we set all off-

diagonal elements of the interaction matrix A to zero and then computed the responses 

according to Equation (2). We again calculated the noise correlations of these responses as 

above. To quantify the quality of the fit after shuffling residuals and removing interactions 

we computed R2.

To compute the selectivity of responses following weight deletions we set all off-diagonal 

weights of a given type to zero (leaving diagonal elements of the weight matrix intact), 

calculated responses as above, and averaged responses for each cell to the vertical and 

angled stimulus similar to the experimental data. Because the interaction weights in the LDS 

organize to best capture the variance in the data (see below), deleting weights removes the 

majority of simulated response variance. We therefore used the measured variance to 

calculate selectivity after weight deletions.

To test whether interaction weights identified by the model were dependent on the stimulus-

input preference of the cell (Fig. 4b). We separated cell pairs into groups according to the 

mean stimulus input they received in the 0 to 1 s window from stimulus onset at the vertical 

and angled gratings. If both cells in the pair had a larger stimulus input at the same grating, 

they were considered to have the same grating preference (either to the vertical or angled 

stimulus), otherwise they were considered to have opposite preferences. We measured the 

mean interaction weight between cell pairs that preferred the same or different gratings. 

Only cells whose responses were significantly different to the vertical and angled gratings 

were included in the analysis (criterion P < 0.05, Wilcoxon rank-sum test).

To determine whether the effect a of specific weight deletion changed with learning, we 

computed the selectivity index with all weights intact SIfull and the selectivity with a specific 

weight deleted SIdel pre and post learning, and then compared |SIdel,pre| − |SIfull,pre| to |

SIdel,post| − |SIfull,post| using a sign test.

To fit the model across learning while constraining certain parameters to remain fixed, we fit 

Equation (1) jointly to the pre and post learning trials for each mouse by minimizing the sum 

of squared residuals across all combined pre and post learning trials with a subset of 

parameters free to take on different values for pre and post learning trials and a subset set to 

be the same for pre and post learning trials.

To compute the changes of selectivity across learning generated by a model with a given set 

of parameters fixed, we shuffled the trial labels of the residuals across the combined set of 

pre and post learning trials (leaving the residuals across cells and time within a given trial 

intact). We then recomputed the responses using Equation (2) by substituting the shuffled 

residuals, and computed the selectivity of these responses pre and post learning. We repeated 

this process for 100 random shuffles and averaged the resulting selectivity over shuffles. We 

then computed the R2 value of the model-generated change in selectivity vs the change in 
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selectivity observed in the data. To generate confidence intervals for these R2 values we 

performed a bootstrap over cells.

To perform hypothesis testing that two models (Model 1 and Model 2) generated R2 values 

that differed more than would be expected by chance, we performed a model-based 

bootstrap. For the model-based bootstrap, we first fit the data to Model 1. We then generated 

a new dataset from Model 1 by randomly resampling residuals (with replacement) and 

computing responses according to Equation (2). Next, we fit Models 1 and 2 to the dataset 

generated from Model 1, and computed the R2 of the change in selectivity generated by 

these models against the change in selectivity in the simulated dataset from Model 1. We 

repeated this process 500 times to obtain a distribution of the difference in R2 between 

Model 1 and Model 2 that would be expected if the data were generated by Model 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simultaneous two-photon imaging of multiple cell classes during a visual 
discrimination task in virtual reality.
(a) Virtual reality setup. (b) Schematic of behavioral task. Mice were rewarded for licking a 

reward spout when presented with vertical and not angled gratings. (c) Behavioral 

discrimination performance (behavioral d’) across learning (N = 8 mice). Connected points 

represent individual mice. (d) Top, example region of an in-vivo image plane with GCaMP6f 

expressing neurons. Bottom, same region after post-hoc immunostaining for PV, SOM and 

VIP (orange, blue and magenta, respectively) and image registration to match the in-vivo 

plane. Identified interneurons are indicated by arrowheads. (e) Top, average responses to the 

vertical grating of all recorded neurons of each cell type after learning. Calcium responses 
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are baseline corrected (subtraction of baseline ΔF/F -0.5 to 0 s before stimulus onset), and 

aligned to grating onset (dashed line). Cells are sorted by their average response amplitude 

0-1 s from stimulus onset. Number of cells included in each plot: 1249, 132, 58 and 175 for 

PYR, PV, SOM and VIP, respectively, N = 8 mice. Bottom, average responses of cells from 

the top, middle and bottom 10th percentiles of grating-evoked response amplitudes of each 

cell class. Shaded area represents SEM. (f) Average response to the vertical grating of all 

cells from each cell class after learning. (g) Similarity of response profiles to the vertical 

grating of all pairs of cell classes attained with a random forest decoder to classify single 

cells to one of two classes based on the shape of their average baseline-subtracted PSTH (see 

Online Methods). PSTH similarity score = 2 × (1- classification accuracy). Scores near 0 and 

1 indicate low and high PSTH similarity between two cell classes respectively.
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Figure 2. Response amplitude and selectivity changes with learning in different cell classes.
(a) Average responses to vertical (blue line) and angled (red line) grating stimuli before 

(dashed line) and after learning (solid line) of example neurons from different cell classes. 

Numbers indicate selectivity to the grating stimuli, calculated in a window 0-1s from grating 

stimulus onset (gray shading). Positive and negative values indicate vertical and angled 

preference, respectively. Shaded area represents SEM. (b) Grating selectivity of the same 

cells (rows) before (pre) and after (post) learning (columns). Cells were ordered by their 

mean pre and post learning selectivity. Numbers of cells recorded both pre and post learning: 
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1249 PYR, 132 PV, 58 SOM and 175 VIP cells here and elsewhere, N = 8 mice. (c) Mean 

absolute selectivity of each cell class before and after learning. Error bars represent SEM. *, 

P < 10-5. (d) Left, relationship between action potential firing rate and calcium transient size 

in simultaneous loose patch and GCaMP6 recordings from the three interneuron classes in 

visual cortex slices. Error bars represent SEM. Right, comparison of selectivity values 

computed from measured fluorescence (x-axis) and inferred firing rate (y-axis) in PV, SOM, 

and VIP interneurons. Correlation coefficients 1.00, 0.99, 0.97 for PV, SOM and VIP 

respectively (e, f) Relationship between the selectivity of individual PV cells (e) or SOM 

cells (f) and the mean selectivity of the local PYR population within 100 μm distance from 

each PV or SOM cell, before (top) and after learning (bottom).
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Figure 3. Concerted changes in interactions and neuronal selectivity with learning.
(a, b) Example responses of simultaneously imaged neurons before (a) and after learning 

(b). Colored bars on top indicate stimuli encountered by the mouse as it traversed the virtual 

corridor: blue and red indicate vertical and angled gratings, gray and white indicate corridor 

walls in gray or with dots, respectively. Running (black line), reward delivery (red triangle) 

and licks (crosses) are indicated below. Only a quarter of the PYR cells are shown for clarity. 

(c) Noise correlations measured during the vertical grating response (0-1 s from stimulus 

onset) between cell pairs of each combination of cell classes, before and after learning. Error 

bars represent SEM here and elsewhere. Inset: relative changes in noise correlation over 

learning between and within all cell classes, as indicated by line thickness and color code. 

Shorter line segments show relative change in correlations between cells of the same type. 

(d) The linear dynamical system model fits single trial responses by estimating the 

contribution of stimulus-locked input, recurrent inputs from the local cell population and 

Mrsic-Flogel Page 26

Nat Neurosci. Author manuscript; available in PMC 2019 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



running speed. (e) Example traces of responses and model fit on three single trials (columns) 

from 4 cells (rows) along with each cell's average response (black), stimulus input (blue) and 

average recurrent input (red). (f) Average post learning noise correlations observed (gray), or 

simulated after setting interaction weights to zero (orange) or shuffling residuals (white). (g) 

Scatter density plot of observed versus simulated pairwise noise correlations (NC), after 

setting interaction weights to zero or shuffling residuals.
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Figure 4. Relationship between neuronal selectivity and changes in interactions between different 
cell classes.
(a) Effect of removing weights between all cells in the LDS model on selectivity in PV (top) 

and SOM cells (bottom) before (left) and after (right) learning. N = 132 PV and 58 SOM 

cells here and below. (b) Interaction weights in LDS model before and after learning for cell 

pairs with the same or different stimulus-input preference (see Online Methods). **, P < 

10-3; *, P < 0.05 here and elsewhere. (c) Effect of specific weight removal on the selectivity 

change over learning (Δselectivity) in PV (top) and SOM cells (bottom). (d) Schematic 

depicting how PYR to PV interaction weights (arrows of different thickness) rearrange to 

provide selective inputs to PV cells after learning. (e) LDS model jointly fit across learning. 

Left: allowing all (top, free) or no parameters (bottom, restrained) to differ pre and post 

learning results in high or low R2 between observed and simulated Δselectivity over learning 
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of PYR cells, respectively. N = 1249 PYR cells, here and below. R2 values with all or no free 

parameters indicated by horizontal lines on right for PYR, PV and SOM cells. Right, R2 

values obtained for different cell classes in joint LDS fits while restraining specific 

parameters from changing pre to post learning. Error bars represent bootstrapped 90% 

confidence intervals. (f) Effect of specific weight removal on Δselectivity in PYR cells.
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Figure 5. Degree of coupling with the SOM cell population is related to PYR cell selectivity 
increase.
(a) Centre: distribution of pre learning noise correlations between individual PYR cells and 

the average activity of the SOM cell population, N = 1249 PYR cells. Vertical dashed lines 

denote top and bottom 20th percentiles. Average grating responses pre and post learning of 

example PYR cells with low and high pre learning SOM cell population coupling (left and 

right, 4 example cells each). Numbers indicate selectivity. (b,c) Difference in the absolute 

selectivity pre and post learning (Δselectivity) of PYR cells (b) and PV cells (c) with low 
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and high (bottom and top 20th percentiles) coupling to the four cell type populations. **, P < 

10-3, N = 250 PYR cells (b) and 26 PV cells (c) in each group. Error bars represent SEM.
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