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Abstract

Prognostics and health management (PHM) technologies reduce time and costs for maintenance of 

products or processes through efficient and cost-effective diagnostic and prognostic activities. 

PHM systems use real-time and historical state information of subsystems and components to 

provide actionable information, enabling intelligent decision-making for improved performance, 

safety, reliability, and maintainability. However, PHM is still an emerging field, and much of the 

published work has been either too exploratory or too limited in scope. Future smart 

manufacturing systems will require PHM capabilities that overcome current challenges, while 

meeting future needs based on best practices, for implementation of diagnostics and prognostics. 

This paper reviews the challenges, needs, methods, and best practices for PHM within 

manufacturing systems. This includes PHM system development of numerous areas highlighted by 

diagnostics, prognostics, dependability analysis, data management, and business. Based on current 

capabilities, PHM systems are shown to benefit from open-system architectures, cost-benefit 

analyses, method verification and validation, and standards.
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Introduction

The future of manufacturing is full of possibilities to utilize real-time and historical data to 

comprehensively manage maintenance, in order to decrease product lifecycle costs while 

increasing system availability. Currently, U.S. manufacturers spend more than $7B per year 
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recalling and renewing over 2000 defective products, and the associated costs are only 

increasing (Venkatasubramanian 2005). Besides increasing costs of maintenance, 

manufacturing systems can also become more complicated to manage due to the increasing 

breadth of system information. A typical manufacturing system yields a vast amount of data 

produced by thousands of sensors that can record position, velocity, flow, temperature, and 

other physical quantities multiple times every minute (Moyne and Tilbury 2007). Non-

physical information related to part specifications, parts ordering, and maintenance 

schedules for each machine also feed the information stream. In addition to frequently 

collected and/or shared data, large amounts of diagnostic data, such as spindle current data 

collected at 1 kHz, are also sent infrequently over manufacturing networks and used for 

high-level control, such as tool replacement (Moyne and Tilbury 2007). Manufacturing 

processes are becoming more complex and dynamic, so the reliability of such systems is 

likewise becoming more challenging (Lee et al. 2011).

The goal of maintenance is to preserve system and product functions throughout their 

lifecycles. Most product maintenance is either completely reactive or blindly preventative 

(Djurdjanovic et al. 2003). The oldest maintenance strategy is to “fix it when it breaks” 

(reactive maintenance), which has problems including unscheduled downtime, possible 

serious safety violations, and potentially significant damage to manufacturing equipment 

and the products being fabricated or assembled. The next natural step is to monitor and 

maintain a system in pre-established time intervals (preventative maintenance), which tends 

to be cost prohibitive (Kothamasu et al. 2006). The development of reliability engineering in 

the 1950s led to the introduction of time-based maintenance (TBM) based on the increase of 

failure with time (Takata et al. 2004). Then, the development of machine diagnostic 

techniques in the 1970s led to the concept of condition-based maintenance (CBM), in which 

preventive action is based upon detected symptoms of failures.

The only way to minimize the probability of failure, downtime, and maintenance costs is 

with CBM, motivating the use of prognostics (Kothamasu et al. 2006). The cost of 

unplanned downtime can be up to $250K per hour in the process industry, so CBM can 

enhance profitability by eliminating unpredicted failures (Koochaki et al. 2011). Yet, 

sometimes neither TBM or CBM is the optimal maintenance strategy; allowing an element 

to breakdown may be the best option (Takata et al. 2004).

Figure 1 outlines the historical maintenance paradigms along with the evolution of 

production paradigms summarized by Jovane et al. (2003). Considerable overlap occurs 

between the two paradigm evolutions because of their interconnectedness; maintenance is a 

critical part of production. The revenue-based motivations for maintenance improvements 

are linked to the consumer-driven motivations for production, with all paradigms enabled via 

technological advancements. As seen in Figure 1, a possible next step in the evolution of 

maintenance may be “self-maintenance” or “proactive maintenance”, in which systems 

monitor themselves, being driven by the fast-paced and hyper-flexible production of the 

future.
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Prognostics and Health Management (PHM)

Production systems must be easily upgradeable so new technologies can be integrated to 

meet highly dynamic market demands (Pereira and Carro 2007). Traditional manufacturing 

should be reexamined to meet the current and future needs for efficient and reconfigurable 

production. One enabler of this vision is the use of real-time state information of subsystems 

and components to support maintenance decisions within manufacturing systems. In general, 

such a vision is the core of prognostics and health management (PHM). The goal of PHM 

technology is to provide decision support; that is, actionable information to support decision 

making (Kalgren et al. 2007).

PHM goes beyond CBM because correct predictions of the future may allow one to avoid 

failure and large disturbances (Lee et al. 2011). PHM incorporates aspects of logistics, 

safety, reliability, mission criticality, and economic viability among others (Saxena et al. 

2010). PHM of components or systems involves both diagnostics and prognostics: 

Diagnostics is the process of detection and isolation of faults or failures, while prognostics is 

the process of prediction of the future state or remaining useful life (RUL) based on current 

or historic conditions (Ly et al. 2009). Prognostics is based on the understanding that 

equipment fails after a period of degradation, which if measured, can be used to prevent 

system breakdown and minimize operation costs (Tian et al. 2012). Essentially, PHM is a 

methodology for the evaluation of the reliability of a system in order to predict and mitigate 

failures (Sun et al. 2010). Prognostics also enables the reduction of the lead time for 

procurement and planning for maintenance while furthering the possibility of autonomic 

logistics (Banks and Merenich 2007). Improvements in maintenance efficiency from system-

wide PHM could reduce maintenance-related labor costs by more than 10 % compared to 

costs for reactive maintenance (Barajas and Srinivasa 2008).

Figure 2 shows a flowchart of the general process of PHM system development. The process 

begins with cost and dependability analyses to determine the components to monitor. The 

data management system is then initialized for collection, processing, visualization, and 

archiving of the maintenance data. Once the measurement techniques are established, the 

diagnostic and prognostic approaches are developed and tested to ensure that the desired 

goals are achieved. Finally, personnel are trained during the iterative process of system 

validation and verification before final system deployment.

Consequently, PHM has emerged as a key enabler for efficient system-level maintenance 

and lower life-cycle costs (Ly et al. 2009). Towards this end, this paper discusses the 

challenges, needs, methods, system examples, frameworks, and best practices for PHM 

within manufacturing systems. The key aspects of the PHM development process for both 

products and processes are touched upon; the main focus of this discussion is on diagnostics 

and prognostics. Conclusions are then drawn to aid the growth and effectiveness of PHM 

within manufacturing systems.
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Current PHM Challenges and Future Needs

An important step to improve PHM is to understand the challenges and needs related to the 

process in Figure 2, as discussed in this section.

Diagnostics

Sensors enable the simple collection of data, but these devices must still provide the right 

information at the right time for fault detection and avoidance. In general, a fault is defined 

as the departure of an observed variable from an acceptable range, and the fundamental 

cause of this abnormality is called the basic event or the root cause (Venkatasubramanian 

2005). Diagnosis of faults requires system (or component) usage information and a 

diagnostic search strategy that can match the observed symptoms and the known set of 

possible failures. Furthermore, robust diagnostics are needed for incipient fault detection so 

that plant breakdowns are avoided.

The ability to diagnose component faults in their infancy is currently limited, due in part to 

sufficiently large sensitivity to signal noise, dependence on environmental and operating 

conditions, lack of fault detection (Patrick et al. 2009), and uncertainties in maintenance 

schedules. Consequently, most manufacturing operations are reactive so maintenance 

diagnosis is mainly a specialized process, as in the automotive manufacturing industry 

(Barajas and Srinivasa 2008).

Diagnostics are vital for successful prognostics because an acceptable prognostic method 

starts with robust diagnostics, since the uncertainties of the estimated system condition 

affect any future prediction (Hess et al. 2005; Patrick et al. 2009). Diagnostic challenges 

exist due to problems with verification and validation. Examples of diagnostic failures 

include the F/A-18C1 and V-22 (two military aircraft), which had false alarm rates of about 

90 % (Shannon and Knecht 2010). The reason for such high false alarm rates is one major 

challenge for PHM systems: systems may be complex and simple models are inadequate. 

Consequently, diagnostic and prognostic methods must be capable of dealing with 

uncertainties. If left unaddressed, these uncertainties can lead to high false alarms, 

inaccurate predictions, and hence incorrect decisions (Hess et al. 2005).

Prognostics

Prognostics is even more challenging than diagnostics, which is one main reason why 

prognosis is an underdeveloped element of PHM systems (Patrick et al. 2009). Some failures 

are intermittent and hence difficult to predict (Sun et al. 2010). Hence, there is still no 

universally accepted methodology for prognostics (Lee et al. 2011). Despite being a very 

challenging part of PHM, prognostics is also one of its most beneficial aspects (Hess 2002).

Prognostics is still an emerging field, and much of the published work has been exploratory 

in nature. Current prognostics technology is considered to be immature due to the lack of 

1Official contribution of the National Institute of Standards and Technology (NIST); not subject to copyright in the United States. 
Certain commercial products, some of which are either registered or trademarked, are identified in this paper in order to adequately 
specify certain procedures. In no case does such identification imply recommendation or endorsement by NIST, nor does it imply that 
the materials, equipment, or software identified are necessarily the best available for the purpose.
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uncertainty calculations, validation and verification methods, and risk assessment for PHM 

system development (Saxena et al. 2010). The lack of standards is due in part to varied end-

user requirements, time scales, available information, and system dynamics (Saxena et al. 

2010). To help remedy this situation, Saxena et al. (2010) presented new evaluation metrics 

for the evaluation of prognostic algorithms. Methods are needed to quantify the accuracy of 

prognostic assessment technologies (Sun et al. 2010). Design tools are also needed to aid the 

selection of approaches for monitoring mechanical or electrical systems (United States 

Department of Defense 2008).

As previously stated, prognostics is essentially a condition-based estimation of RUL to make 

better informed maintenance decisions. The RUL is a prediction of the time or cycles before 

the functioning of a product or process reaches an unacceptable threshold. Without a 

corresponding measure of uncertainty, the RUL has little value (Engel et al. 2000; Sandborn 

and Wilkinson 2007). Hence, prognosis is the “recognized Achilles’ heel” of PHM (Ly et al. 

2009). In fact, few PHM methods produce continuous real-time estimation of the RUL 

(Patrick et al. 2009) and improved methodologies are needed for RUL prediction based on 

physical and other measurements (United States Department of Defense 2008). For 

manufacturing and other systems, being complex systems with perhaps thousands of 

subsystems and various operational conditions, predicting the reliability and performance is 

even more difficult (Lee et al. 2011). A large process plant may track as many as 1500 

process variables that can be recorded every second, leading to information overload.

Because the prediction of an unknown future naturally involves uncertainty, prognostics 

must be treated as a probabilistic process in which the predicted RUL is represented by a 

probability density function (PDF). This PDF is then used to inform a maintainer based on 

the desired lead time for maintenance operations. However, tools are needed for PHM 

designers to know how PHM systems impact the total logistic system (Hess et al. 2005); the 

U.S. Department of Defense (DoD) demands more integrated diagnostic and prognostic 

capabilities to support maintenance and logistic decisions (Kalgren et al. 2007).

Perhaps the main challenge for prognostics is that there will always be a limit to the 

accuracy and precision of condition-based estimation of RUL due to the inherent uncertainty 

of predicting the future. Failure mechanisms have a certain amount of physical randomness, 

which adds to the inherent error in the prognostics process due to imperfections of sensor 

data, preprocessing, and feature extraction and failure prognostic methods (Engel et al. 

2000). In fact, prognostics may not be feasible due to the highly unpredictable nature of a 

failure mode (Roemer et al. 2001). Multiple failures may also complicate the RUL 

prediction (Engel et al. 2000).

Due to the challenges of prognostics within systems, the greatest need for maintenance is for 

there to be ‘no surprises.’ As long as there is adequate foresight to potential problems, those 

problems can be mitigated with some planning (Hess et al. 2004).

Components and PHM Architecture

Of course, diagnostics and prognostics would be impossible without data from sources such 

as sensors and programmable logic controllers (PLCs) of machine tools and robotic 
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elements. Data is essential for PHM systems: acquisition and communication of consistent, 

clean, and reliable data commonly entails about 90 % of PHM system development (Barajas 

and Srinivasa 2008). In fact, major challenges for the development of the F-35 (a military 

fighter jet), also known as the Joint Strike Fighter (JSF), were due largely to “limited 

capability in the software when delivered” and the “need to fix problems and retest multiple 

software versions” (Charette 2014). The lack of consistent data, communication, and 

security is a bottleneck for the full realization of PHM across plant-floor operations (Barajas 

and Srinivasa 2008).

Many manufacturing systems are controlled by PLCs, which are, by nature, discrete-event 

systems characterized by event-driven inputs and outputs. A critical need for these 

applications in manufacturing is the integration of PLC information and PHM capabilities 

(Wu and Hsieh 2012). Most modern manufacturing machines are ‘smart’ in the sense that 

they have sensors and computerized components that create much data, but most data is not 

used due in part to limited access or knowledge for usage (Djurdjanovic et al. 2003). For 

electronics, most outcomes are binary (e.g., pass/fail) that can be used for detection of 

incipient faults and prediction of failure (Kalgren et al. 2007).

Of particular concern is that real systems often have inconsistent fault messages, making 

automated fault diagnostics ineffective (Wu and Hsieh 2012). In the late 1970s, “Cannot 

Duplicate” (CND) problems with electronics could account for more than 85 % of failures in 

avionics and, consequently, more than 90 % of all maintenance costs. Yet PHM can help 

with addressing CND and “Retest OK” (RTOK) problems through prognostic models (Sun 

et al. 2010). In the auto industry, many product malfunctions are due to unanticipated 

interactions from repeated use, or misuse, of components (Venkatasubramanian 2005).

A significant motivation exists to develop PHM systems to deal with abnormal events in 

complex systems, considered by some product industry members to be the next major 

challenge in control systems research (Venkatasubramanian 2005). This challenge for future 

PHM systems requires the prediction of system-wide functional failures instead of just 

isolated component-level failures (Roemer et al. 2001). The need exists for manufacturing 

data to be systematically integrated, managed, and analyzed during the entire life cycle for 

increased availability within the manufacturing industry. Manufacturing interoperability 

standards, such as MTConnect (MTConnect Institute 2015), can help record PLC signals for 

such data management purposes (Lee et al. 2013).

In general, current limitations of PHM do not appear to include sensor type; sensors usually 

exist to measure needed physical states. For example, General Motors successfully applied 

diagnostics at their manufacturing plants through the use of motor monitoring, high speed 

video, infrared thermography, laser alignment, lubrication and oil analysis, ultrasound, and 

vibration spectrum analysis (Barajas and Srinivasa 2008). Nonetheless, challenges exist for 

electronic components of aircraft, automobiles, and other products as well as manufacturing 

systems. PHM has not been traditionally applied to electronic systems as for mechanical 

systems because the time to failure (TTF) for electronic systems was assumed to be non-

quantifiable or longer than the needed period for system usage (Sandborn and Wilkinson 

2007). Degradation in electronics is more difficult to detect due to its scale and complexity 
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(Janasak and Beshears 2007). In fact, electronic prognostics “is still in its infancy” due to 

component complexity and limited knowledge about failure precursors (Sun et al. 2010). 

Fundamental research into incipient fault detection, physics of failure modeling, and fault to 

failure progression for electronics are yielding results for the DoD (Kalgren et al. 2007). 

Nonetheless, PHM needs for electronics include improved integration of sensing and 

processing modules for in situ PHM through the use of builtin tests, fuses and canaries, 

monitoring and reasoning of failure precursors, the correlation of in situ loads with physics-

based stress and damage models (Vichare and Pecht 2006), and verification and validation 

(V&V); that is, tests and measurements to prove the performance of prognostics systems 

(Kalgren et al. 2007).

Business Level

In a manufacturing plant, preventive diagnostics is common and occurs when at least one 

key performance indicator (KPI) degrades below an acceptable threshold. However, 

preventative maintenance is estimated to be applied unnecessarily up to 50 % of the time in 

manufacturing. In fact, in automotive manufacturing, yearly maintenance costs are on the 

order of several billion dollars, primarily due to labor costs (Barajas and Srinivasa 2008). 

PHM could help reduce these costs by using historical and real-time data to provide decision 

support before, during, or after KPI degradation.

One business-related challenge for PHM is that maintenance is usually regarded as a net 

cost, not a net benefit (Takata et al. 2004). One reason for this is the difficulty to quantify the 

cost savings due to PHM, the return on investment (ROI) (Sun et al. 2010). Hence, even 

though PHM has the potential for creating a paradigm shift in industries like manufacturing, 

little consideration has been given to PHM as a significant enabler for business (Grubic et al. 

2009).

The PHM customer is particularly concerned with the return on investment (ROI) for 

instituting a PHM system (Banks and Merenich 2007). However, the typical engineer is not 

trained to address this concern (Banks and Merenich 2007). Nonetheless, an ROI analysis 

can be used to optimize maintenance, in order to choose between prognostic or more 

traditional maintenance approaches (Feldman et al. 2008). Veldman et al. (2011) noted that 

CBM decision-making can be more effective with an increase in the use of failure data, for 

algorithm optimization, and an improvement in the relationship between controls 

engineering and maintenance engineering.

Human Factors

In addition to the technical and business challenges related to PHM, the human element is 

also a challenge. Organizational barriers include resistance due to culture, norms, expertise, 

and customer and supplier relationships (Grubic et al. 2009). Similarly, the DoD stated that a 

main challenge for PHM relates to “resistance that is often found in an organization” (United 

States Department of Defense 2008). Such resistance can stem from an employee’s lack of 

context and direction and emotional reaction (United States Department of Defense 2008).

Another important, but less addressed, challenge is the creation of user-friendly PHM 

applications (Ahmad and Kamaruddin 2012). PHM monitoring systems tend to be complex 
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in volume and substance, easily overwhelming the user and leading to mistrust in the PHM 

application in the event of a false alarm or missed hit (Kothamasu et al. 2006). PHM systems 

are created and/or trained by humans and are hence imperfect; humans may be aware of 

important information related to system degradation that is invisible to the PHM system.

Consequently, another challenge is how to incorporate the vast knowledge of industrial 

faults into PHM systems because such knowledge is not necessarily consistent nor precise 

with respect to uncertainties (Wu and Hsieh 2012). Future PHM systems should be 

developed with the ability to incorporate other sources of data or information, such as 

subjective information from personnel with sufficient expertise. Technicians and engineers 

learn from previous mistakes during maintenance and can detect abnormal conditions of 

machines by sense. This knowledge is a valuable asset to the company and therefore should 

be leveraged (Ahmad and Kamaruddin 2012). Data is useless unless it is processed and 

understood with context by the right personnel (Lee et al. 2013).

Summary of Challenges

Table 1 summarizes several of the key challenges to be overcome to enable the future of 

PHM within smart manufacturing systems. As seen in Table 1, challenges include real-time 

diagnostic and prognostic methods, standards for PHM system evaluation, and the 

integration of data (from sensors, PLC, experts, etc.) within user-friendly PHM systems.

PHM Methods

PHM research has focused on the analysis of sensor data for fault diagnosis and failure 

prognosis, the establishment of condition metrics, seeded fault testing, and incipient failure 

detection (Ly et al. 2009). Reviews exist containing details of such methods for diagnostics 

(Kothamasu et al. 2006), machine prognostics (Peng et al. 2010), and data-driven 

prognostics (Schwabacher 2005). This paper does not seek to elaborate upon such technical 

details, but rather seeks to focus upon the capabilities and best practices of PHM for 

manufacturing.

Diagnostic and Prognostic Methods

PHM approaches based on experience, physics or models, statistics, or data all have pros and 

cons. Experience-based PHM uses human expertise for analysis and is the least complex, but 

remains highly labor intensive and expensive (Barajas and Srinivasa 2008). Data-driven 

approaches create non-linear relationships between inputs and outputs without physical 

models, but are not necessarily convergent. One advantage of data-driven methods is that 

they can be applied at any level: system, subsystem, or component level (Sun et al. 2010). 

Prognostics algorithms that use a data-driven approach learn models directly from the data, 

rather than use hand-built models based on human expertise (Schwabacher 2005). Data-

driven methods are based on machine learning and statistical pattern recognition (Sun et al. 

2010). Machine-learning techniques include artificial neural networks (ANNs), fuzzy logic, 

support vector machine (SVM), and hidden Markov models (Sun et al. 2010), while 

statistical techniques are based on parametric or non-parametric methods. However, 

statistics-based approaches (reliability-centered maintenance, Bayesian, etc.) generally 
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ignore correlations among various data (Barajas and Srinivasa 2008). Data-driven methods 

often yield a fault “model” based on neural networks, expert systems, etc. that must be 

trained with data representing anticipated faults, which may be difficult to validate.

Physics-based prognostics is the most comprehensive modeling approach, utilizing various 

inputs but can yield an RUL distribution as a function of component or usage uncertainties 

(Roemer et al. 2001). However, physics- or model-based approaches (involving the solution 

of ordinary differential equations) usually do not account for the combination of analog and 

discrete processes (Barajas and Srinivasa 2008). Similarly, physics-of-failure-based (PoF-

based) methods combine actual operational conditions with PoF models to calculate the 

accumulated damage as well as predict the RUL of the product (Sun et al. 2010). The 

advantage of PoF-based methods is the ability to isolate the root cause and failure 

mechanisms. However, sufficient information about a product (e.g., operational conditions) 

and its failure mechanisms are required by skilled personnel to apply such methods. Another 

disadvantage is that PoF-based methods are not quite suitable for the system and subsystem 

levels (Sun et al. 2010).

Hybrid/Fusion Methods

Different methods should be used for diagnostics or prognostics based on their effectiveness. 

One novel prognostics approach is to fuse various methods into a composite solution. Fusion 

methods, such as Bayesian or “best of breed” methods, may be effective in many cases to 

yield reliable just-in-time RUL predictions (Engel et al. 2000). Venkatasubramanian (2005) 

concluded that no single method is adequate to handle all the requirements for a desirable 

diagnostic system. Consequently, a framework was developed called Dkit, in which various 

diagnostic methods analyze the same problem and a scheduler uses these results in a hybrid 

fashion for better decision-making (Venkatasubramanian 2005).

Other hybrid or fusion methods exist for leveraging the various diagnostics and prognostics 

methods. Ly et al. (2009) utilized a hybrid method that combines both physics-based and 

data-driven techniques for prognosis. In that instance, principal component analysis (PCA) 

was used to fuse multiple features to create a single condition metric for system health. 

Model-based reasoning (MBR) can also be used to combine advanced diagnostic methods 

with prognostic analyses. MBR algorithms can analyze multiple failure conditions while 

differentiating between normal and detrimental changes in system condition, thus enabling 

more robust prognostics (Engel et al. 2000).

Cost and Dependability Methods

Other methods help PHM developers to determine the optimum strategy based on costs, 

benefits, and risks. The common method for justifying PHM is usually based on reliability 

centered maintenance, which is based on the failure modes and risks, the technical feasibility 

of incipient failure detection, and the financial justification of PHM (Koochaki et al. 2011). 

Failure mode, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and other 

dependability methods can be used to assess the safety, availability, and other metrics for 

PHM justification. Based on a high-level analysis for the automotive industry, Barajas and 
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Srinivasa (2008) stated that the best return on investment (ROI) is achieved through 

predictive maintenance, in contrast to reactive or preventive maintenance.

The potential cost savings for prognostic algorithms is usually not easy to obtain. 

Consequently, Drummond and Yang (2008) developed a simple method to determine the 

range of costs (false alarms and missed failures) and failure rates over which a prognostic 

algorithm would be useful. Thus, even without exact cost estimates, PHM implementers 

would have confidence in the use of a prognostic algorithm. Many critical inputs are 

uncertain, so accommodating the cost uncertainties of PHM is needed for realistic ROI 

calculations. For example, Feldman et al. (2008) conducted a stochastic, Monte Carlo 

simulation for socket maintenance of a Boeing 737, yielding an average ROI of about 3.5 

(Feldman et al. 2008). The two major factors for ROI analysis are the implementation costs 

(recurring, non-recurring, or infrastructural) and avoided costs (the changes to availability, 

reliability, maintainability, and failure avoidance) due to PHM application (Feldman et al. 

2008).

Tian et al. (2012) developed an optimization method for PHM based on physical 

programming to deal with the two main optimization objectives in PHM, namely the cost 

objective and the reliability objective, to determine the optimal replacement policy. This 

optimal risk methodology is used in the CBM software EXAKT, which has been used 

successfully in manufacturing and other industries to reduce maintenance costs up to 49 % 

per failure mode (Oliver Interactive Inc. 2014).

Banks and Merenich (2007) developed a general guideline for conducting a cost-benefit 

analysis (CBA) for PHM. Researchers at the Applied Research Laboratory (ARL) at The 

Pennsylvania State University created a software tool called the ARL Trade Space Visualizer 

(ATSV), which allows a user to explore a multi-dimensional space for complex system 

optimization (Banks and Merenich 2007). The user can evaluate the data through ‘what if’ 

scenarios, e.g., ‘What is the minimum failure rate to achieve an ROI of 8?’. Banks and 

Merenich (2007) applied the ATSV for a CBA of battery prognostics for military ground 

combat vehicles.

Another method is based on a change in business perspective: To help establish PHM as a 

revenue generator, Grubic et al. (2009) proposed that the true business reason for adopting 

PHM is as a product-service system (PSS), in which the emphasis shifts from selling a 

product to selling the use of a product. A machine tool life cycle simulator called MATHS 

was used to show an almost 13 % increase in availability for a PSS-based factory (Grubic et 

al. 2009).

Figure 3 summarizes the relationship of the PHM methods mentioned in this section. As 

seen in the figure, the key abilities of these methods should influence the future of PHM 

within discrete manufacturing systems.

Methods for Discrete Manufacturing Systems

Many diagnostic and prognostics methods deal with continuous data or digital data but not 

the combination thereof. However, manufacturing systems are described as dynamic systems 
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with states that change by discrete events (e.g., parameter changes) or continuous events 

(e.g., gradual performance degradation). And in general, faults affect systems through both 

continuous and discrete dynamics as well as their interactions (Koutsoukos et al. 2001).

Some diagnostic methods have been created for manufacturing systems. Petri nets focus on 

structure modeling of discrete event systems, making Petri nets a good candidate for PHM 

with PLC manufacturing applications. Accordingly, Wu and Hsieh (2012) developed a real-

time fuzzy Petri net approach to diagnose progressive faults in discrete manufacturing 

systems, which are usually caused by deterioration or aging. The prototype diagnoser was 

shown to have a 93 % accuracy for one implementation of a dual robot arm, being able to 

handle uncertainties and perform multiple fault diagnosis with a maximum diagnosis delay 

of eight steps (Wu and Hsieh 2012).

To aid the diagnosis of real-time embedded systems, Koutsoukos et al. (2001) presented a 

framework for modeling faults in hybrid systems. The diagnostic system is composed 

mainly of a system model, mode estimator, and decision-tree diagnosis. The model uses 

timed Petri nets, which can describe multiple simultaneous faults and stochastic fluctuations 

of physical activities. The hybrid model automatically generates the fault symptom table, 

which is used to produce a decision-tree for diagnostic purposes. Koutsoukos et al. (2001) 

demonstrated the methodology for a laser printer with faults such as a broken belt and a 

warn roller. Similarly, Philippot et al. (2012) proposed a decentralized diagnosis approach to 

diagnose discrete events systems (DESs).

To counteract the challenges associated with the amount of data and variables for process 

control, Yang and Lee (2012) developed a Bayesian Belief Network (BBN) for diagnostics 

and prognostics of semiconductor manufacturing systems. The BBN is a statistical model 

that quantifies probabilistic causal relationships among random variables, whether discrete 

or continuous (Yang and Lee 2012).

PHM System Examples

Application of PHM for various mechanical and electrical components exists, but fewer 

examples exist for large systems, especially within manufacturing. This section focuses on 

notable examples of PHM-based systems for large systems, to help motivate future 

applications of PHM within manufacturing.

PHM-based software has been developed for maintenance applications of discrete systems. 

The Centre for Maintenance Optimization and Reliability Engineering (C-MORE) at the 

University of Toronto developed a PHM methodology that uses equipment age data, 

condition monitoring data, and data concerning the effects of failure and preventative 

replacement to produce optimal maintenance decisions and reliability functions for 

equipment (Montgomery et al. 2012). The basic model is composed of a continuous-time 

non-homogeneous discrete Markov process (Montgomery et al. 2012). The EXAKT 

software utilizes maintenance records, sensor data, and financial and environmental impacts 

to select the appropriate maintenance strategy (Oliver Interactive Inc. 2014).
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Another example is a multi-symptom-domains behavior assessment methodology developed 

by the Center for Intelligent Maintenance System (IMS) at the University of Cincinnati for 

diagnosis and prognosis of various products and machines. The method uses behavior-based 

cerebellum computation, rather than a model-based computation, and is now part of a 

Watchdog Agent™ “digital doctor” (Lee and Kramer 1993). This process overlaps most 

recent data signatures and those observed during healthy processes or behavior; neither 

faulty data nor expert knowledge is needed, which is an advantage over other systems. 

Another advantage is that the Watchdog Agent™ structure follows the Open Systems 

Architecture for Condition-Based Maintenance (OSA-CBM), which is a standard structure 

for PHM information management (MIMOSA 2013b). The Watchdog Agent™ structure 

uses both stationary and non-stationary signal processing methods (autoregressive moving-

average (ARMA) modeling, wavelets, principal component analysis, etc.) for quantitative 

heath assessment (Djurdjanovic et al. 2003). Health information (condition, RUL, failure 

modes, etc.) can be conveyed in a radar chart and made accessible to existing management 

systems (enterprise, manufacturing, etc.), such as for performance prediction of Siemens 

rotary machinery (Lee et al. 2011).

Another system incorporates historical and human inputs for logistics. Camci et al. (2007) 

developed a PHM software tool for the U.S. Air Force that integrates PHM information 

(RUL, failure modes) and maintenance data (parts, personnel, tools, etc.) for real-time 

maintenance. The PHM algorithms learn some parameters based on feedback inputted from 

the human maintainer in response to questions. The evolving PHM algorithms then use 

historical and real-time data to recommend maintenance actions (Camci et al. 2007). 

Maintenance effectiveness, equipment availability, reliability, and costs are considered. 

Thus, the intelligent software develops maintenance solutions within open, dynamic, 

complex, and distributed environments.

The U.S. DoD has also devoted much effort to develop and advance PHM within major 

defense systems. The DoD has implemented, or is currently implementing, CBM+ (see 

‘PHM Frameworks’ section) technologies, processes, and procedures for various systems 

including Stryker (Army) armored vehicles, AH-64 Apache (Army) helicopters, the 

Integrated Condition Assessment System (Navy) on ships, the Light Armored Vehicle 
(Marine Corps), and the Joint Strike Fighter (United States Department of Defense 2008). 

Furthermore, CBM+ is the maintenance component of the Common Logistics Operating 

Environment (CLOE) for the integration of information across the U.S. Army (United States 

Army 2014). Such systems will warn operators and field commanders of possible impending 

failures and assist in maintenance optimization (Ly et al. 2009).

In particular, PHM is a significant part of the JSF. The Autonomic Logistics Information 

System (ALIS) is its information infrastructure that includes PHM but is even broader; ALIS 

includes operations, maintenance, PHM, supply chain, customer support, training, and 

technical data (Lockheed Martin Corporation 2014). ALIS receives health information while 

the JSF is still in flight, enabling maintainers to prepare for parts before landing; downtime 

is minimized and efficiency is increased (Lockheed Martin Corporation 2014). The PHM 

system predicts faults, prognoses failures, tracks part usage, and recommends action to the 

pilot when necessary (Hess et al. 2004). Operations and maintenance costs for the JSF are 
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estimated to be up to $1T over the next 50 years, so ALIS is vital for sustainment of the JSF 

fleet (Charette 2014). Similar to the human body in which functions occur autonomically, 

the JSF Autonomic Logistics system will operate nominally without human intervention to 

trigger maintenance actions for predicted or unpredicted failures (Hess et al. 2004).

Finally, some manufacturers have created PHM systems for product life cycle management 

of critical systems. For example, GE Aircraft Engines (GEAE) has characterized the 

performance, physics, and primary failure modes of their engines and can monitor engines 

(via 300 operating parameters) for faults and exceedances and then provide trend alerts to 

customers (Janasak and Beshears 2007). Another critical system is an automobile, and 

General Motors (GM) serves more than 6 million drivers with PHM for their vehicles 

through the OnStar service program (Holland et al. 2010). Each GM vehicle is equipped 

with sensors and an onboard processor, which can send information wirelessly for remote 

physics- and data-driven diagnostics and prognostics for battery life, tire pressure, and oil 

life.

Figure 4 summarizes these examples of PHM-based systems for large systems. These 

examples may help motivate future applications of PHM within manufacturing.

PHM Frameworks

Currently, there is no standard maintenance strategy because the optimum maintenance 

strategy is unique for every company. To help enable the use of PHM concepts for system 

development, several frameworks have been created. These frameworks are distinguished 

from the previously discussed PHM examples in the sense that the frameworks are broad 

methodologies for application in the development of various systems within manufacturing 

and other industries. Many industrial practitioners of maintenance models are overwhelmed 

due to the lack of time or knowledge to study and use these models. Consequently, 

Waeyenbergh and Pintelon (2009) developed the CIBOCOF framework (in English, the 

Centre for Industrial Management Maintenance Concept Development Framework), which 

combines traditional maintenance concepts into a decision support model. The CIBOCOF 

framework optimizes the maintenance system within various industries (e.g., tobacco, 

automotive, and electric power) through incremental and understandable steps such as 

flowcharts (Waeyenbergh and Pintelon 2009). The CIBOCOF framework focuses on various 

goals (not just cost) and aids in choosing the appropriate maintenance policy and the correct 

optimization model.

Another framework, more proposed than realized, is a framework by Lee et al. (2011) for 

“engineering immune systems” that integrates PHM approaches and reliability concepts to 

achieve production with near-zero breakdowns and minimal human intervention. An 

engineering immune system (EIS) is reliable in function, robust against failure due to 

damage, invulnerable to threats, and resilient to disorders. Such a system reacts to 

disturbances to return the system to a stable state; an engineering immune system detects 

and adapts itself to anomalies. However, EIS is a new idea that is “still raw” and needs 

“further research” (Lee et al. 2011). Such a vision for EISs is in the spirit of that for 

autonomic computing presented by Paul Horn, a former Senior Vice President and Director 
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of Research at IBM Corporation (Horn 2001). Autonomic systems are “self-managing” 

systems that are self-configuring, self-healing, self-optimizing, and self-protecting that are 

needed to overcome the increasing complexity in the “next era of computing” and improve 

performance as well as the “total-cost-of-ownership equation” (Ganek and Corbi 2003). 

Future advances in diagnostic and prognostic algorithms and system-level “self” capabilities 

will help to achieve the vision of EISs.

In contrast to use of a theoretical framework, the military is taking steps towards realizing 

the implementation of its own PHM framework. The CBM+ maintenance component 

mentioned in the ‘PHM System Examples’ section is actually more of a PHM framework. 

Since December 2007, the U.S. DoD has been shifting its maintenance process to Condition 

Based Maintenance Plus (CBM+), an approach in which maintenance is scheduled based 

upon the “evidence of need” (United States Department of Defense 2013). Through the use 

of CBM+, traditional “time before overhaul” (TBO)-based maintenance transitions to CBM 

with a smaller overall maintenance requirement (more predictive, less preventive and 

corrective maintenance). Asset readiness, safety, and maintainability should be improved 

through CBM+ (United States Department of Defense 2008).

Similar in scope to the DoD, a Systems Analysis and Optimization (SA&O) process was 

developed by NASA Ames Research Center to determine the integrated vehicle health 

management (IVHM) framework of the Reusable Launch Vehicle (RLV), but which is 

general enough to be adaptable for non-IVHM related systems and designs (Datta et al. 

2004). The SA&O process incorporates several modular discrete models such as for cost, 

operations, safety, reliability, false alarm rate, performance, and testability. The modular 

models relate to each other via inputs and outputs, allowing for any available software tools 

to provide the appropriate interfaces (Datta et al. 2004). For example, FMECA was obtained 

from domain experts as input for one RLV application. The IVHM SA&O process provides 

designers with a toolset to assess the impact of design decisions on the overall system 

requirements based on a set of 24 desired metrics that quantify the vehicle system safety, 

cost, and performance for a RLV mission. Consequently, NASA Ames’ SA&O process helps 

to optimize the system from a system-wide rather than a local perspective (Datta et al. 

2004).

Ly et al. (2009) developed an integrated systems-based PHM framework for engineering 

systems. The systematic methodology integrates PHM elements into a single platform for 

application in various environments. The enabling technologies are based on health-

monitoring software, data-processing methods for feature extraction, diagnostic and 

prognostic algorithms based on Bayesian estimation theory [specifically particle filtering 

(Orchard and Vachtsevanos 2007)], fatigue or degradation modeling, and real-time 

measurements (Ly et al. 2009). As soon as a fault is detected, the PDF for that time is used 

as an initial condition for the prognostic routines utilizing a nonlinear dynamic state-space 

model (Patrick et al. 2009).

For electronic systems, Sandborn and Wilkinson (2007) developed a model that utilizes 

discrete event simulations to determine the optimal PHM approach while taking into account 

the reliability (time-to-failure, operational hours per year, etc.) and business aspects 
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(unscheduled versus scheduled repair cost, time to repair, etc.) of electronics. All inputs to 

the discrete event simulation are treated as probability distributions via stochastic analysis 

implemented as a Monte Carlo simulation.

Other frameworks approach PHM system development from a product lifecycle perspective. 

Raytheon developed a closed-loop health management systems (HMS) methodology to 

develop and field HMS capable products (Janasak and Beshears 2007). Raytheon’s HMS 

methodology contains five phases that span the product life cycle and follow the DoD 

5000.2 Instruction: concept refinement, technology development, system development and 

demonstration, production and deployment, and operation and support (Beshears and Butler 

2005). Key tasks for successful implementation of the HMS process were identified as trade 

studies to set up the HMS architecture, clear HMS requirements, product characterization 

through analysis, strategically-placed sensors, and data collection/maturation (Beshears and 

Butler 2005).

Another product lifecycle-based PHM methodology was developed by Shannon et al. 

(2011), who outlined an overall process for developing a product via four high-level tasks 

involving diagnostic testing and verification: design product, produce/manufacture product, 

operate product, and support product. Shannon et al. (2011) recommended the use of 

standards, whether existing or needing development, for testing and evaluation at various 

“break points” in the process. Some standards, such as the U.S. Army’s ADS-79D-HDBK, 

address aspects of testing for PHM systems (Vogl et al. 2014).

Future standards may include a formal notational framework for prognostics, like that 

developed by Saxena et al. (2010). This framework is composed of four new evaluation 

metrics: prognostic horizon, α-λ performance, relative accuracy, and convergence. Saxena et 

al. (2010) recommend that, for situations in which the normality of the end-of-life 

distributions is not proven, that the median is used as a measure of location and that quartiles 

be used as a measure of spread. The framework can be extended to include risk and cost-

benefit analyses, effects of schedule maintenance, and connections to KPIs through 

development of uncertainty management and representation (URM) methods (Saxena et al. 

2010).

Figure 5 summarizes some of the PHM frameworks that may become useful for smart 

manufacturing systems and factories of the future.

PHM Best Practices

PHM should be used for a paradigm shift in maintenance towards a product life-cycle 

management in which products are continuously assessed (Djurdjanovic et al. 2003). 

Aspects of PHM should be based on a plant-wide basis, because PHM is fundamentally for 

optimization of a total plant (Koochaki et al. 2011). Questions remain as to how the ‘best,’ 

or most appropriate, PHM system is achieved, considering the vast differences among 

systems.

To help answer these open questions, this section presents many best practices that have 

gained some measure of acceptance by practitioners of PHM for manufacturing and defense 
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applications, e.g., General Motors (Barajas and Srinivasa 2008) and the DoD (United States 

Department of Defense 2008). The best practices for the future of PHM systems are 

organized into the following subsections based on the categories seen in Figure 2.

Cost Benefit Analyses and Dependability Analyses

Perhaps the most difficult aspect of PHM development is the determination of what system 

components should be monitored for prognostics, a step that significantly affects the system 

design. This step involves cost-benefit and/or dependability analyses (Barajas and Srinivasa 

2008).

Cost-benefit analysis determines where PHM makes economic sense (United States 

Department of Defense 2008). The economic benefit of PHM systems is important to 

determine based on the return on investment (ROI), yet such a metric may be difficult to 

calculate (Ly et al. 2009). “Fear of initial investment” must be overcome, even though long-

term PHM benefits vastly outweigh the startup costs with ROIs on the order of 10:1 (Barajas 

and Srinivasa 2008). Nonetheless, a business case is needed for optimization of PHM system 

implementation. The Army’s CBA considers development, procurement, operation, and 

maintenance costs, as well as monetary and non-monetary benefits (Greitzer et al. 2001). 

Options with the highest ROI and non-monetary benefits are generally implemented first.

Dependability analysis is the determination of failure mechanisms of critical components 

and their effects on the system. Such cause-effect relationships need to be identified and 

understood, e.g., via Failure Mode and Effects Analysis (FMEA) or Failure Mode, Effects, 

and Criticality Analysis (FMECA) (Janasak and Beshears 2007). FMEA is the most popular 

method for deterioration and failure analysis, yet is not used extensively in industry. Thus, 

software should be considered to support the use of FMEA (Takata et al. 2004). Reliability 

analysis should be used to determine the optimum maintenance tasks based on failure modes 

and consequences (safety, economical, etc.) (United States Department of Defense 2008).

Data Requirements and Management

For groups of machines or a general manufacturing system, PHM should be addressed with 

logistics support (Ly et al. 2009). To this end, reliable PHM data should be efficiently 

integrated into the company business process; information that is difficult to access or 

visualize will likely be ignored (Barajas and Srinivasa 2008). Such an integration requires 

sufficient data management architectures in which the data is easily useable at every needed 

manufacturing level. For real-time manufacturing plan controls, flexible “middleware” 

software should minimize hardware and software infrastructure dependencies and allow the 

management of computer resources (Pereira and Carro 2007).

One best practice of data management that manufacturing has been trending towards is the 

use of networks at all levels, providing increased reliability, safety, and diagnosability 

(Moyne and Tilbury 2007). Networking should allow PHM solutions to be deployable with 

existing advanced process control (APC) systems, but also be flexible for possible additions 

of health monitoring functions (Moyne et al. 2013).
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Another best practice of PHM data management is the use of open-system architectures, 

which should be incorporated when designing hardware, software, and business processes 

for maximum interoperability, portability, and scalability (United States Department of 

Defense 2008; Ly et al. 2009). The next generation of dependable manufacturing systems 

require good architectures, such as modular object-oriented systems (Pereira and Carro 

2007). One example is a diagnostic system for process hazards analysis called PHASuite, 

which uses a comprehensive knowledge via object-oriented methodologies and unified 

modeling language within an engineering framework (Venkatasubramanian 2005).

PHM architectures should be open to allow easy updates with knowledge bases and 

algorithms, providing a major advantage over legacy platforms (Hess et al. 2004). For 

aircraft, one best practice for open architectures is to develop the on-board and off-board 

system software together. Otherwise, when developed separately, diagnostic algorithms and 

analysis techniques have been shown to not reach their full potentials (Hess 2002). For 

manufacturing, such an information infrastructure is important for life-cycle management of 

maintenance data (Takata et al. 2004).

Towards the use of open system architectures, PHM developers should apply government 

and industry standards across an organization. Various standards for open systems 

architecture were developed by the International Organization for Standardization (ISO) and 

the Machinery Information Management Open Standards Alliance (MIMOSA), including 

ISO 13374, ISO 18435, OSA-CBM, and MIMOSA’s Open Systems Architecture for 

Enterprise Application Integration (OSA-EAI) (MIMOSA 2013a) (United States 

Department of Defense 2008).

Best practices for data requirements serve those for data management. For example, PHM 

systems should generate an operating history of each component that is monitored, with the 

history used within the entire logistics system (Greitzer et al. 2001). Data fields should 

utilize shared databases and be populated automatically (United States Department of 

Defense 2008), requiring human intervention only when needed and enable life cycle 

managers to characterize failures. Parts for maintenance should be automatically ordered and 

enable just-in-time inventory management by eliminating excess inventory (Greitzer et al. 

2001).

Measurement Techniques

Best practices also exist for data collection, being vital for PHM system maturation. Data 

should be collected early in the life cycle to help improve current and future programs 

(Janasak and Beshears 2007). Yet, PHM developers should invest prudently in sensor, data 

collection, and analytic capabilities to minimize errors (United States Department of 

Defense 2008). The Electronic Prognostics and Health Management Research Center at the 

University of Maryland categorized the main approaches for PHM implementation to 

include the use of built-in-test (BIT), expendable devices, such as “canaries” and fuses, 

monitoring of parameters that are precursors to impending failure, and modeling of stress 

and damage due to exposure conditions (e.g., usage, temperature, and vibration) (Vichare 

and Pecht 2006).
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With respect to measurement techniques, direct condition measurement is usually not 

possible, so PHM designers must be flexible to use sensors and parameters that are placed 

for other functional purposes to infer the condition (Hess et al. 2005). Commercial off-the-

shelf (COTS) applications should be used to promote the integration of maintenance and 

logistics information systems (United States Department of Defense 2008). And for the data 

collected for PHM purposes, pre-processing routines should be utilized with sensor health 

validation, to reduce false alarms and increase PHM fidelity; and data de-noising, to improve 

signal-to-noise ratios (Ly et al. 2009). Finally, to increase the effectiveness of maintenance, 

maintenance technologies should be more extensively connected with design aspects such as 

product modeling and digital engineering (Takata et al. 2004).

Diagnostics and Prognostics

Various best practices exist for the diagnostic and prognostic processes of PHM. As an 

essential part of PHM, data should be collected by sensors, de-noised, validated to handle 

missing and abnormal data, normalized between 0 and 1, and correlated (Das et al. 2011). 

Features should then be extracted as condition indicators in the time domain (mean, standard 

deviation, root mean square, kurtosis, etc.) or in the frequency or time-frequency domains 

through various methods (band filters, power spectral density analysis, cepstrum analysis, 

wavelet analysis, etc.). The metrics are then used with various machine/statistical learning 

methods (e.g., decision tree learning, neural networks, support vector machines, Bayesian 

networks) to build a model that correlates the metrics to the system behavior (Das et al. 

2011).

Fault detection, isolation, and prediction capabilities should be designed for PHM systems 

(United States Department of Defense 2008). PHM practitioners should continue to develop 

new methods and methodologies, yet leverage the existing methods into reusable modules 

that can be broadly applied to future PHM systems (Janasak and Beshears 2007). Physics-

based modeling should be used for critical elements for a better understanding of failure 

mechanisms and propagation times, and a methodology should be utilized for incipient 

failure detection with a specified degree of confidence and given false alarm rate (Ly et al. 

2009). Expert system software should be considered, as well, for accurate condition-based 

monitoring (United States Department of Defense 2008).

Another best practice is quick prognostics based on comparison of monitored operating 

conditions and a look-up table, generated a priori, which relates specific operating 

conditions to accumulated damage, e.g., stress rupture due to creep (Roemer et al. 2001). 

Alternatively, reduced-order models may be used for on-line PHM, which is based on 

offline, and often time-consuming, computational analysis. RUL predictions can also be 

based on various data sources, so prognostic methods should be designed with flexibility for 

the use of data from multiple sources (United States Department of Defense 2008).

Finally, PHM metrics should be based on CBM information for performance assessments 

(United States Department of Defense 2008). Specifically, feature analysis and condition 

metrics should be selected and extracted for accurate and reliable fault diagnosis and failure 

prognosis (Ly et al. 2009). PHM will not work well when performance metrics are ill-
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defined or inconsistent; the use of predicted KPIs is the basis for PHM success (Barajas and 

Srinivasa 2008).

Testing and Training

Testing of PHM systems appears to be a very specialized, yet critical, process for PHM 

system development. Future standards could be developed to address verification and 

validation (V&V) without relying heavily on current examples. Verification and validation is 

needed for PHM systems, and one such approach is seeded fault testing, if possible, to test 

the robustness of algorithms. A prognostics model must be trained and then tested on 

different data. Techniques such as ensemble learning and cross validation can then be used 

to choose the best prediction method based on performance (Das et al. 2011).

Another important best practice that appears to be lacking is the incorporation of the “human 

factor” in PHM systems; human-driven predictive diagnostics by the right people with the 

right information is required (Barajas and Srinivasa 2008). Also, any PHM system must be 

accepted and utilized by trained personnel. Hence, Bird et al. (2014) extended the generic 

taxonomy for IVHM developed by Jennions (2011) to include a comprehensive list of skills 

and capabilities needed by workers in the PHM field. The proposed taxonomy can be used 

by employers and practitioners in PHM for hiring and training (Bird et al. 2014).

Summary of Best Practices

Table 2 summarizes some of the key best practices of PHM systems that could be generally 

adopted to enable the future of PHM within smart manufacturing systems. As seen in Table 

2, the best practices include the adoption of networking and data management for open 

system architectures as well as flexible diagnostic and prognostic methods that can be 

verified and validated.

PHM Enablers for Manufacturing

While the research described in the previous sections summarizes the work that has occurred 

to advance prognostics and health management and highlights the promise of PHM, the field 

remains an emerging discipline. There are challenges and needs that must still be overcome 

to encourage wide adoption of PHM, especially in the manufacturing domain. Some of the 

most critical remaining challenges include real-time diagnostic and prognostic methods, 

standards for PHM system evaluation, and data integration within user-friendly PHM 

systems. Despite these challenges, manufacturers have a strong interest in PHM since they 

desire improved diagnostic capabilities and view prediction as the logical goal of digital 

technologies in manufacturing (Helu and Weiss 2016).

The recognized need for PHM as part of the larger theme of advanced manufacturing has 

motivated much of the current research aimed at enabling PHM solutions for manufacturing 

systems. For example, the National Institute of Standards and Technology (NIST) has been 

focused on developing methods, protocols, and tools to enable robust sensing, monitoring, 

diagnosis, prognosis, and control for PHM in manufacturing (National Institute of Standards 

and Technology 2015, 2016). A significant part of this research is the design and use of test 
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beds to support the development of PHM across multiple control levels in a manufacturing 

system (Vogl et al. 2015). The goal of these test beds is to generate:

• Data and information requirements to enable interoperability between various 

heterogeneous manufacturing systems

• Reference architectures and implementations to aid the design and execution of 

PHM systems and applications

• Best practices and guidelines to use PHM systems and applications

• Reference datasets and test scenarios to support PHM research and the 

evaluation, verification, and validation of PHM capabilities

• Physical infrastructure to evaluate enhancements to standards and technologies 

for PHM and educate the manufacturing community of the promise of PHM 

through demonstration

Each of these products would promote PHM solutions in the manufacturing domain by 

providing manufacturers with the support needed to implement, test, and use a PHM system. 

These products can also identify opportunities and define requirements for standards and 

technologies not yet envisioned that can enable the use of PHM across larger segments of 

the manufacturing domain. Towards this end, Figure 6 shows a schematic of how the various 

PHM-related test beds at NIST are interconnected to span multiple control levels in a 

manufacturing system.

Current standardization activities, especially in the area of data interoperability, are also 

important enablers for PHM in manufacturing. Potentially valuable data and information 

exists in various manufacturing systems from the devices that exist on the shop floor (e.g., 

production equipment) to the higher-level manufacturing execution (MES) and enterprise 

resource planning (ERP) systems. However, the data and information may not be presented 

and interpreted consistently by every system. It may also be difficult to transport the data 

and information between systems because of a lack of common interfaces.

One standard that seeks to address data interoperability issues in the manufacturing domain 

is MTConnect. MTConnect is an open-source, read-only, data-exchange standard for 

manufacturing equipment and applications developed by the Association for Manufacturing 

Technology (MTConnect Institute 2015). It provides a common vocabulary and structure for 

manufacturing data to enhance the data acquisition capabilities of manufacturing equipment 

and applications. The standard also includes communications protocols to provide access to 

manufacturing data. MTConnect addresses real and near-real-time data from manufacturing 

equipment (e.g., the current speed or position from a machine tool controller), and 

enhancements to the standard currently under development intend to extend the standard to 

enable interoperability between systems and applications across the equipment, facility, and 

enterprise levels of a manufacturing system. MTConnect is an important enabler of PHM by 

providing access to data and information on the as-executed status of a part, which is needed 

to identify and diagnose problems with manufacturing equipment and systems as well as 

predict problems before they may occur.
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Conclusions

As seen in Figure 1, production and maintenance paradigms have evolved with technological 

advances and societal needs. Production is becoming more customized yet efficient in a 

globally competitive environment. No longer is production expected to be halted to fix 

broken systems (reactive maintenance), but rather, production is heading towards the ideal of 

self-maintenance in which systems monitor themselves. In such a scenario, prognostics and 

health management would help manufacturers to optimize production and prevent 

production stoppages as needed.

As shown herein, prognostics and health management remains an emerging discipline and 

shows promise due to successful application in various manufacturing processes and 

products. However, there are challenges and needs that must be overcome for the widespread 

realization of PHM within manufacturing. Based on current capabilities, the critical 

challenges are real-time diagnostic and prognostic methods, standards for PHM system 

evaluation, and the integration of data (from sensors, PLC, experts, etc.) within user-friendly 

PHM systems.

Despite these challenges, successful implementation of PHM has led to certain best practices 

gained by practitioners of PHM for manufacturing and defense applications. Some of the 

most critical best practices to be adopted are related to networking and data management for 

open system architectures as well as flexible diagnostic and prognostic methods that can be 

verified and validated. Specifically, PHM data should be efficiently integrated into the 

company business process, and PHM methods should be both reliable and flexible for use 

with multiple data sources.

As challenges are overcome and best practices are implemented and updated, PHM will help 

manufacturing systems evolve into ‘smart’ manufacturing systems for the realization of the 

self-maintenance paradigm. Towards this end, collaborations among PHM experts are 

recommended for the generation of solutions that fill high-priority gaps for manufacturing 

systems. These solutions may be aided by and help influence the creation and extension of 

standards related to PHM (Vogl et al. 2014) and data interoperability in the manufacturing 

domain (MTConnect Institute 2015).

Terminology

APC Advanced process control

ANN Artificial neural network

CBM Condition-based maintenance

CBA Cost-benefit analysis

DES Discrete events system

FMEA Failure mode and effects analysis

FMECA Failure mode, effects, and criticality analysis
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FTA Fault tree analysis

IVHM Integrated vehicle health management

KPI Key performance indicator

PCA Principal component analysis

PDF Probability density function

PHM Prognostics and health management

PLC Programmable logic controller

RUL Remaining useful life

ROI Return on investment

SVM Support vector machine

TBM Time-based maintenance
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Figure 1. 
Evolution of production and maintenance paradigms.

Vogl et al. Page 26

J Intell Manuf. Author manuscript; available in PMC 2020 January 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 2. 
(a) General PHM system development process and (b) essential PHM system process.
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Figure 3. 
Description of general PHM methods.
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Figure 4. 
Examples of PHM systems.
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Figure 5. 
Examples of PHM frameworks.
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Figure 6. 
Schematic of relationships of test beds at NIST.
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Table 1

PHM challenges.

Challenge

Diagnostics

• Large sensitivity to signal noise, dependence on environmental and operating conditions, and lack of fault detection

• Maintenance diagnosis is mainly a specialized process

• Standard methods, guidelines, and trained personnel to fully verify and validate diagnostics are lacking

Prognostics

• Failures are intermittent and hence difficult to predict with typical prediction methods

• Lack of standards for the evaluation of prognostic algorithms

• Methods for continuous real-time estimation of the RUL need development

• Tools for PHM designers to know how PHM systems impact the total logistic system are lacking

• Limits to the accuracy and precision of prognostics due to uncertainties

• Multiple failures may complicate the prediction of RUL

Components and PHM Architecture

• Difficulties exist for consistent data, communication, and security across a plant floor

• Improvement in the relationship between controls engineering and maintenance engineering is needed

• Lack of integration of PLC information and PHM capabilities

• Deficient guidance to deal with abnormal events in complex systems and processes

• Prognostics capability for electronics are lacking

Business Level

• Maintenance is usually regarded as a net cost and not as a net benefit; it is difficult to quantify the cost savings due to PHM

Human Factors

• Resistance due to culture, norms, expertise, and customer and supplier relationships

• Creation of user-friendly PHM applications

• Incorporation of subjective information from experienced workers/industry with faults
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Table 2

Best practices for PHM systems.

Best Practice

CBA and Dependability Analyses

• CBA is based on ROI or other metrics

• Optimum maintenance tasks are based on failure modes and consequences

Data Requirements and Management

• PHM data is efficiently integrated into the company business process

• Flexible “middleware” software should minimize hardware and software infrastructure dependencies

• Open system architectures follow standards and allow updates with knowledge bases and algorithms

• Data fields are populated automatically

• History of each component is monitored within the entire logistics system

• Parts for maintenance are automatically ordered to eliminate excess inventory

Measurement Techniques

• Maintenance technologies are more connected with design technologies

• Data are collected early in the life cycle that improves current and future programs

• Devices utilize built-in-test and expendable devices for failure detection

• Parameters that are precursors to impending failure are monitored

• COTS aid integration of maintenance and logistics information systems

• Pre-processing routines utilize sensor health validation and data de-noising

Diagnostics and Prognostics

• Features are extracted as condition indicators for accurate and reliable fault diagnosis and failure prognosis

• Method modules are reusable for broad application to future PHM systems

• Methodology for incipient failure detection has a specified degree of confidence and given false alarm rate

• Quick prognostics are based on comparison of condition indicators and a look-up table

• Prognostic methods are designed with flexibility for data from multiple sources

Testing and Training

• PHM systems are verified and validated; prognostics model is trained and then tested with different data

• PHM systems incorporate the “human factor”, expert knowledge

• PHM system is accepted and utilized by trained personnel
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